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Simple Summary: Artificial intelligence (AI) has shown promise in detecting and diagnosing
nonmelanoma skin cancer through image analysis. The incidence of skin cancer continues to rise each
year, and it is estimated that one in five Americans will have nonmelanoma skin cancer at some point
in their lifetime. Non-invasive diagnostic tools are becoming more widely adopted as the standard of
care. When integrated with Al, there is the potential to identify skin cancer earlier and more rapidly
compared to traditional methods. This review aims to assess the current status of Al diagnostic

algorithms in tandem with noninvasive imaging for the detection of nonmelanoma skin cancer.

Abstract: Background: The objective of this study is to systematically analyze the current state of
the literature regarding novel artificial intelligence (AI) machine learning models utilized in non-
invasive imaging for the early detection of nonmelanoma skin cancers. Furthermore, we aimed
to assess their potential clinical relevance by evaluating the accuracy, sensitivity, and specificity of
each algorithm and assessing for the risk of bias. Methods: Two reviewers screened the MEDLINE,
Cochrane, PubMed, and Embase databases for peer-reviewed studies that focused on Al-based skin
cancer classification involving nonmelanoma skin cancers and were published between 2018 and
2023. The search terms included skin neoplasms, nonmelanoma, basal-cell carcinoma, squamous-
cell carcinoma, diagnostic techniques and procedures, artificial intelligence, algorithms, computer
systems, dermoscopy, reflectance confocal microscopy, and optical coherence tomography. Based
on the search results, only studies that directly answered the review objectives were included and
the efficacy measures for each were recorded. A QUADAS-2 risk assessment for bias in included
studies was then conducted. Results: A total of 44 studies were included in our review; 40 utilizing
dermoscopy, 3 using reflectance confocal microscopy (RCM), and 1 for hyperspectral epidermal
imaging (HEI). The average accuracy of Al algorithms applied to all imaging modalities combined
was 86.80%, with the same average for dermoscopy. Only one of the three studies applying Al to
RCM measured accuracy, with a result of 87%. Accuracy was not measured in regard to Al based HEI
interpretation. Conclusion: Al algorithms exhibited an overall favorable performance in the diagnosis
of nonmelanoma skin cancer via noninvasive imaging techniques. Ultimately, further research is
needed to isolate pooled diagnostic accuracy for nonmelanoma skin cancers as many testing datasets
also include melanoma and other pigmented lesions.

Keywords: artificial intelligence; dermoscopy; reflectance confocal microscopy; nonmelanoma skin cancer;
basal-cell carcinoma; squamous-cell carcinoma; non-invasive imaging; early detection; machine learning
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1. Background

Nonmelanoma skin cancer, primarily basal-cell and squamous-cell carcinoma types, is
the most common cutaneous malignancy, accounting for 98% of skin cancers diagnosed [1].
Early detection of skin cancer can reduce morbidity by up to 90% [2]. Traditional skin
cancer diagnostic methods can be costly, take time, have potential for resource limitation,
and require a well-trained dermatology provider. Non-invasive tools used for diagnosis
are increasingly prevalent as a standard of care, particularly for patients with an extensive
history of skin cancer. These techniques combined with the application of Al can detect
skin cancer early. Thus, Al tools are being increasingly used, including shallow and
deep machine learning-based methodologies that are trained to detect and classify skin
cancer using computer algorithms and deep neural networks [3]. However, to date, no Al
algorithms have been Food and Drug Administration (FDA) cleared (Class II) in the field
of dermatology.

As Al becomes increasingly integrated into all computerized functions of medicine
and daily activities, it is essential to recognize its potential to assist in computer-directed
diagnostics. Utilizing Al, systems can analyze images of skin lesions, pinpointing features
indicative of nonmelanoma skin cancer. These systems employ deep learning and con-
volutional neural networks (CNNSs) to train algorithms on extensive datasets of labeled
images [4]. An advantage of Al-based nonmelanoma skin cancer imaging lies in its potential
for more precise and efficient diagnoses. Dermatology providers can swiftly assess images
using Al-based systems, identifying suspicious lesions for further evaluation. Additionally,
Al-based nonmelanoma skin cancer imaging holds promise in reducing the necessity for
unnecessary, invasive, and costly biopsies. By accurately identifying potentially cancerous
lesions, Al-based systems empower dermatologists to target biopsies toward the most
concerning areas within a skin lesion.

Numerous studies have proposed innovative designs for skin cancer identification
through image analysis [5]. Over time, there has been a growth in computational capabilities
through novel and existing approaches, along with expanded datasets for interpretation,
leading to robust mathematical models in the current state of Al in the field. Various entities
are developing their own Al algorithms for diverse diagnostic modalities and assessing
their accuracy [5].

Al is a comprehensive term encompassing computer-aided automated decision-making
and is increasingly applied across various aspects of medicine. Machine learning (ML), a
subset of Al, involves the use of technologies for data prediction. Subcategories include
shallow and deep learning. Both shallow and deep machine learning methods have been
trained to identify and classify skin cancer, with algorithms designed to predict malignancies
based on patterns found in large datasets of skin lesion images gaining prominence.

This review investigates the utilization of various machine learning mechanisms for
non-invasive image analysis. Before delving into our analysis, it is crucial to establish clear
definitions for the common terms that will be referenced throughout the discussion.

1.1. Common Machine Learning Methods

Asnoted above, deep learning is a category of machine learning. This type of algorithm
uses machines to interpret and manipulate data from images, speech, or language. Deep
learning can be further subcategorized into different types of neural networks. A CNN,
or convolutional neural network, is a specialized form of deep neural network (DNN)
designed for processing image data. Comprising multiple layers, including convolutional
layers, pooling layers, and fully connected layers, CNNs are tailored to efficiently learn
features within images [6]. On the other hand, a DNN is a broader category with multiple
layers, typically exceeding three, and finds applications in various domains such as image
classification, speech recognition, and natural language processing. The key distinction
between CNNs and DNNSs lies in their approach to processing image data. CNNs are
optimized for feature learning in images, employing convolution techniques to extract
patterns by sliding a small filter over the image and computing dot products with pixels.
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DNN:s, in contrast, often use fully connected layers for image processing, linking every
neuron in one layer to every neuron in the next, resulting in a larger number of parameters
that need optimization during training [6].

Lastly, a deep convolutional neural network (DCNN) is a subtype of CNN with
additional layers, enabling it to learn more intricate features and patterns in data. This
enhancement contributes to superior performance in tasks like image classification and
object detection. The primary difference between CNNs and DCNNs lies in the number
of layers, with DCNNs potentially having dozens or even hundreds. While DCNNs
offer heightened accuracy, they demand more computational resources and training data,
making them more susceptible to overfitting.

1.2. Al Applications in Non-Invasive Imaging Modalities

Al has shown potential in improving the accuracy of nonmelanoma skin cancer
diagnosis using dermoscopy and reflectance confocal microscopy (RCM) [3]. Dermoscopy
is a non-invasive imaging technique that uses a handheld device to magnify and illuminate
skin lesions [1]. Al-based systems can analyze dermoscopy images and identify patterns
and features that are indicative of nonmelanoma skin cancer. For example, an Al algorithm
can be trained to detect the presence of specific structures, such as white lines, dots, and
vascular structures—that are associated with nonmelanoma skin cancer. One advantage
of using Al in dermoscopy is the potential for more accurate and efficient diagnoses [5].
Dermoscopy outcomes can be highly user-dependent, leading to variability and poor
reproducibility. Applying pattern recognition in deep learning to dermoscopic images can
address this concern.

RCM is a non-invasive imaging technique that allows dermatologists to examine
skin lesions at a cellular level. It allows in vivo visualization of skin lesions at a near-
histological resolution [5]. It employs a diode laser, and captures horizontal images that
are as superficial as the stratum corneum and as deep as the upper dermis. Al-based
systems can analyze RCM images to identify patterns and features that are indicative
of nonmelanoma skin cancer. For example, an Al algorithm can be trained to detect
the presence of abnormal cells, blood vessels, and other features that are characteristic
of nonmelanoma skin cancer. On RCM images, numerous studies have applied Al to
automatically localize and classify layers of the epidermis [5]. Additional studies have
used ML in the detection of the dermal-epidermal junction (DEJ), allowing for immediate
visualization of potential malignant features in the DE]. Applying Al to RCM in skin
cancer detection has potential for more reproducible and consistent interpretations of
skin architecture. Challenges include diminished image quality due to large RCM files,
increased cost and resources, and decreased variability phenotypically. Dermatologists
can use Al-based systems to quickly analyze images and identify suspicious lesions that
require further evaluation. Additionally, Al-based systems can help reduce inter-observer
variability and increase diagnostic accuracy by providing an objective assessment of images.

In this literature review, we sought to collect the latest machine learning algorithms
that are being applied to non-invasive diagnostic techniques in nonmelanoma skin cancers.
Many algorithms predict the malignancy of pigmented lesions in skin cancer; however,
the diagnosis of non-pigmented lesions is generally considered more challenging. To our
knowledge, this literature review is the first of its kind to isolate and describe the current
state of Al in non-invasive imaging modalities” ability to accurately classify nonmelanoma
skin cancers.

2. Materials and Methods
2.1. Search Strategy

Articles published from January 2018-December 2023 were identified from compre-
hensive searches of MEDLINE, Cochrane, and Embase. Search terms included “skin

neoplasms”, “diagnostic techniques and procedures”, “artificial intelligence”, “algorithms”,
“computer systems”, “lesion or growth or cancer or neoplasm or tumor or malignant
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or metastatic”, “carcinoma”, “machine or deep learning”, “neural network”, “diagno-
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sis or detection”, “nonmelanoma”, “basal-cell carcinoma”, “squamous-cell carcinoma”,
“dermoscopy”, “reflectance confocal microscopy”, and “optical coherence tomography”.
Records were screened from MEDLINE, Cochrane, Embase, and Pubmed databases, yield-
ing a total of 967 articles. Prior to initial screening, duplicate articles and articles published

prior to 2018 were excluded.

2.2. Study Selection

Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guide-
lines were followed throughout this study. The protocol has not been registered. Search
results were evaluated by two independent reviewers, and in the case of a discrepancy in
study selection or inclusion criteria, a third reviewer was involved for resolution. Only
original, peer-reviewed research manuscripts in the English language were selected for
review. We subsequently screened the articles through a review of the title and abstract,
with consideration of the research question and appropriate inclusion and exclusion criteria.
A total of 317 records were reviewed as full-text articles and considered for inclusion in this
review based on our defined inclusion and exclusion criteria. Inclusion criteria included
(i) discussion of a novel machine learning algorithm proposal or design, (ii) numerical
outcomes reporting the algorithm’s accuracy, (iii) an algorithm that completes all steps to
diagnosis (not stopping at segmentation, but proceeding to classification), (iv) the study
population being human subjects, (v) publication in English, and (vi) the full text being
available (Figure 1). Exclusion criteria included articles that (i) failed to address our re-
search question, (ii) utilized invasive techniques for diagnosis, and (iii) screened only based
on clinical images (without the use of additional advanced imaging tools).

2.3. Study Analysis

This review systematically evaluated the effectiveness of Al-based methodologies
in conjunction with reflectance confocal microscopy, optical coherence tomography, and
dermoscopy for detecting nonmelanoma skin cancers. Thus, we elucidated performance
metrics including accuracy, sensitivity, specificity, area under the curve (AUC), positive
predictive value (PPV), and negative predictive value (NPV). The term “accuracy” refers to
the percentage of lesions correctly classified, while “sensitivity” and “specificity” quantify
the proportions of true positive and true negative cases, respectively. The AUC comprehen-
sively summarizes the overall performance of the classification model, while the PPV and
NPV describe the proportions of lesions accurately reflecting the presence or absence of
nonmelanoma skin cancer. By scrutinizing and comparing these performance metrics, we
summarized the effectiveness of Al-applied nonmelanoma skin cancer using noninvasive
imaging modalities.
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Figure 1. PRISMA 2020 flow diagram for new systematic reviews including searches of databases.

3. Results

A total of forty-four articles were selected for review by means of fulfilling our inclu-
sion criteria. Twenty-six of the forty-four articles were published in 2022, five in 2021, and
ten in 2020. Prior to 2020, only three articles that were published met our inclusion criteria

(Figure 2).

Publication Year

Number of Papers

2018 2019 2020 2021 2022 2023
Years

Figure 2. The number of papers per year published included in the literature review.
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The majority of the articles described machine learning algorithms used to interpret
dermoscopic images (n = 38). Of note, each study utilized variable metrics to quantify
the performance of the algorithm. Such metrics included accuracy, precision, sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), AUC (area
under the curve), and F1 score (Table 1). In each of the reported metrics, a high percentage
is correlated with superior algorithm performance.

The most frequently recorded performance metric across studies included in Table 1
was accuracy. Hosny et al.’s convolutional neural network boasted an accuracy of 98.70% [7],
which was the highest yielding accuracy of dermoscopy algorithms. Dermoscopy-applied
Al detection of NMSC yielded an average accuracy of 86.80% with a standard deviation of
12.05%, a median accuracy of 90.54%, and a minimum accuracy of 37.6%.

Three articles used novel algorithms in association with RCM images, and one used Al
applied to hyperspectral epidermal imaging (HEI) (Table 2). Each of the studies applying
Al to RCM images reported algorithmic efficacy via different metrics. Wodzinski et al.
yielded an accuracy of 87%, Chen et al. reported sensitivity and specificity yielding 100%
and 92.4%, respectively, and Campanella et al. recorded an AUC of 86.1% [8-10]. HEI (La
Salvia et al.) yielded outcome measures of 87% sensitivity, 88% specificity, and an AUC of
90%, though no reported accuracy [11].

The utilization of diverse image databases for the analysis of Al algorithms showcased
additional variability among study designs. Table 3 provides a detailed overview of public
dermoscopy image databases that were utilized by studies included in the review.

Lastly, Figure 3 displays the variety of machine learning methods utilized across the
studies included in our systematic review. The majority of the studies used CNN as the
method for the generation of their machine learning algorithms, with deep learning as the
second most common method. DCNNs and DNNs were utilized by a small number of
studies, and each of the other papers applied novel, independently generated methods in
their algorithms.

Machine Learning Method Used

Frequency
— — [a=y [y
o N W (=)} o] o N > [e)}
L J=
=
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L
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Figure 3. Frequency of machine learning techniques used for papers included in our systematic review.
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Given the diverse variability of the study design for each included study, a pooled
analysis was not able to be calculated. Rather, a QUADAS-2 risk of bias assessment was
performed (Table 4). Per QUADAS-2 guidelines, both risk of bias and applicability concerns
were evaluated in subcategories including patient selection, index test, reference standard,
and flow and timing [12]. None of the studies demonstrated a high risk of bias in any
category. However, 11 studies demonstrated high risk of applicability concerns in regard
to the index test. No other studies demonstrated high risk of applicability concerns in
other categories.

Table 1. Summary of included studies utilizing dermoscopy images.

Authors Image Dataset Accuracy Precision Sensitivity  Specificity PPV NPV AUC F1 Score
Hosny et al. (2020) [7] Internal dataset 98.7% 95.1% 95.6% 99.3%
Xin et al. (2022) [13] HAM1000 94.3% 94.1%
Xin et al. (2022) [13] Internal dataset 94.1% 94.2%
Tang et al. (2022) [14] Seven Point Checklist 74.9%
Skreekala et al. (2022) [15] HAM1000
Sangers et al. (2022) [16] HAM1000
Samsudin et al. (2022) [17] HAM1000
SM et al. (2022) [18] ISIC 2019 & 2020
Reis et al. (2022) [19] ISIC 2018
Reis et al. (2022) [19] ISIC 2019
Reis et al. (2022) [19] ISIC 2020
Razzak et al. (2022) [20] ISIC 2018
Qian et al. (2022) [21] HAM1000
Popescu et al. (2022) [22] ISIC 2018
Nguyen et al. (2022) [23] HAM1000
Naeem et al. (2022) [24] ISIC 2019
Lietal. (2022) [25] HAM1000
Lee et al. (2022) [26] ISIC 2018
Laverde—Saazc; etal. (2022) HAM1000
La Salvia et al. (2022) [28] HAM1000 >80% >80%

Hosny et al. (2022) [29]
Dascaﬁl et al. (2022) [30]
Combalia et al. (2019) [31]
Benyahia et al. (2022) [32]
Bechelli et al. (2022) [33]
Bechelli et al. (2022) [33]
Afza et al. (2022) [34]
Afza et al. (2022) [34]
Afza et al. (2022) [34]
Afza et al. (2022) [35]
Afza et al. (2022) [35]
Winkler et al. (2021) [36]
Pacheco et al. (2021) [37]
Minagawa et al. (2021) [38]
Igbal et al. (2021) [39]
Huang et al. (2021) [40]
Zhang et al. (2020) [41]
Wang et al. (2020) [42]
Qin et al. (2020) [43]
Mahbod et al. (2020) [44]
Li et al. (2020) [45]
Gessert et al. (2020) [46]
Gessert et al. (2020) [47]
Al-masni et al. (2020) [48]
Ameri et al. (2020) [49]
Tschandl et al. (2019) [50]
Dascalu et al. (2019) [51]

91.2% *
95.3%

Several datasets 94.7% *
Internal dataset
HAM1000
ISIC 2019

HAM1000 88%
HAM1000 72%
Ph2 95.4%
ISBI2016
HAM1000
HAM1000
ISIC2018.
HAM1000
HAM1000
HAM1000
HAM1000
HAM1000
DermlIS & Dermquest 95% 92%
Several datasets 80% 100%
HAM1000 83.2% 74.3%
ISIC2019
HAM1000 95%
HAM1000 70%
Internal dataset
HAM1000
HAM1000
Internal dataset
HAM1000

70.6% 69.2%

Items with an asterisk (*) represent averaged values. Shaded boxes indicate that a specific measure was not
collected in the study.

Table 2. Summary of included studies utilizing imaging modalities other than dermoscopy.

Authors

Imaging Modality Accuracy Sensitivity Specificity

Wodzinski et al. (2019) [8] RCM
Chen et al. (2022) [9]

Campanella et al. (2022) [10]
La Salvia et al. (2022) [11]

87%

100% (when 92.4% (when

RCM combined with RS) combined with RS)
RCM
HEI 88%

Shaded boxes indicate that a specific measure was not collected in the study.
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Table 3. Description of databases tested.

Database Image Type Total Images Description of Dataset

Melanoma (MM)—1113 images
Vascular—142 images
Benign nevus (MN)—6705 images
HAM1000 Dermoscopy 10,015 Dermatofibroma (DF)—115 images

Seborrheic keratosis (SK)—1099
Basal-cell carcinoma (BCC)—514 images
Actinic keratosis (AK)—327 images

BCC—630 images

Xin et al. [13] Internal Dermoscopy 1016 Squamous-cell carcinoma (SCC)—192 images
MM—194 images

MM, BCC, SK, DF solar lentigo (SL), vascular, SK
SPC Dermoscopy >2000 Note: Distribution of number of images per lesion type
varies in the literature.

Distribution of number of images per lesion type not
readily available

MM—374 images
ISIC 2017 Dermoscopy 2000 SK—254 images
Other/unknown—1372 images

MM—1113 images
MN—6705 images
BCC—514 images
ISIC 2018 Dermoscopy 10,015 AK—327 images
SK—1099 images
DF—115 images
Vascular—142 images

MM—4522 images
MN—12,875 images
BCC—3323 images

ISIC 2019 Dermoscopy 25,331 ADIIE:ggg ilﬁaaggss

SK—2624 images
SCC—628 images
Vascular—253 images

MM-—b584 images
AMN—1 image

Café-au-lait macule—1 image
ISIC 2020 Dermoscopy 33,126 Sl—44

Lichenoid keratosis—37 images
Other/unknown—27124 images

PH2 Dermoscopy 200 Not available

ISIC 2016 Dermoscopy 1279

Table 4. Summary of QUADAS-2 analysis.

Risk of Bias Applicability Concerns
Categories Patient Reference Flow and Patient Reference
Selection ~ ndexTest g dard Timing Selection ~ ndexTest ‘g dard
Low Risk 27/44 31/44 42/44 44/44 20/44 37/44 44/44
High Risk 0/44 0/44 0/44 0/44 10/44 0/44 0/44
Unclear /Moderate 17/44 13/44 2/44 0/44 14/44 7/44 0/44

4. Discussion

Al facilitates more accurate triage and diagnosis of skin cancer through digital image
analysis, empowering dermatologists [52]. Various techniques, including machine learning,
deep learning, and CNNSs, are employed in Al-based skin cancer detection. These methods
utilize labeled image datasets to train algorithms, enabling them to recognize patterns and
features indicative of skin cancer in lesions [2].

Al exhibits significant promise in the detection of skin cancer, yet ongoing efforts
to optimize its potential are evident in the trajectory of publication years. The decline in
publications in 2021 may be attributed to pandemic-related limitations on resources and
the ability to generate novel machine learning algorithms.

Compared to traditional methods, Al-based skin cancer detection offers several advan-
tages. Firstly, Al algorithms swiftly analyze large image datasets, providing dermatologists
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with more accurate and timely diagnoses. Secondly, these systems reduce the necessity for
unnecessary and invasive biopsies, cutting down on costs. Thirdly, Al-based systems can
be deployed in remote or underserved areas where access to dermatologists is limited [1].

The reported average diagnostic accuracy of 86.80% when Al is applied to dermoscopic
images and a diagnostic accuracy of 87% for RCM-based Al are promising indicators of
automated image interpretation potential. However, the wide standard deviation and
variability between the minimum accuracy of 37.6% and a maximum of 98.7% in Al applied
to dermoscopy underscore the need for further standardization and broader accuracy
improvement efforts.

There is a lack of literature on the application of Al to OCT in human lesions. While
Ho et al. utilized deep learning for SCC detection in mice, achieving 80% accuracy, there are
currently no Al algorithms in the literature for detecting NMSC via OCT in humans [53].

4.1. Limitations

Our QUADAS-2 assessment of bias demonstrates that “patient selection” was un-
satisfactory in many of the studies included in this review. This is because the images
tested and trained on these Al models frequently utilized public databases of dermoscopy
images. Many of these datasets accessible to the public have insufficient sample sizes, thus
impacting an Al algorithm’s ability to train and reprogram itself [12].

Moreover, imbalanced datasets pose a common challenge for Al models, especially in
supervised machine learning where the algorithm is trained on labeled data. Imbalanced
datasets arise when there is an unequal distribution of examples among different classes,
leading to a skewed representation of certain classes compared to others. For instance, in
the context of skin cancer, variations in the incidence of each skin cancer type and a higher
percentage of the population with no skin cancer (referred to as “healthy” individuals)
contribute to imbalanced datasets. If the training data for the Al model predominantly
consists of healthy individuals, it may struggle to accurately predict rarer diseases due to
the lack of relevant examples [54].

The primary drawback of imbalanced datasets for Al models is their potential to
produce biased and inaccurate results. The model might exhibit a bias toward the majority
class, leading to subpar performance on the minority class. In extreme cases, the model
might disregard the minority class entirely, resulting in complete misclassification.

In the classification of skin cancer images, this imbalance can be particularly prob-
lematic for individuals with darker skin tones, as there is insufficient diversity in skin
tone inputs. Existing Al models have mainly been trained on European or East Asian
populations, and the limited representation of darker skin tones may compromise overall
diagnostic accuracy. This can introduce bias toward Fitzpatrick skin types 4-6, making the
model less adept at recognizing or interpreting images of individuals with darker skin tones
compared to those with lighter skin tones [55]. Additionally, Al models may rely on color
contrast as a pivotal factor in image interpretation, which could lead to misinterpretation
due to lower contrast between darker skin tones and other colors compared to lighter
skin tones. These limitations carry significant implications for the accuracy and fairness
of Al applications across various fields. Therefore, it is essential to ensure that Al models
undergo training on diverse datasets and are systematically tested for biases to ensure
accurate results and equitable access to emerging health technologies [56].

Furthermore, the efficacy of Al is heavily influenced by image quality, and various
factors contribute to variability in this aspect. Differences in image acquisition and quality
present a barrier to the implementation of Al in the clinical setting that must be overcome.
Achieving consistent, high-quality images necessitates addressing issues such as artifact
removal (e.g., hairs, surgical ink markings) and ensuring attention to zoom level, focus,
and lighting.
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4.2. Future Directions

Future directions may consider automated identification of pigmented lesions, de-
tection of different architectural patterns to distinguish malignant versus benign lesions,
categorization of lesions as melanoma versus nonmelanoma skin cancer, and identification
of individual skin cells or nuclei using machine learning technologies. It is important to note
that the application of Al in dermatology is not a threat to a dermatologist’s livelihood—it
can be an asset. Al does not devalue the utility of dermatologists, but rather enables a
better allocation of their time. Redirecting this finite time can allow for more time spent
with patients, increase accessibility to dermatologists, and may increase the accuracy and
reproducibility of non-invasive imaging techniques.

5. Conclusions

Overall, Al has the potential to revolutionize the field of skin cancer detection by
improving diagnostic accuracy and reproducibility, leading to earlier detection and better
outcomes for patients. A high risk of bias and applicability concerns was observed in several
of the included studies analyzed via QUADAS-2 assessment. Furthermore, a moderate risk
of bias and applicability concerns was observed among many studies. This indicates a need
for further standardized evaluation metrics to reduce these biases in studies evaluating
diagnostic accuracy. It is also important to note that Al-based skin cancer detection is still in
its early stages, and more research is needed to fully evaluate its accuracy and effectiveness,
as well as to streamline measures of efficacy. Lastly, Al-based systems should be used as
an adjunct stand-alone tool to support dermatologists in their diagnosis rather than as a
replacement for human expertise. Ultimately it is the responsibility of the dermatology
provider to make an independent decision on how to properly manage their own patients
while considering the ancillary information provided by the use of technology such as Al
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