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Simple Summary: This paper explores the methane emissions from the livestock industry and their
large impact on climate change, with a particular focus on cattle. It emphasizes how important it is
to monitor and control methane accurately because it is a powerful greenhouse gas that accounts
for 14–16% of world emissions. The study evaluates both conventional and AI-powered techniques
for methane emission detection, emphasizing the significance of cattle in particular. It has been
determined that region-specific formulations are required. The review discusses a number of topics,
such as the methane emissions from livestock, the promise of AI technology, difficulties in gathering
data, the use of methane in carbon credit programs, and current research and innovation. The review
aims to improve knowledge and practices for climate change mitigation by highlighting the crucial
role that accurate measurement and estimation methodologies play. It draws attention to the role that
methane produced by livestock, particularly cattle, plays in climate change and stresses the need for
precise measuring methods to be integrated into mitigation efforts.

Abstract: This review examines the significant role of methane emissions in the livestock industry,
with a focus on cattle and their substantial impact on climate change. It highlights the importance of
accurate measurement and management techniques for methane, a potent greenhouse gas accounting
for 14–16% of global emissions. The study evaluates both conventional and AI-driven methods
for detecting methane emissions from livestock, particularly emphasizing cattle contributions, and
the need for region-specific formulas. Sections cover livestock methane emissions, the potential of
AI technology, data collection issues, methane’s significance in carbon credit schemes, and current
research and innovation. The review emphasizes the critical role of accurate measurement and
estimation methods for effective climate change mitigation and reducing methane emissions from
livestock operations. Overall, it provides a comprehensive overview of methane emissions in the
livestock industry by synthesizing existing research and literature, aiming to improve knowledge
and methods for mitigating climate change. Livestock-generated methane, especially from cattle,
is highlighted as a crucial factor in climate change, and the review underscores the importance of
integrating precise measurement and estimation techniques for effective mitigation.
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1. Introduction

Methane emissions are a significant contributor to greenhouse gas (GHG) emissions
and play an important role in climate change mitigation efforts. Methane, as one of the
primary GHGs, is a short-lived GHG that has a much higher global warming potential
than carbon dioxide over a shorter time-period [1]. Methane is responsible for around
14–16% of total global GHG emissions, according to the Intergovernmental Panel on
Climate Change [2,3]. As heat wave occurrences are predicted to occur more frequently
and intensely over the planet, climate change is likely to make these problems worse [4].
The parties to the Paris Agreement agreed to limit global warming to 1.5 ◦C, requiring
a reduction in agricultural methane emissions by 24–47% and the achievement of net-
zero CO2 emissions by mid-century [5]. In addressing climate change, 195 countries
have pledged to decrease greenhouse gas (GHG) emissions as part of the United Nations
Framework Convention on Climate Change (UNFCCC) and have presented their national
climate action strategies, known as their Nationally Determined Contributions (NDCs).
The 195 parties affiliated with the Paris Agreement are obligated to report their national
greenhouse gas inventories and progress towards achieving emissions reduction goals.
Understanding and controlling methane emissions have become an essential priority as
global concerns about climate change continue to rise. The cattle industry has emerged as
a major contributor to methane emissions among many sources (e.g., pigs and chickens).
Approximately 30% of methane emissions in the United States come from ruminants
such as dairy and beef cattle (43.6 and 125.3 MMT, respectively). Therefore, ruminant
emissions of GHGs have received significant attention in recent years [6]. Because of enteric
fermentation and manure management procedures, livestock operations, especially beef
and dairy production, are responsible for significant methane emissions [7–9].

In recent years, there has been a growing realization of the relevance of methane
emissions and the necessity for developing precise measurements in order to build effective
climate change mitigation methods such as expanding the usage of renewable energy. It is
noteworthy that not only enteric methane emissions but also natural processes, energy gen-
eration and usage, waste management, and agricultural activities all contribute to methane
emissions. The livestock industry, particularly cow production, has been identified as a
substantial contributor to global methane emissions among these sources [7,10]. Because of
enteric fermentation, which occurs during the digestion process in the rumen of ruminant
animals, livestock, notably beef and dairy cattle, are known to be major producers of
methane [11] Figure 1.
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The enteric fermentation process produces and emits methane gas into the atmosphere.
According to research [11,12], the livestock industry emits around 7.1 gigatonnes of carbon
dioxide equivalents of GHGs annually, or about 14.5% of all human GHG emissions world-
wide. Small ruminants and buffalos produced 0.47 and 0.62 gigatonnes of carbon dioxide
equivalents, respectively, compared to the 4.6 gigatonnes of carbon dioxide equivalents
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produced by cattle, of which 2.5 gigatonnes came from beef and 2.1 gigatonnes from dairy
cattle. About 45% of the total carbon dioxide equivalent emissions from the two species
of cattle was methane from enteric fermentation. Figure 2 illustrates the contribution of
livestock to GHG emissions, with ruminants being the largest contributor. To enforce fair
mitigation strategies, accurate estimation of methane emissions from the livestock industry
is crucial. However, to implement such mitigation strategies, effective and reliable moni-
toring methodologies for quantifying methane emissions from cattle are necessary [2,9].
Various methods for measuring methane emissions from animals have been developed
and used over the years. Direct measuring approaches such as respiration chambers, the
Green-Feed system [13–15], sniffer technique, and open-circuit respiration systems [16] are
among these methods, as are indirect measurement techniques such as the use of proxies
and emission models [17,18]. Each approach has advantages and disadvantages, and the
method chosen is determined by considerations such as accuracy, cost, and practicality in
various circumstances.
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Despite advances in measurement techniques, there is still need for improvement in
methane emission estimation, notably in the cattle industry. Traditional estimation formu-
las, such as those employed in Japan, may fail to account for the distinct characteristics
and conditions of various locations and cattle production systems. Ruminant production
systems contribute different amounts of GHG emissions depending on the country and
the region within that country [2]. Methane is a GHG that has been properly quantified,
but this has led to concerns about how to report GHG inventories correctly and, perhaps
more importantly, how to best control methane emissions. Already, the IPCC has provided
methodologies to estimate GHG emissions [19]. The IPCC has suggested the conversion
factor for converting gross energy intake into enteric CH4 energy (Ym) when calculating
methane emission from ruminants, but IPCC data sets are not adequate to corroborate
the data from various regions. For this reason, the IPCC encourages the development of
country-specific methane estimation methods for enteric CH4 emissions. Hence, develop-
ing region-specific estimation methods is critical for increasing the accuracy of methane
emission estimations [2,18].

Recent advances in artificial intelligence (AI) technology have demonstrated consid-
erable promise in improving methane emission estimation. Multiple linear regression,
support vector regression [20], random forest regression [21], and artificial neural networks
(ANNs) [20] have all been used successfully to forecast methane emissions from cattle
based on various input characteristics. Machine learning methods are used in these models
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to examine big datasets and find complex correlations between methane emissions and
influencing factors [22].

Given the above information, the purpose of this review paper is to provide an
overview of the importance of methane emissions in the context of climate change mitiga-
tion, the importance of accurate methane measurements, the role of the livestock industry
in methane production, the challenges in estimating methane emissions, and the poten-
tial of AI technologies in improving methane emission models. Furthermore, the study
will examine several data collection methods for methane emissions and investigate the
on-farm application of monitoring methane emissions from cattle. This review study will
add to a better knowledge of methane emissions and their implications for climate change
mitigation methods in the livestock industry by integrating existing literature and research
findings.

The paper is structured as follows: After the above introduction, Section 2 provides an
overview of the CH4 emissions from the ruminant industry. It defines methane emission
sources in livestock operations and the impact of livestock methane emissions on climate
change. Section 3 discusses why it is necessary to develop accurate methods for estimat-
ing CH4 emissions from ruminants, with a focus on two approaches: animal-based and
policy-based. Section 4 discusses approaches for methane emission estimation, such as the
significance of precise methane emission estimates, methodologies to estimate methane
emissions from ruminants, as well as the role of region-specific formulas. It summarizes
the methodologies and challenges for collecting methane emission data and its estimation,
highlights research gaps and future objectives in methane emission estimation, and empha-
sizes the significance of ongoing research and innovation to enhance our understanding of
methane emissions and improve measurement techniques. The section also investigates
the shortcomings of current estimation formulae, particularly in the context of the live-
stock industry, and underlines the importance of establishing region-specific formulas to
increase the accuracy of methane emission estimations. Section 5 delves into more in-depth
information on AI technology breakthroughs and their potential for enhancing methane
emission prediction methods. This section investigates various AI-based models, such
as multiple linear regression, support vector regression, random forest regression, and
artificial neural networks (ANN), and highlights their applicability in predicting livestock
methane emissions. The section covers the benefits of AI models in capturing complex
correlations and patterns in huge datasets, resulting in more accurate estimates of methane
emissions. Additionally, in this section, we also discuss the difficulties and issues involved
in gathering data on methane emissions on farms. The part also discusses the significance
of data quality and standardization in ensuring trustworthy and consistent results. Finally,
Section 6 highlights the implications and future directions of methane emissions, the collec-
tion of data, and the use of advanced technology for the methane emission estimation and
modeling.

Overall, this review paper aims to provide a comprehensive overview of methane
emissions in the livestock industry, emphasizing the importance of accurate measurement
and estimation methods. By synthesizing the existing literature and research findings, this
paper seeks to contribute to the ongoing efforts to mitigate climate change by effectively
managing methane emissions from livestock operations.

2. Methane Production in the Livestock Industry
Methane Emission Sources in Livestock Operations

Livestock operations encompass a range of activities that contribute to methane emis-
sions. Methane is produced and released during enteric fermentation, the process by which
ruminant animals such as cattle and sheep digest their food [9,10,23,24]. Microorganisms in
these animals’ rumens break down complex carbohydrates by anaerobic digestion, produc-
ing methane as a byproduct [8]. Furthermore, livestock manure management, including
storage, processing, and disposal, can result in considerable methane emissions [1,19].
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Anaerobic conditions in manure storage systems boost methanogenic bacteria activity,
resulting in methane production [2,25].

The importance of cattle methane emissions in climate change cannot be overlooked.
Enteric fermentation from ruminants accounts for about 90% of global methane emissions
from livestock [10]. Given this, considering the differences in livestock categories, rumi-
nants account for the largest share of livestock methane emissions in most countries [7].
Methane is a potent GHG, with a global warming potential that is more than 20 times
that of carbon dioxide over a 100-year period [4]. Long-term livestock methane emissions
have significant climate change implications, worsening the greenhouse effect and further
disrupting the Earth’s climate system [11]. Methane emissions have a particularly strong
warming effect in the short term, making it critical to address these emissions in order to
prevent the near-term effects of climate change [10,11].

3. Need for Accurate Methane Estimation Methods
3.1. Need for Accurate Methane Emission Estimation (Animal Background)

Methane emissions from livestock farms must be accurately estimated in order to miti-
gate GHG emissions and to explore alternatives for reducing them. Precise quantification
of methane emissions offers a baseline for measuring the efficacy of emission reduction
efforts and enables the formulation of realistic targets [26–28]. Current methods for mea-
suring CH4 emissions from ruminants show high accuracy compared to the respiration
chamber method, which is considered the golden standard technique in quantifying the
CH4 emissions from animals. However, respiration chambers also have the potential to
over- or underestimate CH4 emissions due to their limitations, such as abnormal animal
behaviors and decreased feed consumption [29]. The hand-laser methane detector (LMD)
also has the potential to detect CH4 emissions from ruminants, accounting for atmospheric
variations such as air humidity, wind speed, and atmospheric pressure [2]. Uncertainty is
inherent in all measurement techniques due to random components such as changes in
animal diets, management practices, and environmental conditions [30]. Current methods
still have potential to over- or underestimate the baseline of CH4 emissions in ruminants
due to their random factors. As a result, creating strong and accurate estimating methods
is critical for addressing the climatic impact of livestock methane emissions.

3.2. Need for Accurate Methane Emission Estimation (Policy Background)

The Kyoto Protocol has established mandatory goals for reducing GHG emissions for
nations that have endorsed the agreement. To accomplish the goal of reducing GHG emis-
sions, countries must monitor and maintain records of their emissions and carbon market
transactions. All Annex 1 countries are obligated to provide yearly national inventories
of GHG emissions and removals, encompassing methane emissions from livestock (IPCC,
2006) [31]. In certain Annex 1 nations, producers in the livestock sector who decrease
methane emissions have the opportunity to trade these reductions as carbon offsets within
an emissions trading system.

Some policy approaches, such as incentive-based approaches, aim to address the
necessity of reducing greenhouse gas concentrations in different countries by imposing
transaction costs on producers, rendering participation unprofitable for small-scale opera-
tions [32,33]. Credits are quantified by calculating the carbon dioxide-equivalent (CO2e),
and methane is recognized to have a greater global warming effect compared to CO2.
Therefore, when calculating CO2e, methane is assigned a higher value to reflect its more
potent impact on climate change. Consequently, methane emissions are important in the
evaluation and allocation of carbon credits in emission trading schemes [32,33]. The ba-
sis for computing carbon credits can be formed by correctly monitoring and quantifying
methane emissions.

Accurate methane measurements are critical for verifying and establishing the au-
thenticity of carbon credits provided by methane reduction schemes. Methane emissions
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must be measured using trustworthy and established procedures to ensure consistency and
comparability of data across projects and regions for their feasibility [17].

These measurements are used to verify the actual emission reductions achieved by
the projects and to determine the quantity of carbon credits that can be issued. The most
crucial aspect regarding the need for precise measurement of GHGs in the context of
the carbon credit system is that inaccurate figures may lead to unreliable data. A past
study reported that the current method for estimating methane emissions from offshore oil
and gas production in the United Kingdom systematically and severely underestimates
emissions [34]. Therefore, using accurate methods for methane measurement is not only
essential for precise estimation but also crucial for the effective implementation of systems
like carbon credits. Also, to improve the accuracy of estimation, verification processes,
including independent third-party audits, are required to safeguard the carbon market’s
integrity and openness [32].

In conclusion, methane measurements are critical in assessing and verifying carbon
credits in emission trading schemes. Precise measuring methods for methane emissions are
utilized to calculate carbon credits and are required to prove the legitimacy of emission
reduction efforts. The potential for mitigating climate change through methane reduction
initiatives can be realized by tying methane emission estimation to carbon credit evaluation.

4. Estimation Methods for Methane Emissions from Ruminants
4.1. Traditional Approaches for Methane Emission Estimation

Methane emission estimation in the cattle industry has traditionally depended on a
variety of techniques, including direct measurement techniques and modeling approaches.
On-site measurements employing chambers or portable analyzers to capture and quantify
methane emissions from animals are used in direct measurement techniques [2,19,35].
These approaches produce reliable data, but they are sometimes time-consuming, labor-
intensive, and logistically difficult, particularly for large-scale livestock operations [36].
On the other hand, modeling approaches estimate methane emissions using mathematical
models that combine parameters such as animal population, nutrition, and management
practices [37]. These models provide a more practical and cost-effective option, although
they may have limits due to modeling simplifications and assumptions.

4.2. Direct Measurement Techniques

The main source of GHG emissions from ruminant livestock production systems
is the methane created during enteric fermentation and manure processing and storage.
However, there is no single, better method for quantifying methane in animal or dung
waste [2]. Some approaches are more suited for small-scale situations, mostly because
they were created with that goal in mind, whilst others were created from the start with
large-scale applications in mind. However, this does not imply that all approaches are
equivalent or that their quantification can be scaled up or down without introducing
additional uncertainties or relying on underlying premises that might not apply in all
circumstances [2]. Therefore, whether considering climate neutrality or global warming, it
is difficult to give a firm evaluation of a production system’s sustainability (or resiliency for
the purpose of inclusivity). Hill et al. [38] introduced different techniques to measure enteric
methane, including respiration and accumulation chambers, hood and/or headbox systems,
tracers, gas sensor capsules, in vitro techniques, open-path laser, unmanned aerial/ground
vehicles (UAV/UGV, drones), satellite, computer models, and Light Detection and Ranging
(LiDAR), and discussed their cost, applications, advantages and disadvantages in their
article [2]. Storm et al. [36] and Zhao et al. [17] provided an in-depth review of the
measurement techniques used for methane collection. Direct measurement techniques
typically involve three different detection approaches, and information on these approaches
is provided below: flux chambers, tunable diode laser absorption spectroscopy, and open-
path laser spectroscopy. For instance, in the context of measuring methane emissions from
cattle on-farm, open-path analyzers and closed-path analyzers offer real-time monitoring of
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methane concentrations in the cattle area [17,39]. Closed-path analyzers collect air samples
and assess them in a controlled setting (Using flux chamber approaches), while open-path
analyzers utilize infrared technology to measure methane concentrations along a defined
path length [1,17].

Flux chamber: This method entails enclosing the source of the emission (e.g., livestock
manure, wetlands) within a chamber and measuring the change in methane concentration
over time. Based on the concentration change and chamber properties, the emission rate is
computed.

Tunable diode laser absorption spectroscopy (TDLAS): TDLAS measures methane
concentrations in the air by using laser beams at specific wavelengths. This non-invasive
technology can be used to monitor methane emissions from industrial sites, landfills, and
natural gas infrastructure in real time.

Open-path laser spectroscopy: Open-path spectroscopy uses laser beams that traverse
the open air to measure methane concentrations. It provides spatially integrated measure-
ments and is commonly used for monitoring methane emissions from large areas, such as
agricultural fields and oil and gas facilities.

4.2.1. Respiration Chambers

The respiration chamber method is a tried-and-true method for precisely measuring
methane emissions from fermentation in the rumen and hindgut of animals [40]. Respi-
ration chambers are considered the gold standard when measuring methane emissions
from ruminants [41]. To compute methane emissions, the animal is enclosed in a sealed
space while the airflow and concentration differences between the entrance and outlet air
are measured. For accurate and repeated readings, automated sampling and gas analyzers
are used. The technique has been used historically to examine gaseous exchange and the
balance of energy in animal metabolism [2]. The advantages of respiration chambers are
numerous. They enable the real-time tracking of methane flux, giving information on
nocturnal emission patterns and prompt feedback on feed additives or nutrition [42,43].
The technique makes it possible to explore the connections between methane generation
and a variety of elements, including animal traits, feed consumption, nutritional content,
and feeding practices [44]. It enables energy partitioning, microbiological analysis, and pre-
cise measurements of methane emissions from ruminal and hindgut fermentation, which
advances knowledge of methane generation mechanisms. There are limitations to take
into account. The equipment needed for the technically challenging respiration chamber
approach is expensive to build and maintain. The number of animals that can be studied at
once is constrained by the chamber size. The training and acclimatization of the animals
to the chambers requires labor and effort [42,43]. Measurements of methane made under
controlled circumstances might not accurately represent animal emissions under various
environmental situations. In addition, animals may consume less food in chambers than
they would in grazing conditions.

4.2.2. Sulfur Hexafluoride (SF6) Tracer Technique

Measuring the generation of methane in grazing and indoor ruminants is performed
using the SF6 tracer approach [45,46]. An oral dose of the inert gas SF6 is administered
into the rumen of the animal using a controlled-release permeation tube. Using a modified
halter with a capillary tube attached to an evacuated collar worn around the animal’s
neck, the methane and sulfur hexafluoride emissions are analyzed. The canister’s contents
are examined using gas chromatography to determine the concentrations of methane and
SF6 [47]. The ratio of the methane and SF6 concentrations inside the canister and the
rate at which SF6 is released from the permeation tube are used to compute the methane
emission rate [17,46]. The background methane and SF6 concentrations in the area around
the animals are taken into consideration via a modified equation [17,46]. To increase the
accuracy of the method, additional equipment is utilized to monitor ambient concentrations
of methane and SF6 [45]. The SF6 method is useful for evaluating methane emissions from
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a large number of grazing animals at once since it does not need animal confinement, is
affordable, and is non-invasive [47]. There are limitations to take into account, though.
Since methane production can vary throughout the day but SF6 diffuses at a consistent
rate, the notion that methane and SF6 fluxes through an animal’s nose and mouth are
the same has been called into question [45]. The SF6 method can overestimate methane
emissions when permeation tubes are deployed for an extended period of time [45]. After
each study, it is critical to quantify the SF6 release rate and perform recovery tests for
permeation tubes [48]. The accuracy of the findings may potentially be impacted by
uneven accumulation of methane and SF6 concentrations in animal sheds and inadequate
mixing of gases under stable nighttime conditions [48,49]. To make sure that animal
welfare and behavior are not jeopardized, consideration should be given to the size, weight,
and wearability of the SF6 equipment [48,49]. To determine the total methane output
from the digestive tract, adjustments must be performed to account for rectum methane
emissions [48]. In conclusion, the SF6 tracer methodology provides a useful way to calculate
methane emissions from ruminants in both grazing and indoor situations. While there are
benefits, such as non-invasiveness and the capacity to research numerous animals at once,
there are also drawbacks to take into account, such as assumptions, accuracy under certain
circumstances, and changes required for thorough methane estimation. The reliability
and usefulness of the sulfur hexafluoride approach in methane emission studies can be
improved by addressing these limitations and conducting additional research.

4.2.3. GreenFeed

The automated head-chamber system known as GreenFeed was created by C-Lock
Inc. to spot sample methane emissions and gaseous exchange in ruminants. It comprises
a head-chamber system coupled with a mobile feeding station. The GreenFeed system
has been compared to several techniques, including respiratory chambers [50,51], which
have historically been thought of as the gold standard [51]. The GreenFeed system is
an automated head chamber that continually calculates the animal’s gas emissions and
analyzes gas concentrations when a visiting animal is detected by a proximity sensor
inside the head chamber [52]. The system incorporates a number of data inputs, including
ventilation, bait feed ingestion, gas concentrations, and automated animal identification
using a radiofrequency identification ear tag [51,53]. The automated gas sampling proce-
dure involves drawing air from the animal’s mouth and nose into a duct that measures
airflow. Using a non-dispersive infrared sensor, a subsample is pulled into a gas analysis
device to ascertain the methane content [52]. The measurements are normally performed
three to seven times each day for each animal. The average daily methane emissions for
each individual animal are then determined using the information gathered over a few
days. The GreenFeed program regulates the timing and quantity of feed availability for
each animal and makes sure that the measurements are distributed equally during a 24-h
feeding cycle [48]. For the purpose of estimating methane emissions, the collected data are
transferred to a cloud-based analytic system created by the GreenFeed manufacturer.

The GreenFeed system has the advantage of offering a portable and automated method
for calculating each animal’s methane flux both indoors and when grazing [15,54]. In dairy
cows and beef heifers, it has been proven to distinguish greater emitters from lower ones.
Additionally, GreenFeed has demonstrated a strong association with methane production
as determined by other techniques (e.g., respiration chambers and sulfur hexafluoride
tracer gas). Nevertheless, there are several drawbacks to the GreenFeed system. Compared
to other approaches like the respiration chamber and SF6, it shows considerable between-
day and between-animal variability, which may limit its capacity to identify the effects of
nutrition and animal factors on methane emissions. The need for a bait meal supplement
can lead to differences between animals and interactions with dietary interventions, which
can introduce further measurement variances. The voluntary nature of animal assessment
and the impact of shifting wind direction and speed can have an impact on measurements
in grazing experiments. Additionally, in a 24-h feeding cycle, methane emissions show a
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diurnal rhythm and are closely correlated with feed intake. In order to guarantee sufficient
data throughout the feeding cycle for accurate assessment of daily methane emissions, it is
important to regulate the quantity and timing of GreenFeed visits per animal.

4.2.4. Sniffer Technique

Using this method, cows’ eructation (belches) is continually sampled for gases into
a polyethylene sampling tube that is inserted in the feed trough of an automatic milking
system [27,28]. An infrared methane concentration analyzer is then used to examine the
gases that were sampled. The sniffer technique seeks to establish a correlation between daily
methane production and methane concentration in eructation, as well as the corresponding
frequency of eructation [17]. The sniffer technique has the benefit of being able to quickly
and frequently assess methane concentrations from a large number of individual lactating
dairy cows during normal milking under commercial settings. The sniffer technique has
been found to provide a linear correlation between methane emission rate and methane
production measured by the respiration chamber method, and the sniffer technique’s
estimation of daily methane emissions is in good agreement with predictions based on
milk yield and dairy cow body weight [27,28]. The sniffer technique can also distinguish
between cows with high and low methane emissions. The sniffer technique, however,
also has significant drawbacks. The precision of sniffers is significantly less [26] than that
of respiration chambers [39] due to high within- and between-animal variation in the
methane concentration in an animal’s breath. Comparing it to the respiration chambers
and SF6 approaches, it shows more variation within and between cows. It is sometimes
said to be less precise than the GreenFeed system and respiration chambers in predicting
methane generation [15,54]. Dairy cow head movements in the feed trough, different
feed trough designs, and sampling point positions can all have an impact on the accuracy
of the sniffer technique by causing different air-mixing conditions and dilution effects
of ambient air on the gas concentration in eructation. The association between the rate
of methane production and the concentration of methane as determined by the sniffer
technique may be disturbed by these factors, which introduce systematic inaccuracies.
Additionally, the sniffer technique predicts methane emission values based on existing
regression equations created using the RC approach rather than directly measuring methane
flux or production [21]. As a result, various dietary circumstances may call for different
formulae. Overall, the sniffer technique offers advantages in terms of its ability to measure
methane concentrations in a large number of cows during routine milking and its correlation
with methane production. However, it also has limitations related to variability, accuracy,
and the need for regression equations based on the respiration chamber method. Further
research and improvements are necessary to address these limitations and enhance the
accuracy and applicability of the sniffer technique.

Other methods, including ventilated hood, facemask, and laser methane detector [16],
are less used, and thus, we only mention their names here. For more information, the
reviews by Storm et al. [36] and Zhao et al. [17] explain each method in detail. Studies
also revealed that specific measurement technologies, data processing techniques, and
uncertainty estimation strategies were frequently used in conjunction. This is due to the
fact that some technologies and uncertainty assessment techniques are required for the
application of data analysis methods, and some emission sources also call for particular
instruments and data analysis techniques. The use of some precise measurement tools, on
the other hand, did not always result in a clear shift in the level of uncertainty. All of these
point to the possibility that methodologies and technologies might be thought of as a single
system for estimating methane emissions and interact with one another to affect the final
estimation [53].

Methane emissions are physically measured at the source or in the atmosphere using
direct measurement techniques. These methods provide precise and real-time information
on methane concentrations and emission rates.
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4.3. Indirect Estimation Approaches

Indirect estimation methods infer methane emissions based on a variety of parameters
and measurements connected to the source of the emissions. To estimate emissions, these
approaches rely on mathematical models and statistical methodologies [17]. Some examples
of common indirect estimate methods are as follows:

Methods based on inventory: To estimate methane emissions, these methods employ
emission factors and activity data. Emission factors represent the average emissions per
unit of activity (e.g., livestock population, fuel consumption), whereas activity data provide
the frequency and volume of activities that contribute to emissions. This method is widely
used to estimate emissions from large-scale sources such as livestock operations and trash
disposal.

Remote sensing: Remote sensing techniques determine methane concentrations and
emissions across vast areas by using satellite or aircraft data. These data, in conjunction with
atmospheric modeling and statistical methodologies, can be used to estimate emissions from
a variety of sources, including natural wetlands, landfills, and oil and gas infrastructure.

4.3.1. Model Approach to Estimation of Methane Emissions from Ruminants

In Table 1, we provided a list of models of methane emission from ruminants (beef
cattle, dairy, Holstein cattle). Estimation of enteric methane emissions from ruminants
is important for assessing dietary mitigation strategies [9,23,24]. Measuring methane
emissions from individual animals requires expensive equipment and advanced technolo-
gies. Normally, models can explain the relationship between nutrient intake and methane
production by adopting mathematical methods to describe rumen fermentation biochem-
istry [36]. Presently, many countries accept the IPCC (2006) Tier 1 or Tier 2 methodologies
to report their national inventories of GHG emissions. The Tier 2 model only considers
the gross energy intake (GEI) and energy to methane conversion ratio (Ym) to estimate the
methane emissions from ruminants, which can lead to inaccurate measures in predicting
methane emissions when diets have different nutrient composition. Hence, in improv-
ing the accuracy of methane emissions models, it is necessary to consider region-specific
methane emission factors [7]. Currently, region-specific methane estimation equations are
being developed in some geographical areas [10].

To increase the accuracy of methane equations, various emission factors (e.g., age,
breed, country-specific factors) are calculated for the methane estimations [55]. Models
developed to date are normally based on feed intake [23,56,57]. These models do not
adequately account for the effect of other dietary factors. Therefore, recently developed
models account for dietary factors such as lipid supplementation, neutral detergent fiber
(NDF), organic matter digestibility (dOM), and starch [8,12,58]. They consider various
dietary factors to compensate for the model accuracy and to improve the prediction of
methane emissions under different mitigation strategies that have been proposed. Also,
mechanistic and regression model approaches (linear and non-linear) are being considered
to develop equations of methane emissions from ruminants [56,59]. Variables for explaining
the models for methane emissions were sufficiently comprehensive, and multiple-regression
analysis was adopted to predict the methane emissions from ruminants [57,60]. All methods
have different purposes, and none of them are applicable in all aspects. To develop more
accurate models, it is necessary to identify the variables that can improve precision and
incorporate various approaches.

4.3.2. Incorporating Regional Variables for Developing Accurate Methane
Estimation Models

The IPCC (2006) suggested a tier (Tier 1, Tier 2, and Tier 3) approach for national GHG
inventories in the context of livestock, with successive tiers providing increased accuracy
with the complexity of the approaches. The IPCC recommended developing region-specific
emission factors to calculate CH4 emissions from ruminants.
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The Tier 1 method involves default values for emission factors, and the data are based
on previous studies, presenting the emission factors by region to facilitate ease of use. When
opting for the Tier 1 method, readily available data on animal populations are needed, and
recommendable to the countries where enteric fermentation is not a main source of GHG
emissions. The IPCC (2006) [31] guidelines provide default emission factors for ruminants,
organized into eight different regions to account for variations in cattle characteristics
among regions.

The Tier 2 method is an improved method that requires information about animal
categories, feeding and production systems, and manure management. The Tier 2 method
is currently used for inventories in most industrialized countries. When calculating the CH4
from enteric fermentation by adopting the IPCC Tier 2 method, calculation is based on the
gross energy intake (GEI) and conversion rate of gross energy intake into methane energy
(Ym), which can be chosen according to the level of productivity and diet characteristics.
The IPCC data derived from Niu et al. [61] mainly incorporates European research institutes
and does not encompass other regions or countries. Diet characteristics in past reports
can have differences in other countries (Mediterranean region) [62,63]; hence, the IPCC
encourages the development of country-specific Ym factors to enhance the accuracy of
enteric CH4 estimation.

Tier 2 Emission factor = GE × (Ym/100 × 365 days/year)/55.65 MJ/kg CH4 (1)

The Tier 3 method is applicable to a national inventory when comprehensive knowl-
edge of all factors influencing enteric and manure CH4 emissions is available and can be
considered. A thorough and precise depiction of feeding systems is essential, encompass-
ing crucial details such as the energy conversion factors utilized for estimating the energy
requirements of the animals.

In the case of measuring methane within a regional scope, the measurement values
may vary based on the climatic conditions prevailing during the measurement period in
that particular region [2]. To develop an accurate formula for estimating methane emissions
by incorporating regional variables, we integrate relevant factors to create a precise and
specific formula. These variables should reflect differences in statistical, physiological, and
behavioral characteristics identified in specific-country cattle populations. A past study
reported that specific variables (Korea) relating to breed traits, feeding methods, specific
environments, and management systems can be determined by collecting data on methane
emissions and conducting bio-specimen analysis on beef and dairy cattle [55]. The inclusion
of these Korean factors in the estimation formula aids in the reduction of errors and the
accuracy of methane emission projections in the local context. Collaboration between
researchers, policymakers, and industry stakeholders is critical for fully realizing the
potential of AI technology in methane emission estimation. Innovative ways to overcome
problems and ensure the successful on-farm detection of methane emissions from cattle
can be developed by promoting collaboration and knowledge exchange. This collaboration
can also help to standardize protocols and methodologies, allowing for data comparability
and synthesis across research and locations.

Finally, incorporating AI technology into methane emission estimation holds potential
for furthering our understanding of emissions in the livestock industry. We can increase our
ability to estimate and mitigate methane emissions by developing reliable models, improv-
ing data collection and processing procedures, and implementing monitoring technology
on farms. We may contribute to sustainable and environmentally responsible livestock
production practices while limiting the influence of methane on climate change by tackling
the hurdles and utilizing the benefits of AI-based approaches.

4.4. Challenges and Considerations for Methane Estimation in Ruminants

Traditional approaches have been useful in calculating methane emissions, but they
have limits. Direct measuring approaches can be time-consuming and offer data that are
not always representative of the total animal population [64]. Furthermore, the use of mod-
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eling methodologies necessitates appropriate input parameters, which can be difficult to
obtain, thus contributing to uncertainty in estimations [65]. Methane estimation techniques
may have difficulty capturing the dynamic character of methane emissions, which can
fluctuate based on factors such as feed composition, animal behavior, and environmental
circumstances [66].

Collecting accurate and trustworthy methane emission data presents numerous issues
and must be approached with caution:

Spatial and temporal variability: Methane emissions can fluctuate both spatially and
temporally, making it difficult to capture the entire spectrum of emissions. Important
considerations include developing sampling procedures that effectively capture variability
and accounting for seasonal and diurnal swings.

Measurement precision and sensitivity: Methane concentrations in the atmosphere
are frequently low, necessitating precise monitoring techniques to reliably identify and
quantify emissions. It is critical to ensure the precision and sensitivity of instruments in
order to collect trustworthy data.

Measurement infrastructure: Deploying measurement tools and establishing monitor-
ing networks can be difficult logistically, especially in remote or inaccessible places. Regular
maintenance and calibration of the instruments are required for accurate and consistent
measurements.

Source attribution: It can be difficult to identify and quantify methane emissions
from individual sources in complicated ecosystems. Combining numerous measurement
techniques, modeling methodologies, and complementing data sources can increase the
accuracy of source attribution.

Standardization and quality assurance: It is critical to develop standardized protocols,
techniques, and quality assurance procedures to ensure consistency and comparability of
methane emission data across studies and locales.

Addressing these challenges and taking into consideration these factors in methane
data collection efforts are crucial for generating reliable and robust emission estimates,
supporting effective mitigation strategies, and accurately measuring the climatic impact of
methane emissions.

Zhao et al. [17], in their review of the application of various methane estimation
measurement methods, concluded that the correct and successful use of methane emission
measurement methods depends on the objectives of the studies and the mechanism of
each method. Respiration chambers and head enclosures are accurate enough to determine
emission factors for IPPC inventory reporting, but not for use with grazing animals. The
sulfur hexafluoride tracer technique can be used in grazing situations, but feed intake relies
on indirect prediction. The short-term techniques (i.e., GreenFeed, Sniffer, Facemask, LMD
and PAC) offer potential opportunities to identify high and low methane emitters in a large
group of animals for breeding purposes, and thus, research is needed to improve their
reliability and repeatability [55]. Overall, ideal methane measurement techniques should
be accurate, rapid, cost-effective and automated, with an understanding of animal behavior
and welfare that allows measurement of animals in their practical production environment.
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Table 1. List of models of methane emission from ruminants (Beef cattle, Dairy, Holstein cattle).

Year Equation 1 r2 Reference

2003

Methane (MJ/d)

[67]
(1): = 5.93 (SE 1.60) + 0.92 (SE 0.08) × DMI (kg/d) 0.60
(2): = 8.25 (SE 1.63) + 0.07 (SE 0.007) MEI (MJ/d) 0.55
(3): = 7.30 (SE 1.58) + 13.13 (SE 3.41) N (kg/d) + 2.04 (SE 0.41) ADF (kg/d) + 0.33 (SE 0.18) Starch (kg/d) 0.57
(4): = 1.06 (SE 2.41) + 10.27 (SE 3.59) Dietary forage proportion + 0.87 (SE 0.074) DMI 0.61

2007

Beef cattle

[56]

(1): CH4 (MJ/d) = 2.94 (±1.16) + 0.0585 (±0.0201) × ME intake (MJ/d) + 1.44 (±0.331) × ADF (kg/d) − 4.16 (±1.93) × lignin (kg/d) 0.85
(2): CH4 (MJ/d) = 0.183 (±1.85) + 0.0433 (±0.0170) × ME intake (MJ/d) + 0.647 (±0.244) × NDF (kg/d) + 0.0372 (±0.0186) × forage (%) 0.74
Dairy
(1): CH4 (MJ/d) = 2.16 (±1.62) + 0.493 (±0.192) × DMI (kg/d) − 1.36 (±0.631) × ADF (kg/d) + 1.97 (±0.561) × NDF (kg/d) 0.63
(2): CH4 (MJ/d) = 1.64 (±1.56) + 0.396 (±0.0170) × ME intake (MJ/d) + 1.45 (±0.521) × NDF (kg/d) 0.59
Combined
(1): CH4 (MJ/d) = 3.69 (±0.993) + 0.543 (±0.132) × DMI (kg/d) + 0.698 (±0.247) × NDF (kg/d) − 3.26 (±1.56) × lignin (kg/d) 0.71
(2): CH4 (MJ/d) = 3.41 (±0.973) + 0.520 (±0.120) × DMI (kg/d) − 0.996 (±0.447) × ADF (kg/d) + 1.15 (±0.321) × NDF (kg/d) 0.67

2013

CH4 production (MJ/d)

[68]

(1): = 1.36 (±0.10) × DMI − 0.125 (±0.039) × FA − 0.02 (±0.012) × CP + 0.017 (±0.005) × NDF 0.77
(2): = 1.23 (±0.08) × DMI − 0.145 (±0.039) × FA + 0.012 (±0.005) × NDF 0.75
(3): = 1.39 (±0.06) × DMI − 0.091 (±0.036) × FA 0.70
(4): = 1.26 (±0.03) × DMI 0.66
(5): = 738 (±54) × DMI_BW − 0.145 (±0.044) × FA + 0.013 (±0.005) × NDF 0.68
(6): = 0.0026 (±0.0004) × rdNDF + 0.0020 (±0.0004) × rdstarch + 0.0032 (±0.0004) × rdrestCHO 0.59

2013

(1): CH4-E/GE (kJ/MJ) = −0.6 (±12.76) − 0.70 (±0.072) × DMIBW (g/kg) + 0.076 (±0.0118) × OMDm (g/kg) − 0.13 (±0.020) × EE (g/kg of
DM) + 0.046 (±0.0097) × NDF (g/kg of DM) + 0.044 (±0.0094) × NFC (g/kg of DM)

RMSE
(3.26 kJ/MJ)

[68]
(2): CH4 (L/d) = −64.0 (±35.0) + 26.0 (±1.02) × DM intake (kg/d) − 0.61 (±0.132) × DMI2 (centered) + 0.25 (±0.051) × OMDm (g/kg) − 66.4
(±8.22) × EE intake (kg of DM/d) − 45.0 (±23.50) × NFC/(NDF + NFC)

RMSE
(21.1 L/d)

(3): CH4-E/GE = 0.96 (±0.103) × predicted CH4-E/GE + 2.3 (±7.05) RMSE
(3.38 kJ/MJ)
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Table 1. Cont.

Year Equation 1 r2 Reference

2014

Holstein cattle

[69]

6 months old
(1): CH4 (g/day−1) = 0.341(0.128) BW (kg) + 30.7(22.7) 0.26
(2): CH4 (g/day−1) = 26.0(4.22) DM intake (kg day−1) − 11.1(17.2) 0.67
(3): CH4-E (MJ day−1) = 0.765(0.0112) GE intake (MJ day−1) − 0.660(0.868) 0.72
12 months old
(1): CH4 (g day−1) = 0.319(0.0983) BW (kg) + 57.0(31.6) 0.34
(2): CH4 (g day−1) = 16.7(2.14) DM intake (kg day−1) + 47.2(14.4) 0.76
(3): CH4-E (MJ day−1) = 0.048(0.0054) GE intake (MJ day−1) + 2.53(0.721) 0.80
18 months old
(1): 0.234(0.122) BW (kg) + 59.5(60.3) 0.12
(2): 14.1(4.68) DM intake (kg day−1) + 73.3(34.0) 0.30
(3): 0.032(0.0121) GE intake (MJ day−1) + 4.89(1.84) 0.24
22 months old
(1): 0.275(0.0675) BW (kg) + 32.0(38.4) 0.45
(2): 13.3(4.28) DM intake (kg day−1) + 79.4(35.2) 0.31
(3): 0.032(0.0127) GE intake (MJ day−1) + 5.15(2.10) 0.22

2016

Enteric methane emissions (EME; MJ/day)

[58]
(1): = 0.242 (×0.073) + 0.0511 (×0.0073) × digestible energy intake 0.83
(2): = −1.04 (±0.271) + 2.21 (±0.395) × neutral detergent fiber intake × 2.42 (±1.10) × ether extract (EE) intake + 1.456 (±0.323) × non-fiber
carbohydrate intake + 0.0208 (±0.0039) × OM digestibility at maintenance level of feeding (OMDm) − 0.513 (±0.137) × feeding level (FL) 0.82

(3): = −0.885 (±0.154) + 0.809 (±0.0867) × dry matter intake − 0.397 (±0.0494) × FL + 0.0198 (±0.0022) × OMDm + 2.04 (±0.234) × acid
detergent fiber intake −8.54 (±0.548) × EE intake 0.88

(4): = 1.721 (±0.151) × {1 − exp(−0.0721 (±0.0092) × metabolizable energy intake)} 0.79

2016

Single linear prediction of methane emissions from nonpregnant nonlactating dairy cows

[70]

CH4 (methane emissions) (kg/d)
(1): = 50.67(14.03) + 19.95(2.16) DMI (kg/d) 0.67
(2): = 50.85(13.52) + 21.63(2.28) OMI (kg/d) 0.68
(3): = 73.15(16.01) + 20.56(3.10) DDMI (kg/d) 0.61
(4): = 63.19(15.31) + 23.78(3.15) DOMI (kg/d) 0.62
CH4-E (methane energy output) (MJ/d)
(1): = 2.727(0.807) + 0.061(0.007) GEI (kg/d) 0.68
(2): = 4.341(0.887) + 0.060(0.009) DEI (kg/d) 0.63
(3): = 6.110(0.805) + 0.047(0.010) MEI (kg/d) 0.62
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Table 1. Cont.

Year Equation 1 r2 Reference

2020

CH4 emissions (g/day)

[65]

(1): = 0.44 (±0.02) × BW 0.63
(2): = 213 (±21.0) + 6.26 (±0.85) × milk 0.57
(3): = 117 (±7.97) + 36.1 (±12.1) × ADG 0.14
(4): = 19.4 (±7.25) + 16.7 (±1.09) × DMI 0.78
(5): = 63.8 (±11.6) + 0.96 (±0.07) × GEI (for dairy cattle)
63.8 (±11.6) + 0.72 (±0.10) × GEI (for mature cattle) 0.79

(6): = 68.1 (±13.5) + 12.4 (±1.99) × DMI − 0.53 (±0.26) × EE 0.63
(7): = 111 (±18.6) + 23.0 (±2.35) × dDMI − 31.3 (±9.41) × FL − 0.08 (±0.04) × NFC 0.78
(8): = 17.0 (±0.99) × DMI + 0.03 (±0.01) × NDF 0.81
(9): = 18.1 (±1.23) × DMI + 0.33 (±0.15) × Forage − 0.30 (±0.20) × dOM 0.80

1 Equation parameters are ±SE, FA = fatty acids, NDF = Neutral detergent fiber, ADF = Acid detergent fiber, CP = Crude protein, DMI = Dry matter intake (kg/day), ME intake
(MJ/d) = Metabolizable energy intake, rd_ = rumen degraded nutrient (g/d), td_total digested amounts, rdrestCHO = rest fraction of carbohydrates calculated as the residue when
subtracting protein, fat, starch, NDF and fermentation products from organic matter, OMDm = OM digestibility determined at a maintenance level of feeding = OMD + 1.83 × (DMIBW
− 10), GE = Growth energy, DMIBW = Dry matter intake per kg body weight, dOM = digestibility of OM, DDMI = Digestible dry matter intake, DOMI = Digestible organic matter
intake, DEI = Digestible energy intake, dNDF = digestibility of NDF, DDMI = digestible DM intake (kg/day), CH4-E = CH4 energy, BW = animal body weight (kg), FL = feeding level
(%BW), Forage = forage percentage in the diet, GEI = gross energy intake (MJ/day), RMSE = Root mean square error.
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5. One of the Methods for Increasing the Accuracy of Methane Emissions Models for
Ruminants: AI Technology
5.1. The Role of AI Technologies in Advancing Methane Emission Estimation

The rise of artificial intelligence (AI) technology has created new opportunities for
better estimating methane emissions in the cattle industry. Machine learning and deep
learning algorithms [71], for example, have shown promise in dealing with complicated
datasets and identifying hidden patterns in methane emissions data [22,72]. These technolo-
gies are capable of analyzing enormous amounts of data, such as animal-related metrics,
feed composition, and environmental conditions, in order to construct more accurate and
robust estimation models [1,22]. AI-based systems may also include real-time data streams,
enabling continuous monitoring and updating of methane emission estimations [1].

5.2. Data Collection and Processing Techniques

Accurate estimation of methane emissions requires systematic data collection and pro-
cessing techniques. This includes documenting animal characteristics (such as breed, age,
and weight), meal composition, feeding procedures, and environmental conditions (such
as temperature and humidity) [39,73,74]. Collecting the bio-specimen data can improve
the accuracy of methane estimation models for ruminants. Ruminants’ rumen fluid, feces,
or breath can be collected and evaluated for methane content [2]. Rumen fluid analysis,
in particular, gives information about the rumen’s microbial population and fermentation
activities, which are linked to methane production [75–77]. Stable carbon isotope analysis,
for example, can be used to distinguish methane produced by microbial fermentation
from methane produced by other sources [72,78]. A more comprehensive understanding
of methane production and potential mitigation measures can be acquired by combining
bio-specimen analysis with emission measurements. Electronic data capture systems or
mobile applications can help with on-farm data collection, allowing for more efficient and
uniform data collection [1,17]. Additionally, integration with on-site meteorological stations
or weather data sources improves the contextual knowledge for estimating emissions.

Jeong et al. [1] provided three main data collection methods based on AI models and
discussed their output in detail. The categories included (1) aerial imagery processing,
(2) deep learning image segmentation, and (3) dairy facility area estimation.

Briefly, aerial imagery processing refers to the utilization of aerial imagery data for var-
ious applications and analysis. It involves the collection, processing, and interpretation of
photographic images captured from aerial platforms. Aerial imagery processing techniques,
such as photogrammetry, are used to extract reliable information about physical objects
and the environment by recording, measuring, and interpreting photographic images. This
process allows for the generation of two-dimensional (2D) or three-dimensional (3D) digital
models of objects. In their paper [1], aerial imagery processing is specifically used for
training an AI model to estimate methane emissions from dairy operations.

Deep learning image segmentation refers to the process of dividing an image into
multiple segments or regions based on certain characteristics or properties of the pixels [72].
It is a technique used in computer vision and digital image processing to simplify and ana-
lyze images more effectively [2]. In the given context [1], deep learning image segmentation
is specifically mentioned in relation to identifying dairy facilities at the pixel level on a
National Agricultural Imagery Program (NAIP) image. The approach mentioned involves
using deep learning (DL) methods, which are a subset of machine learning and rely on
artificial neural networks (ANNs) to imitate the processing of the human brain [20]. Deep
learning image segmentation enables the identification and classification of different objects
or regions within an image at the pixel level. In this case, the objective is to predict the
pixel-level location of dairy farms in the image, rather than just determining if the image
contains a particular object. It allows for more detailed and precise analysis, such as calcu-
lating the dairy farm’s spatial area for emission estimation purposes [78]. The technique
mentioned in the provided information utilizes a convolutional neural network (CNN) as a
deep learning architecture for image segmentation [20]. Specifically, the researchers applied
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the U-Net architecture, which is known for performing well with a relatively small number
of training datasets. U-Net was initially developed for medical imaging applications and
was adapted for the abovementioned study. Overall, deep learning image segmentation
plays a crucial role in various fields, including medical imaging, self-driving cars, satellite
imaging, and other computer vision applications. It allows for a more granular analysis and
understanding of images by assigning labels to individual pixels, enabling the extraction of
complex and abstract features.

Dairy facility area estimation refers to the process of determining the spatial area
occupied by dairy facilities, including free stall barns and open lots [26,27]. This estimation
is used as a basis for estimating the dairy population within the facility, which is then
utilized for emission estimation in combination with emission factors (EFs). In practice,
a deep learning (DL) model is employed to identify individual dairy pixels within an
image tile. It is worth noting that multiple image tiles can form a single facility, and by
combining the boundaries from these tiles, individual facility boundaries are constructed
to estimate the facility-level population [1,20]. To facilitate further analysis for dairy
population and emission estimations, the spatial areas calculated from clusters of identified
dairy pixels are aggregated into a grid with a resolution of 0.1◦ (approximately 10 km).
This gridded area information is then utilized in subsequent analyses for dairy population
and emission estimations. The study by Marklein et al. [79] utilized a spatial resolution
of 0.1◦ for comparison with other spatial inventories, including CALGEM, although their
native resolution was at the facility level. This comparison aims to assess the accuracy and
reliability of the gridded product derived from the dairy facility area [79]. Therefore, dairy
facility area estimation involves the use of deep learning models, high-resolution imagery,
and spatial analysis techniques to identify dairy facilities, estimate their spatial areas, and
scale the population at the facility level for emission estimation purposes.

5.3. Pre-Processing and Normalization of Methane Emission Data

Prior to analysis, methane emission data must be pre-processed and normalized. Data
cleaning, outlier detection, and missing value management are all part of pre-processing
procedures [17,23]. Data from multiple sources or scales can be compared using nor-
malization approaches such as feature scaling or normalization to a reference value [23].
RobustScaler and Min-Max normalization methods can be used to alter the range and
distribution of methane emission data, allowing for more effective analysis and mod-
eling [17,23]. These steps help to improve the accuracy and dependability of methane
emission estimation.

Overall, detecting methane emissions from cattle on-farm requires the use of portable
measurement equipment, bio-specimen analysis, meticulous data collection and processing,
and the addition of important region-specific variables. These steps help to produce precise
and dependable estimations of livestock methane emissions. The use of portable methane
emission measurement equipment enables on-site monitoring and real-time data collection,
offering significant insights into individual animal emissions as well as herd emissions.
These measurements are supplemented by bio-specimen analysis, which provides infor-
mation on rumen microbial activity and methane generation mechanisms [80]. Proper
data collection and processing techniques ensure that the collected data are of high quality
and consistency, while pre-processing and normalization methods help to standardize the
data for accurate analysis and modeling. Finally, using region-specific variables such as
breed characteristics, environmental specifics, feeding habits, and management techniques,
guarantees that the methane emission estimation formula is matched to the local context,
reducing errors and enhancing prediction accuracy. Stakeholders in the cattle industry can
acquire a better understanding of methane emissions and establish effective mitigation and
sustainable management plans by applying these on-farm measurement and analysis tools.

Various machine learning techniques are used in the construction of models for esti-
mating methane emissions. For example, multiple regression allows the development of a
linear equation that represents the link between methane emissions and many input fac-
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tors. The coefficients of the regression equation represent the contribution of each variable
to methane emissions in this technique [81]. Support vector regression (SVR) and other
supervised learning models can also be used to capture nonlinear correlations between
factors and methane emissions [21,56]. These models are intended to learn patterns and
correlations from training data and generate predictions based on previously unknown
data.

Once the models are trained, they can be used to predict methane emissions by
inputting the relevant variables. These predictions play a vital role in assessing and
monitoring the environmental impact of livestock operations [82].

5.4. Model Performance Evaluation and Interpretation

To ensure the accuracy and trustworthiness of methane emission estimation models,
their performance must be extensively assessed. To test the prediction performance of the
models, various evaluation metrics such as mean squared error (MSE), root mean squared
error (RMSE), and coefficient of determination (R-squared) are often used [59]. These
measures provide useful information about the models’ capacity to capture variance in
methane emissions as well as their overall accuracy.

Understanding the factors that drive methane emissions is also dependent on how the
models are interpreted. The coefficients in multiple regression models provide information
regarding the amount and direction of the relationships between factors and methane
emissions [23]. Support vector regression models, on the other hand, use support vectors to
identify the data points that have the most influence on the model’s decision limits [24,59].
Such interpretations aid in the identification of crucial variables and the understanding of
the underlying mechanisms that drive methane emissions in livestock operations.

5.5. Artificial Neural Networks (ANN) for Complex Estimation

Artificial neural networks (ANNs) are powerful models that can recognize complicated
correlations and nonlinear patterns in data [20]. ANNs are made up of interconnected
nodes (neurons) that are structured into layers, which include an input layer, one or more
hidden layers, and an output layer. Each node applies an activation function to its input
and forwards the outcome to the next layer. Weights govern the strength of connections
between nodes, which are modified during the training phase to maximize the model’s
performance. The key distinction between the proposed ANN model and conventional
inventory-based models is the ANN model’s requirement for a slightly smaller number
of input parameters, which have a far wider availability. This makes it possible to use the
ANN model to forecast methane emissions even in countries and regions without the full
set of input parameters that are often required by conventional models based on activity
levels and emission factors [20].

5.6. Model Creation and Architecture

To develop an ANN model for estimating methane emissions, the model’s design must
be carefully considered. This entails establishing the number of layers and nodes within
each layer, as well as choosing appropriate activation functions. The variables impacting
methane emissions should be represented in the input layer, while the estimated methane
emissions should be shown in the output layer. To enhance the model’s performance,
the number of nodes in the hidden layers can be selected through experimentation and
tuning [1].

5.7. Hyperparameter Tuning and Training

Optimizing parameters such as learning rate, batch size, and number of epochs to
improve the model’s generalization and prediction performance is a critical stage in training
ANNs [20]. Grid search and randomized search techniques can be used to investigate alter-
native combinations of hyperparameters and determine the ideal configuration [1]. Once
the hyperparameters have been determined, the model can be trained using appropriate
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optimization techniques such as stochastic gradient descent (SGD) or the Adam optimizer.
During the training process, the ANN’s weights are iteratively modified to minimize the
difference between the predicted and actual methane emissions in the training dataset.
This approach is repeated until the model converges or meets a predetermined stopping
threshold [20].

5.8. Model Validation and Weight Analysis

Following training, the ANN model must be validated using distinct validation
datasets to determine its generalization capabilities. On the validation dataset, perfor-
mance metrics like MSE or RMSE can be derived to assess the model’s accuracy [20,21].
This stage ensures that the model can estimate methane emissions from unseen data and
provides an indication of its trustworthiness in real-world circumstances. Another impor-
tant part of evaluating ANN models is weight analysis. By evaluating the weights provided
to the connections between nodes, valuable insights into the importance and contribution
of various variables in predicting methane emissions can be obtained [7]. The analysis
assists in identifying the major elements causing methane emissions in cattle operations
and improves our understanding of the underlying processes.

In conclusion, the development and evaluation of models for estimating methane
emissions requires the use of a variety of approaches such as multiple regression, support
vector regression, and ANNs [21]. These models provide greater precision and flexibility in
capturing the complex linkages and nonlinear patterns involved with methane emissions.
Proper model performance evaluation and interpretation ensures model dependability and
aids in identifying key variables and mechanisms controlling methane emissions. We can
increase our understanding of methane emissions in the cattle industry and contribute to
effective mitigation methods by incorporating modern AI technology and investigating
novel ways. Figure 3 provides a schematic of the process used to develop the methane
emission equation.
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5.9. Benefits and Challenges of AI-Based Approaches

The use of AI-based techniques for estimating methane emissions has various advan-
tages. For starters, these techniques have the potential to improve estimation accuracy and
precision by considering a greater range of factors and their interactions [82–84]. Second,
AI approaches can improve the scalability and efficiency of estimation procedures, allowing
for broader spatial and temporal scale assessments [85]. Furthermore, AI-based techniques
may adapt to and learn from fresh data, resulting in ongoing refinement and development
of estimation models [86].

However, there are several limitations related to using AI to estimate methane emis-
sions. Data availability and quality are critical issues because AI models rely largely on
large and consistent datasets for training and validation [87]. Integration of disparate data
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sources and data format harmonization are technological problems that necessitate appro-
priate data pretreatment and standardization [88]. The interpretability and transparency of
AI models are also crucial concerns to assure the accuracy and acceptability of the estimated
results [89,90].

Overall, the employment of AI technology in methane emission estimation shows a
lot of promise in terms of enhancing accuracy, scalability, and efficiency [22]. However,
more research and development are required to solve the obstacles and fully harness the
benefits of AI-based systems in the context of estimating livestock methane emissions. One
of the most important advantages of AI technologies is their capacity to manage big and
complex information, which is especially important in the cattle industry, where a variety of
factors influence methane emissions. AI-based techniques may efficiently capture nonlinear
correlations and interactions among numerous variables by employing machine learning
algorithms, resulting in more precise estimations [22,91]. Furthermore, AI technologies
provide the benefit of constant learning and adaptation. AI models may be updated and
adjusted as more data become available and new insights are discovered, allowing them to
perform better over time. This adaptability is critical in the context of estimating methane
emissions as our understanding of the underlying variables controlling emissions evolves.
However, there are still difficulties in implementing AI-based techniques. Data quality
and availability are significant considerations that must be addressed. For accurate model
training, high-quality and representative datasets are required. Furthermore, incorporating
AI technology into existing cattle operations may necessitate the removal of technical,
logistical, and financial constraints.

6. Implications and Future Directions
6.1. Advancing On-Farm Methane Emission Monitoring Technologies

On-farm methane emission monitoring technology advancements have substantial
consequences for the cattle industry and environmental management [57]. The introduction
of portable methane emission measurement technology has made on-site data collection
more accurate and efficient. Further research and development in this field can concentrate
on improving the portability, usability, and cost of monitoring technology. This would
allow farmers to employ the technology more widely and promote frequent and routine
detection of methane emissions from livestock activities.

6.2. Integration of AI and IoT for Real-Time Methane Emission Monitoring

The combination of artificial intelligence (AI) and the Internet of Things (IoT) opens up
new possibilities for monitoring methane emissions on farms in real time. AI algorithms can
analyze continuous data streams from methane sensors and offer farmers rapid feedback,
allowing for prompt action and mitigation. Remote monitoring of methane emissions across
several locations can be facilitated by IoT-based sensor networks, offering a comprehensive
understanding of emissions at the farm level. This integration can help with proactive
emission management, better decision-making, and effective mitigation strategy execution.

6.3. Policy Recommendations for Promoting Methane Reduction in the Livestock Industry

Effective policies are critical in encouraging methane reduction in the cattle industry.
The following recommendations should be considered by policymakers:

Incentives and support: Financial incentives, grants, and subsidies should be imple-
mented to encourage farmers to use methane reduction methods such as enhanced feed
management, anaerobic digestion systems, and waste management technology. Farmers
might benefit from assistance programs that provide technical expertise and financial
resources to help them shift to more sustainable practices.

Education and training: Develop educational programs and training initiatives to
enhance farmers’ understanding of the environmental impact of methane emissions and the
potential advantages of mitigation techniques. Farmers can be empowered to undertake



Animals 2024, 14, 435 21 of 26

effective emission reduction measures if they have access to resources and training on best
practices.

Research and development: Invest in research and development to advance livestock-
specific methane reduction technology and techniques. Encourage researchers, industry
stakeholders, and policymakers to collaborate in order to create creative solutions, enhance
measurement techniques, and develop cost-effective mitigation plans.

International cooperation: Encourage worldwide cooperation and knowledge sharing
to reduce global methane emissions from the cattle sector. Collaboration can promote
the exchange of best practices, data, and technologies, resulting in more effective and
coordinated methane emission reduction activities.

Emission reporting and verification: Establish strong reporting and verification pro-
cesses to ensure accurate measurement, reporting, and verification of livestock methane
emissions. Standardized methods and guidelines can improve the transparency, trustwor-
thiness, and comparability of emission data, hence facilitating the achievement of emission
reduction targets.

Governments may encourage sustainable practices, drive innovation, and accelerate
methane reduction efforts in the cattle industry by implementing these policy proposals,
thereby contributing to climate change mitigation goals.

7. Conclusions
7.1. Summary of Key Findings

In this review, we explored the significance of methane emission estimation within
the cattle industry and its implications for climate change. Our investigation explains the
various sources of methane emissions in cattle operations and underlines the critical need
for precise assessment methods. We describe the techniques utilized in current methane
measurement and implicated with the procedures for collecting methane emission data,
encompassing both direct measurement techniques and indirect estimation approaches.
Challenges, such as variability and data quality, were discussed in the context of methane
data collection. Recognizing the limitations of traditional methods for estimating methane
emissions, there is a growing acknowledgment of the role of AI technology in enhancing
accuracy. This article elucidates a series of processes involved in utilizing AI technology
for developing methane emissions estimation models for ruminants, spanning from data
collection to processing and normalization. The review also investigated various models
for estimating methane emissions, including VIF analysis, multiple regression, supervised
learning models, and artificial neural networks (ANNs). These models exhibit higher
accuracy and are better equipped to handle the complexities inherent in methane emissions
within the livestock industry. The imperative for accurate methane measurement becomes
apparent when evaluating the feasibility of achieving targets for inducing methane reduc-
tion from a policy perspective. This involves assessing the utility of feasibility assessments
in incentivizing methane reduction and aligning with broader goals.

7.2. Potential Benefits of Accurate Methane Emission Estimation

There are various possible advantages to accurately estimating methane emissions.
Firstly, it contributes to effective climate change mitigation efforts by providing critical
data for understanding the environmental impact of the livestock industry. Policymakers
can establish targeted policies and dedicate resources for emission reduction with accurate
estimation. Second, it aids in the development of carbon trading systems by providing
trustworthy data for the assessment of carbon credits. Accurate estimation contributes to
the integrity and transparency of emission reduction activities, as well as the facilitation of
equitable compensation for emission reductions.

7.3. Outlook for Future Research and Application

The continuing development and deployment of AI technology will determine the
future of methane emission estimation. AI-based techniques have the potential to improve
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estimation model accuracy, scalability, and efficiency. Further research into the integration
of AI with IoT for real-time monitoring and mitigation measures is required. Furthermore,
advances in on-farm methane emission monitoring technology should prioritize portability,
affordability, and ease of use.

Future study should also address the obstacles associated with methane data gathering,
such as data variability, data quality assurance, and measurement technique standardiza-
tion. Collaboration among researchers, industry stakeholders, and policymakers is critical
for driving innovation, sharing best practices, and encouraging international collaboration
in methane reduction efforts.

7.4. Summary

This article investigated the CH4 estimation in livestock, especially ruminants. Rumi-
nants are one of the biggest anthropogenic sources of CH4 emissions in the world due to
their special digestive system. With the worsening of global warming, humanity has agreed
to reduce the amount of greenhouse gases emitted, and various policies for mitigation
are being implemented. To ensure the implementation of policies for reduction of CH4
emissions from ruminants, it is essential to develop precise methods for CH4 measurement,
but quantifying the CH4 emissions from ruminants always possesses uncertainty due to
random effects. Employing inaccurate methods for measuring CH4 emissions from rumi-
nants can lead to over- or underestimation in setting goals and implementing policies for
methane reduction. Therefore, the development of precise methane measurement methods
is crucial for achieving accurate targets and policy implementation. Advancing beyond
conventional methods, incorporating AI technology in monitoring equipment and data
collection procedures has the potential to significantly improve estimation accuracy. We
may contribute to the worldwide effort to combat climate change and promote sustainable
livestock production by incorporating accurate estimation into carbon credit evaluation
and regulatory frameworks.
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