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Simple Summary: Dairy cow behavior detection is of great significance for cattle health management.
Through the detection of the four behaviors of dairy cows—standing, lying, eating, and drinking—we
can gain valuable insights into the well-being of cows. For example, hoof disease can increase the
amount of time a cow lies down, and digestive system issues can cause a decrease in food intake.
Visual inspection of cow behavior can keep track of changes in cow behavior, and non-invasive
detection can reduce cow discomfort and improve animal welfare. In this study, we employed
computer vision-based deep learning techniques for the detection of cow behavior, and experimental
results demonstrated its promising application in real farm settings.

Abstract: Dairy cow behavior carries important health information. Timely and accurate detection of
behaviors such as drinking, feeding, lying, and standing is meaningful for monitoring individual
cows and herd management. In this study, a model called Res-DenseYOLO is proposed for accurately
detecting the individual behavior of dairy cows living in cowsheds. Specifically, a dense module was
integrated into the backbone network of YOLOVS5 to strengthen feature extraction for actual cowshed
environments. A CoordAtt attention mechanism and SioU loss function were added to enhance
feature learning and training convergence. Multi-scale detection heads were designed to improve
small target detection. The model was trained and tested on 5516 images collected from monitoring
videos of a dairy cowshed. The experimental results showed that the performance of Res-DenseYOLO
proposed in this paper is better than that of Fast-RCNN, SSD, YOLOv4, YOLOvV7, and other detection
models in terms of precision, recall, and mAP metrics. Specifically, Res-DenseYOLO achieved 94.7%
precision, 91.2% recall, and 96.3% mAP, outperforming the baseline YOLOv5 model by 0.7%, 4.2%,
and 3.7%, respectively. This research developed a useful solution for real-time and accurate detection
of dairy cow behaviors with video monitoring only, providing valuable behavioral data for animal

welfare and production management.

Keywords: YOLO; dairy cow; behavior detection; dense module; multi-scale detection heads

1. Introduction

The real-time and precise monitoring of dairy cows’ daily behaviors is crucial in
large-scale intensive farming systems, as animal behaviors are closely correlated with their
health and welfare conditions [1]. Changes in behaviors such as drinking, feeding, lying,
and standing can serve as early warnings and indicators of disease occurrence. Cows
afflicted with foot rot may display signs of lameness, reduced locomotion, or increased
resting time [2]. Similarly, cows suffering from mastitis are likely to experience decreased
feed intake and spend less time feeding [3]. An increase of considerable magnitude in the
duration of cow resting periods often indicates an elevated probability of disease, which
exhibits an inverse correlation with milk production [4]. In recent years, manual observation
has remained the predominant approach for behaviors; however, it is characterized by
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inefficiency, time consumption, and susceptibility to subjective biases introduced by human
observers [5].

Currently, dairy cow behavior detection methods are primarily categorized into two
approaches: contact-based detection and non-contact image recognition detection. Contact
sensors typically require animals to wear them in specific positions to collect motion and
physiological data for identifying targeted animal behaviors. Arcidiacono et al. [6] attached
acceleration sensors to cows’ hind legs and proposed a threshold-based acceleration algo-
rithm for detecting estrus behaviors. Schweinzer et al. [7] used a 3D acceleration sensor
system based on ear tags to collect cow behavior data and detect behaviors during estrus
and pregnancy.

However, contact sensors may elicit discomfort or resistance in animals, thereby
impeding accurate detection due to potential interference from external noise [2]. Moreover,
the reliance on contact sensors necessitates periodic battery replacement and increases
susceptibility to loss, thus imposing limitations on long-term monitoring [8].

In recent years, the application of non-contact image recognition in animal behavior
identification has gained significant traction. Meunier et al. [8] used integrated graphic
analysis techniques to extract dairy cow behavior features and classify behaviors such
as standing and lying. Wang et al. [9] utilized Siamese networks to extract features from
before and after feeding-trough images of dairy cows. By analyzing the differences between
the two features, they obtained data on dairy cow feed intake, achieving non-contact
measurement of feed intake in dairy cows. Shi et al. [10] proposed a cow body condition
score automatic estimation method based on attention-guided 3D point cloud feature
extraction and established a 3D data format dataset for estimating cow body condition
score, enabling a better assessment of cow physical condition. However, traditional machine
learning still necessitates manual feature extraction, lacks scalability, and may not perform
well on high-dimensional data, thereby presenting challenges for its application in large-
scale intensive farming environments.

With the continuous development and progress of deep learning, more applications
have emerged in animal behavior detection [11]. Gao et al. [12] proposed a hybrid model
that combines a Convolutional Neural Network (CNN) and a Gated Recurrent Unit (GRU)
and designed and integrated a specific spatiotemporal attention mechanism in the CNN-
GRU hybrid model to identify aggressive behaviors of group-housed pigs automatically
and accurately. Zheng et al. [13] used the Faster R-CNN image classification algorithm to
recognize behaviors such as standing, sitting, lying, and lateral lying of pigs in farming. Yin
et al. [14] used a deep learning method based on EfficientNet and long short-term memory
architecture for rapid recognition of dairy cows’ daily behavior data. Li et al. [15] achieved
automatic detection of scratches on metallic sliding components using WearNet. Compared
to other lightweight CNN models, WearNet had the advantages of smaller model size and
faster detection speed. However, traditional deep learning applications require algorithms
to first generate sample candidate boxes and then classify samples through convolutional
neural networks, which cannot meet the fast real-time detection requirements.

The YOLO algorithm is a one-stage fast object detection algorithm. Compared with
other region-based CNN detection models, the YOLO model uses a single CNN network
to simultaneously complete target detection and classification tasks, thereby integrating
the entire process as a regression problem. Consequently, YOLO exhibits advantages in
real-time detection scenarios [16]. Hu et al. [17] employed the YOLO algorithm to localize
cows in videos and utilized a segmentation algorithm to extract images of the cow’s head,
trunk, and legs. Then, feature extraction and fusion were performed on these three parts to
achieve cow identification. Wang et al. [18] optimized anchor box sizes and boundary box
loss functions based on the YOLOv3 model to quickly identify estrus behaviors in dairy
cows. Kawagoe et al. [19] used a YOLO detector to capture cow heads eating from videos
and applied transfer learning for detection of cow feeding time. Guo et al. [20] used a
YOLOv3-tiny model for cow individual identification and used eye temperature recognition
technology to measure cow body temperature, realizing non-invasive identification of cow
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temperature and individuals. In summary, although YOLO achieves real-time detection,
further improvement is required for its accuracy in dairy cow behavior detection, and it is
susceptible to the influence of actual cowshed environments.

The aim of this study was to improve the algorithm on the basis of YOLOV5, enabling
the model to precisely identify diverse behaviors exhibited by cows in actual dairy cowshed
environments. First, in actual farming environments, cow behavior identification is easily
affected by natural light, object occlusion, and cow clustering. Background masking
was applied to the original data to remove environmental noise interference. Secondly,
the Res-Dense module, designed as the backbone network in this study, replaced the
original YOLOv5’s CSPDarkNet53 backbone network to enhance the network’s capacity
for extracting image features. The CoordAtt attention mechanism and four detection heads
were integrated into the original backbone network to strengthen the ability to extract
image features and improve the accuracy of small target detection. SioU regression loss
function was introduced to accelerate network convergence. Finally, ablation experiments
and performance comparisons with other target detection algorithms were conducted to
validate that the proposed model achieves better detection effects for dairy cow behaviors
in actual environments.

2. Materials and Methods
2.1. Data Sources

This study was conducted at Shengkang Livestock Cowshed located in Daqing City,
Heilongjiang Province, China. The cowshed housed 900 Holstein dairy cows. A total of
90 healthy cows were included in this experiment. The cows were fed twice a day, from
5:00 to 6:00 in the morning and from 17:00 to 18:00 in the afternoon. Therefore, video clips
of the cows’ eating behaviors were collected during these two periods. The cowshed’s
surveillance cameras switched to infrared shooting mode at 20:00 daily. Clips of cows’ lying
behavior were cut from the surveillance video from 20:00 to 3:00 am the next day. Cow
standing and drinking behaviors were cut from the surveillance video during daylight
hours when there was sufficient light. Video data were recorded between 1 July 2022 and
1 September 2022.

Three video collection points were selected in the experiment, as shown in Figure 1.
We selected three surveillance cameras with 4 million pixels (Hangzhou Hikvision Digital
Technology Co., Ltd., Hangzhou, China, DS-IPC-B14H-LFT), capturing images of the
cows’ behaviors. The height of these three cameras from the ground was three meters.
Among these, two were 15 degrees from the ground to record the behaviors of cows
in terms of their standing, lying, and eating behaviors. The third one was at an angle
of 35 degrees to the ground to record drinking behaviors. Finally, 35 video clips were
extracted from the recorded videos, each lasting 2 min. The clips covered cow behaviors
such as standing, feeding, drinking, and lying, both during daytime with color images
and during nighttime with black-and-white infrared images. Python scripts were used to
extract one screenshot every 12 frames from the videos. Repeated and out-of-focus images
were removed, resulting in a total of 5516 images.
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Figure 1. Schematic diagram of the cowshed. The blue area captured by camera 1 is responsible for
capturing cows’ standing and lying behavior; the red area captured by camera 2 is responsible for
capturing cows’ eating behavior; and the green area captured by camera 3 is responsible for capturing
cows’ drinking behavior.

When we observed the collected dairy cow behavior videos, we found that some
areas captured by the cameras interfered with the experiment. For example, direct sunlight
illumination caused overexposure in the edge areas of the cowshed, as shown in Figure 2a.
These areas unrelated to the experiment would increase the model computation and error
recognition rate during cow behavior detection. Cow behaviors were usually associated
with fixed locations. For example, drinking and feeding behaviors always occurred at
locations of water troughs and feed troughs, while standing behaviors were predominantly
observed in passage areas. Therefore, an image masking algorithm was employed to
obscure outdoor regions and areas unrelated to standing behaviors using black masks, as
shown in Figure 2b, without impeding normal behavioral patterns.

Figure 2. Image masking processing: (a) original image of standing cow; (b) image after black
masking of unrelated areas.

2.2. YOLOvS

The YOLOVS algorithm, proposed by Ultralytics LLC (Los Angeles, CA, USA,) in
May 2020, is a one-stage tar-get detection method that employs a single CNN module to
achieve end-to-end target detection. Compared with YOLOvV4 or earlier versions, YOLOv5
has faster speed and higher accuracy. It consists of three parts: backbone, neck, and
head. CSPDarkNet53 is used as the feature extraction backbone network. Path Aggregation
Network is used as the bottleneck structure. The output after convolution is finally provided
to the detection head for image classification and boundary box regression, as shown
in Figure 3.
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Figure 3. YOLOV5 basic module diagram: (a) CBS block; (b) Res_Unit; (c) C3 block; (d) SPPF structure.

The backbone network CSPDarkNet53 mainly consists of CBS, Res_Unit, C3, and
SPPF modules. The CBS module encompasses convolutional operations, batch normaliza-
tion, and SiLu activation function (Figure 3a). The Res_Unit module is a classic residual
structure that combines two pieces of information by summation and continues to transmit
downward (Figure 3b). Within this structure, the input image is divided into two paths:
one path performs bottleneck operations to reduce the dimensions of the image, while
the other path continuously applies bottlenecks based on the network structure to ensure
consistent input and output image sizes.

Finally, the outputs of all layers are concatenated and undergo 1 x 1 convolution
to reduce the number of output channels to obtain the final output. The C3 module
is the core module of this network. Its input is divided into two branches. The first
branch halves the number of feature map channels after the CBS module, while the second
branch concatenates the feature map of the first branch after the CBS module and multiple
Bottleneck modules. Finally, a CBS module outputs the feature map (Figure 3c). SPPF is in
the last layer of the backbone (Figure 3d). It connects the outputs of three pooling layers
through Concat after changing the feature dimensions with a CBS module. Each pooling
feature will become the input of the next pooling, achieving faster speed than SPP.

2.3. Model Improvement
2.3.1. DenseNet Module

As the convolutional modules are stacked, the feature information gradually dimin-
ishes during the convolution and downsampling process. Due to the complexity of the
cowshed environment, the loss of feature information increased the difficulty of recognition
and reduced recognition accuracy. DenseNet [21] can significantly improve the efficiency
of feature information utilization. It achieves this by densely connecting each layer with all
preceding layers in a feed-forward manner while preserving the same number of channels,
as shown in Figure 4. The core expression of DenseNet is as follows:

Xe = He([Xo, X1, - - - X¢-1]) 1)
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Figure 4. DenseNet model diagram.

In the equation, X; represents the output of the t-th layer of the network. [Xo, Xy, ..., X;-1]
represents the feature maps from the Oth layer to the (t — 1)th layer, which are fused together
using the DenseNet module. H; represents the combination of batch normalization, rectified
linear units” activation, and convolutional operations.

2.3.2. CoordAtt Attention Mechanism

Considering the actual environment of the cowshed and aiming to enhance the model’s
ability to represent different behaviors of cows, this study introduced four attention mech-
anism modules preceding the four detection heads of YOLOvV5. Attention mechanisms
allocated weights to focus the network’s attention on relevant regions or features associated
with the current task, thereby selectively attending to and processing specific fragments of
information to improve neural networks’ performance.

Attention mechanisms can generally be divided into two major categories: spatial
attention and channel attention. Traditional attention mechanisms such as SE [22] and
CBAM [23] have been well applied in various domains. However, the SE attention module
tends to focus more on inter-channel information while neglecting positional information.
CBAM attempts to extract positional attention information through convolution after
reducing the number of channels, but convolution can only capture local relationships
and lacks the ability to extract long-range relationships. Therefore, this paper adopts the
CoordAtt attention mechanism [24], as shown in Figure 5, which can encode both horizontal
and vertical positional information into channel attention. This enables the network to
obtain a wide range of positional information without introducing excessive computational
complexity, thereby reducing computation while improving model robustness.

CXHX1

Re-weight

Concat onv2d 1
ﬂ —> — EE
CX1IXW

Figure 5. CoordAtt attention mechanism.

When the feature maps are input into the Coord Att module, the channel attention is
divided into two parallel one-dimensional feature encodings, which aggregate features
along the horizontal and vertical directions, respectively. The feature maps are then
convolved and activated with an activation function. This allows capturing long-range
dependencies along one spatial direction while preserving accurate positional information
along the other spatial direction. The resulting feature maps, composed of horizontal and
vertical directions, will focus on the parts we need to pay attention to.

2.3.3. Four Prediction Head Structure

When analyzing the dataset of cow images, it was observed that due to the rectangular
structure of the cowshed, when cows were positioned at the end of the camera’s field of
view, their behavior images often occupied a smaller proportion of the entire image. After
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multiple layers of feature extraction, the small-scale cow behavior targets could lose some
of their feature information, ultimately affecting the accuracy of cow behavior recognition.

To address the issue of detection of small objects, an additional prediction head for
detecting small objects was added to the existing three object detection heads in YOLOVS.
The new four-prediction-head structure helped alleviate the negative impact caused by
drastic variations in target scales. The enhanced network model could extract more compre-
hensive features from the underlying network and showed improvements in issues such as
false positives, false negatives, and low confidence. The overall structure of the model’s
prediction heads is illustrated in Figure 6.

Feature
Extration

Data

_w | Detect Head

o

j—)

Processing

Detect Head

Detect Head

Detect Head

Figure 6. Four-prediction-head structure.

2.3.4. SioU Loss

In the early stages of object detection, IoU [25] was one of the most used evaluation
metrics. It measures the overlap between predicted bounding boxes and ground truth boxes
to assess the algorithm’s detection performance. GioU [26] considers the distance between
the center points and aspect ratios of predicted and ground truth boxes while retaining the
advantages of IoU. Subsequently, DioU [27] and CioU [28] were proposed. DioU improves
the relative position optimization between predicted and ground truth boxes, while CioU
introduces a scale factor to balance the differences in aspect ratios. Although these loss
functions have corresponding improvements, they fail to address the issue of mismatched
orientations between predicted and ground truth boxes, resulting in slow convergence and
low efficiency of the entire model. Predicted boxes may move in random directions during
training, leading to poorer models. To address this problem, we introduced the SioU [29]
regression loss function. This loss function considers the vector angle between the desired
regressions and redefines the penalty metric. This approach allows the predicted boxes to
quickly move towards the nearest axis, and subsequent methods only require regression of
a single coordinate, either X or Y.

The SIoU regression loss function consists of four components: angle loss, distance
loss, shape loss, and IoU loss. The angle loss is defined as follows:

=1 — 2 xsin? (arcsin(%h) - g) (2)
o= \/(b§$ b ) (B~ bg)’ ©)
Chp, = max (b%;,bcy> — min (bg;,bcy> 4)

In the SioU regression loss function, ¢, represents the height difference between the
center points in the actual coordinate system and the predicted coordinate system, while
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o represents the distance between the center points in the actual coordinate system and
the predicted coordinate system. b(f: and bgyt denote the center coordinates of the actual
object to be detected, while bc, and b, represent the center coordinates of the predicted
bounding box generated by the model, as illustrated in Figure 7.

—————————————————————————————— /l~ rh9t

!
v gt

cyl i r Cn

v

Figure 7. SioU illustration. The yellow box represents the predicted bounding box, and the blue box
represents the actual target box.

The distance loss is defined as follows:

A :2 J— e*'pr _ e_‘ypy (5)

¥ b\ b b, \ 2
Px = (XCW ) Py = (y T (6)
Yy=2-A (7)

cw and ¢y, represent the widths and heights of the minimum enclosing rectangles of
the actual bounding box and the predicted bounding box, respectively.
The shape loss is defined as follows:

0

O=(1-e )4+ (1 - e @n) )

_ jw—ws  |h—h¥
Ow = max(w,wgt)'ww N max (h/h8")

©)

w, h, w8, and h8t represent the widths and heights of the predicted bounding box
and actual target box, respectively. 0 is an adjustable variable that represents the weight
assigned by the network to the shape loss.

The SioU loss function is defined as follows:

A+Q

Loss=1 — ToU + > (10)
ANB

IoU="—— 11

oU AUB (11)

2.4. Res-DenseYOLO Model

After the aforementioned model optimization, the enhanced YOLOvV5 network is
illustrated in Figure 8. In the backbone layer responsible for feature extraction, we replaced
the original C3 module with the Den_C3 module. When the feature information was
propagated from the upper layers to the Den_C3 module, it was split into two paths for
further transmission. One path directly transmitted the information to the next layer
through a CBS module. The other path first passed through a 1 x 1 CBS module to reduce
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the number of channels and then undergoes feature fusion in the Res-Dense module.
Referring to the design idea of DenseNet, we encapsulated five CBS modules into the
Res_Dense module. Since the feature map extracted from the first CBS module was shallow,
we transferred its feature data directly to the next module. The feature maps from the
second CBS module would be fused with the features from each subsequent layer. This
greatly improved the feature extraction capability. The two paths were merged through
Concat for information fusion, and finally, the feature information was extracted again
through a CBS module and input into the subsequent network modules.

Figure 8. The improved Res-DenseYOLO model.

On the one hand, the feature information was preserved intact by utilizing the residual
network structure, where it was directly input to the next layer through a CBS module.
This helped maintain the integrity of the feature information. On the other hand, the dense
connection network module enriched the network’s feature information and avoided the
loss of feature information that may occur as the network deepens. Therefore, compared
to the original YOLOVS5 backbone network, the improved backbone network had a more
abundant and accurate feature extraction capability.

In the neck layer, we incorporated the CoordAtt attention mechanism to allow the
network to focus more on valuable feature extraction parts. Since the Den_C3 module
increased the number of parameters in the network, while the neck layer was responsible
for multi-scale feature fusion on the feature maps, we could retain the original C3 module to
handle this task. The initial input size of the network was 640 x 640, and after undergoing
upsampling and downsampling operations in the network, the detection heads in the head
layer were divided into four different sizes. Compared to the original model, the improved
detection heads had a minimum size of 40 x 40, which significantly enhanced the detection
of cows at the camera edges and cows at the far end of the lens.

3. Results and Discussion
3.1. Experiment Environment

The computer configuration used for the experiments is listed in Table 1.
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Table 1. The environment of experiment parameters.

Configuration Parameters
CPU Intel(R) Xeon(R) Gold 5218R
GPU GeForce RTX 2080 Ti
Memory 94G
Operating system Ubuntu 16.04
Development environment Python 3.7
Accelerated environment CUDA 111

During the model training process, the performance of the model was strongly corre-
lated with certain hyperparameter settings. Additionally, different datasets may require
adjustments to the hyperparameters. For example, the batch size determines the number of
images in each training batch. Increasing the batch size can shorten the training time, but if
the batch size is increased from 16 to 24, it may exceed the memory capacity of the GPU,
resulting in training failure. The learning rate is a hyperparameter that controls the speed
of weight updates in the model. If the learning rate is too large, the model may miss the
optimal solution and experience oscillation or fail to converge. On the other hand, if the
learning rate is too small, the convergence speed of the model may slow down, or it may
get stuck in a local optimum. Therefore, selecting appropriate hyperparameters plays a
crucial role in model performance, as shown in Table 2.

Table 2. Initial training parameters for the Res-DenseYOLO model.

Hyperparameters Value
Optimization SGD
Initial learn rate 0.01629
Momentum 0.98
Weight decay 45 x 1074

Batch size 16
Epoch 100

3.2. Evaluation Metrics

To evaluate the performance of the proposed cow behavior recognition model, we
chose precision, recall, and mean average precision (mAP) as the evaluation metrics. The
formulas defining these metrics are as follows:

TP

Precision = T + TP (12)
TP
Recall = ———— 1
T IPrEN (13)
1
AP = /0 p(r)dr (14)
i AP;
mAP = B (15)

When the intersection between the predicted frame and the actual annotated frame
was greater than a specified threshold, the predicted frame was labeled as a positive
sample. Otherwise, it was labeled as a negative sample. True Positive (TP) represents the
number of correctly classified positive samples, False Positive (FP) represents the number
of falsely classified positive samples, and False Negative (FN) represents the number of
falsely classified negative samples. AP refers to the area under the precision-recall curve
of a detection model for a specific category. mAP, on the other hand, is the mean Average
Precision obtained by averaging the AP values across multiple categories. The parameter k
represents the number of classes.
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3.3. Experimental Results
3.3.1. Ablation Experiment

To validate the effectiveness of the proposed improvement method in this study, we
conducted comparative experiments on the backbone network, loss function, and attention
mechanism. All experiments were conducted using YOLOV5 as the baseline model. As
the primary aim of this study was to enhance the accuracy of cow behavior recognition,
we opted for precision, recall, and mAP as the evaluation metrics to measure the model’s
performance. High accuracy means that the algorithm identified a high percentage of
correct cow behaviors, which means that our model reduced the number of incorrect
predictions and thus reduced the potential losses due to incorrect predictions. For instance,
misjudgments of cows’ behaviors can result in unnecessary or delayed treatments. On
the other hand, having a high recall rate is equally crucial, as it guaranteed that most of
the cows’ behaviors had been correctly identified, ensuring that we did not overlook any
important behavioral indicators. Specifically, for early disease detection in cows, a model
delivering high recall indicates that we can notice any abnormal behaviors sufficiently early,
allowing us to take immediate appropriate measures to ensure the well-being of the cows.

Firstly, to compare the performance of the Res-Dense module as the backbone network,
we replaced the YOLOvVS5 backbone with ShuffleNetV2 and EfficientNet. From the results
in Table 3, it can be observed that compared to other models with different backbone
networks, the Res-Dense module improved the precision by 0.7%, and the recall and mAP
also increased by 0.3% and 0.4%, respectively. These metrics validate the performance
of the Res-Dense module in accurately recognizing cow behaviors in actual cowshed
environments.

Table 3. Performance of different backbone networks.

Backbone Precision (%) Recall (%) mAP@50 (%)
ShuffleNetV2 92.3 89.3 94.2
EfficientNet 92.4 89.6 94.4
Res-DenseNet 93.1 89.9 94.8

Next, a comparison was conducted on the Res-Dense module, evaluating various
commonly utilized loss functions such as GioU, CioU, and DioU against the SioU loss
function chosen for this study. The outcomes of this analysis are presented in Table 4.

Table 4. Performance of different loss functions.

Loss Function Precision (%) Recall (%) mAP@50 (%)
DioU 92.1 88.1 94.3
GioU 92.2 88.6 94.8
CioU 92.2 89.0 95.1
SioU 92.5 90.2 95.3

From Table 4, it can be observed that compared to the underperforming DioU, the SioU
loss function improved the precision and recall by 0.4% and 2.1%, respectively. The initial
YOLOv5 model selected CioU as the loss function, which demonstrated some improvement
over DioU and GioU in terms of performance. However, when using the SioU loss function,
there was an improvement of 0.3% in precision, 1.2% in recall, and 0.2% in mAP.

The experimental results indicated that the addition of angle penalty cost in the
loss function, combined with the Res-Dense module, performed well in cow behavior
recognition and detection tasks. The SioU loss function, with its integration of angle
penalty, contributed to higher precision, recall, and mAP values, enhancing the model’s
accuracy in identifying and classifying cow behaviors.

To evaluate the performance of different attention mechanisms in the current network,
this study incorporated the SE, CBAM, and CoordAtt mechanisms into the backbone
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network with the Res-Dense module for training and comparison. The experimental results
are presented in Table 5.

Table 5. Performance of different attention mechanisms.

Method Precision (%) Recall (%) mAP@50 (%)
SE 92.5 90.3 94.3
CBAM 92.9 90.2 94.6
CoordAtt 93.5 90.6 95.5

The SE attention mechanism ignored positional information and performed poorly
among the three attention mechanisms. On the other hand, CBAM considered both channel
and positional information, enhancing the feature representation capability of the feature
maps. Thus, adding the CBAM attention mechanism to the backbone network improved
the network performance, although the effect was not significant. The CoordAtt atten-
tion mechanism embedded positional information into channel attention by capturing
long-range relationships in one direction while preserving spatial information in another
direction. Referring to the literature by Zheng et al. [30], our findings were consistent with
their conclusion that after incorporating CoordAtt into the backbone network, compared to
CBAM, there was an improvement of 1% in precision, 0.3% in recall, and 1.2% in mAP.

Through ablation experiments, the positive impact of the proposed improvement
strategies on the initial YOLOvS network was validated. The performance improvement
varied when different improvement strategies were added to the network model. From the
data in Table 6, we can see that when only the Res-Dense module was added to the original
YOLOVS5 model, the accuracy of the network decreased by 1.6%, recall decreased by 1.3%,
and mAP decreased by 1.3%. After introducing the CoordAtt attention mechanism, the
model achieved a 0.4% improvement in precision, 0.7% improvement in recall, and 0.7%
improvement in mAP. It can be observed that the introduction of the CoordAtt attention
mechanism enhances the model’s ability to analyze features in both channel and spatial
dimensions, leading to further performance improvement. When the SioU module was
added, the performance improvement was relatively small, with only a 0.2% improvement
in precision and 0.3% improvement in mAP. Finally, when the multi-head detection module
was added, compared to the model without the additional detection head, there was a
1% improvement in precision, 0.7% improvement in recall, and 0.3% improvement in
mAP, demonstrating the effectiveness of introducing the multi-head detection module for
performance improvement.

Table 6. Comparative results of ablation experiments. The checkmark indicates that this module has
been added to the basic model.

Res-Dense  CoordAtt SioU 4H Precision (%) Recall (%) mAP@50 (%)

v 93.1 89.9 94.8
v v 93.5 90.6 95.5
v v v 93.7 90.5 95.8
v v v v 94.7 91.2 96.3

In order to validate the effectiveness of the improved object detection algorithm in
practical cow behavior detection and further analyze the performance of the algorithm
itself, we selected several classic object detection models, including SSD, Faster RCNN,
YOLOV4, original YOLOvVS5, and YOLOv7. We compared them comprehensively with the
improved Res-DenseYOLO model using precision, recall, and mAP as the performance
evaluation metrics, as shown in Table 7.
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Table 7. Performance comparison of different models on the validation set.
Model Precision (%) Recall (%) mAP@50 (%)

SSD 91.2 88.3 90.6

FAST-RCNN 90.5 87.2 87.2

YOLOV4 91.7 88.7 93.2

YOLOVS5s 92.5 87 92.6

ourYOLOV5 93.5 91.2 96.3

YOLOV7-tiny 92.7 89.0 94.0

From the data in the table, it can be observed that in our collected cow behavior dataset,
the Res-DenseYOLO model outperforms other models in terms of accuracy, recall, and
mAP. Among the two-stage detection models, SSD exhibited higher performance. However,
the Res-DenseYOLO model showed improvements of 2.3% in precision, 2.9% in recall,
and 5.5% in mAP, and it is a single-stage detection model, which also has advantages in
detection speed.

Among the YOLO series algorithms, we selected the relatively newer YOLOvV7-tiny
model as a comparison. The experimental results showed that within the initial YOLO
detection series, the YOLOv7-tiny model performed better than other YOLO models.
However, compared to the Res-DenseYOLO model, there was still a gap of 0.8% in precision,
2.2% in recall, and 2.1% in mAP. Therefore, in cow behavior detection, the Res-DenseYOLO
model can meet the requirements of faster and more accurate cow behavior detection.

3.3.2. Feature Heatmap Analysis

During the process of image detection by the model, the alignment between the
model’s focus on the image and the actual location of the target class is of great importance
in evaluating the model’s performance. Through heatmaps, we can intuitively understand
the areas that the model focuses on. The darker the color in the heatmap, the more concen-
trated the model’s feature extraction is in that area. To validate the correctness of feature
extraction by different models, we selected the original YOLOv5 model, YOLOvVS5 with
added dense network module, and our improved YOLOv5 model for feature extraction, as
shown in Figure 9.

Figure 9. (a) Feature extraction heatmap of the original YOLOv5 model; (b) feature extraction heatmap
after introducing the dense module; (c) feature extraction heatmap of the Res-DenseYOLO model.

From Figure 9, we can see that the original YOLOv5 model (Figure 9a) lacks focused
feature extraction capability. In the area where there was no cow in the aisle, the model
still partially extracted features from the aisle region, which reduced the feature extraction
performance of the network and led to lower accuracy. After adding the dense network
module (Figure 9b), the detection model could better extract features from the cows to be
detected. However, it still failed to pay attention to the position information of cows in
the edge regions of the image. In the heatmap of our improved Res-DenseYOLO model
(Figure 9c¢), we can observe that the color in the area where cows gathered for drinking was
darker compared to the previous models, indicating a stronger feature extraction capability
of the network. Additionally, the model could also focus on the positions of cows standing
at the edges. Therefore, the improved model can effectively identify the areas where cows
frequently appear and pay attention to them while also detecting cows in occasional areas,
demonstrating the model’s robustness and accuracy.
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3.3.3. Comparative Analysis of Model Performance

In this section, we compare the original YOLOvV5 model with our improved Res-
DenseYOLO model, as shown in Figure 10. The precision-recall curve is plotted with re-call
as the x-axis and precision as the y-axis. The larger the area enclosed by the precision-recall
curve, the higher the model’s baseline precision. From the graph, we can accurately observe
the changes in precision and recall of the model.

Precision-Recall Curve Precision-Recall Curve
1.0 - —

1.0 7w

0.8 0.8

0.6 0.6

Precision
Precision

0.4 0.4
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Figure 10. (a) P-R curve of the YOLOv5 model; (b) P-R curve of the Res-DenseYOLO model.

From the data in the graph, we can see that the mAP (mean average precision) gap
between drinking and eating behaviors is small, at 0.6% and 2.6%, respectively. However,
both models have a larger mAP difference in the standing and lying behaviors, at 4.5%
and 7.3%, respectively. After analyzing the images of standing and lying behaviors, we
found that some cows were standing close to the end of the camera’s capture area, and
some standing cow images had a dense distribution, posing a challenge for the model’s
recognition of small targets. Additionally, the images of cows lying down were captured
at night using infrared cameras, resulting in less prominent colors in the images and
testing the model’s ability to extract image features. Therefore, the Res-DenseYOLO model,
which combines dense networks and multi-head mechanisms, can effectively address the
aforementioned issues. After improvement, the Res-DenseYOLO model showed a 3.7%
increase in mAP compared to the original model. Thus, it can be seen that the improved
Res-DenseYOLO model greatly enhanced the accuracy of cow recognition.

3.3.4. Model Result Visualization Comparison and Analysis

To further validate the performance of the model in detecting different cow behaviors,
we selected cow behavior images from different scenarios and used the original YOLOv5
model as our baseline model.

Figure 11 shows the drinking behavior of cows. We can observe that both detection
models achieved high recognition accuracy when cows were not stacked and when they
were standing in the center of the image. This is because the entire cow body was presented
in the image, and the features were relatively complete, making it easier for the models to
recognize them. In the case of cows with partially displayed features in the middle of the
image (Figure 11b), our Res-DenseYOLO model, which incorporated the dense module to
enhance feature extraction, showed a 1-3% improvement in recognition accuracy compared
to the original YOLOv5 model. However, for cows standing at the edges of the image, the
recognition accuracy of the model decreased due to incomplete cow features. Nevertheless,
compared to the original YOLOv5 model, our model had improved accuracy by 16% and
could better recognize cows with partially incomplete features that still appear in the image.
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Figure 11. (a) Detection results of drinking behavior using the original YOLOv5 model; (b) detection

results of drinking behavior using the Res-DenseYOLO model.

Figure 12 shows the recognition results of the model for cows standing. From the
image, we can see that in the corridor of the cowshed, the size of the cow in the image
varies greatly depending on its distance from the camera. Especially for cows in the far-
end area of the corridor, due to their distance, their size in the image was significantly
smaller, and the feature information was relatively incomplete. This presented a significant
challenge for the model to recognize such small targets (Figure 12a). However, we had
employed the design of multiscale detection heads to facilitate the model in better feature
extraction in different regions. Additionally, the Res-Dense module enhanced the feature
representation capability, allowing the model to identify target categories from incomplete
features. Furthermore, the CoordAtt attention mechanism enhanced the network’s ability
to expand the attention range of the network model [30].

drinking 0.87 _

‘ H “%. s

—

(b)

Figure 12. (a) Recognition results of the YOLOV5 original model for detecting standing behavior;

(b) recognition results of the Res-DenseYOLO model for detecting standing behavior.

Our Res-DenseYOLO model effectively recognized cows with standing features in
far-end positions (Figure 12b), even when their size was small. Additionally, the model
accurately identified cows with only the upper half of their body visible in the bottom-left
corner. This fully demonstrated the effectiveness of our design strategy.

Figure 13 shows the recognition results of the model for cow feeding behavior. Due
to the compact design of the cow feeding trough, cows often stacked on top of each other
while feeding, making it crucial for the model to accurately distinguish stacked cows. The
original YOLOv5 model (Figure 13a), when dealing with such overlapping objects, can only
roughly extract the overall contour features of the overlapping region, and, therefore, only
one cow can be detected. However, our Res-DenseYOLO model (Figure 13b), utilizing the
optimized backbone network, can deeply extract detailed features within the overlapping
region. By separating the feature representation of different regions using a multi-head
structure, it can accurately and clearly recognize two cows. Moreover, for cows in a feeding
position on the right side, our model improved the detection accuracy by 5% compared to
YOLOVS5. The results confirmed the effectiveness of our enhanced design in resolving the
problem of overlapping objects.
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Figure 13. (a) Recognition results of the YOLOV5 original model for detecting feeding behavior;
(b) Recognition results of the Res-DenseYOLO model for detecting feeding behavior.

Figure 14 shows the detection results of the model for cows’ lying down behavior dur-
ing nighttime. When the monitoring image exhibited reduced color contrast at nighttime,
this imposed higher demands on the model’s capacity to extract discerning features from
the image. However, our Res-DenseYOLO model, with the optimized backbone network,
can dig deeper into the details of monochrome images. From the figure (Figure 14b), it
could be observed that the Res-DenseYOLO model improved the recognition rates for
both standing and lying down behavior of cows, especially when the images of two cows
intersected. In such cases, Res-DenseYOLO showed a 14% increase in confidence for cor-
rectly identifying the cow lying down in the middle. The results demonstrated the robust
performance of our model, even in challenging scenarios that involve intricate features.

Figure 14. (a) Detection results of YOLOVS5 original model for lying behavior recognition; (b) detection
results of Res-DenseYOLO model for lying behavior recognition.

3.4. Limits and Future Research

There are still some limitations in the study that cannot be ignored. Firstly, in an actual
cowshed, the complexity of the environment can lead to an inability to distinguish between
the cattle and the environment, and this phenomenon often occurs in areas that deviate
from the camera acquisition area. The datasets collected were also mostly based on well-lit
environments and did not span the winter months when temperatures are low. In the
future, we will increase the time span of the data collection and enhance the data with
GAN networks [31] or super-resolution techniques [32].

Second, we borrowed the idea of the DenseNet module to enhance the model’s ability
to extract features. However, this approach also enhances the number of parameters of
the network, which poses difficulties for deployment on mobile or embedded platforms.
To solve this problem, we propose to use the following two approaches. The first one
is to use model channel pruning [33] to obtain a more compact and efficient model by
removing the low contributing channels when the accuracy loss is minimized. The other,
in [34], proposes an extension of the Rexnet to the Rank eXpansion Network 3D algorithm
(Rexnet 3D) network to achieve non-contact automatic recognition of the basic motion
behaviors of cows, with a recognition accuracy of 95%. We found that in its performance
comparison with other models, it obtained close to or even better accuracy with fewer
FLOPs, which is worth exploring further in future research.

Finally, merely recognizing the behaviors of dairy cows does not fulfill the manage-
ment requirements. Individual cow recognition will also be an important part of future
research. In both [19,35], they conducted cow identity studies based on cow face patterns
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and back patterns, respectively, through the improved YOLO model. In future studies, we
will explore the performance of the Res-DenseYOLO model on cow identity. In addition,
the nose pattern of the cow can also be used as a unique identifier for its identity, to be
further explored in future research work [36].

In summary, this study is dedicated to the automatic identification of cow behavior by
machine vision in a real cowshed environment. The results of the experiment proved that
the application of this technology is promising for monitoring the physical condition of
cows and improving their well-being.

4. Conclusions

The objective of this research was to achieve precise identification of diverse behav-
iors exhibited by cows in actual dairy cowshed environments. To achieve this objective,
we proposed the Res-DenseYOLO detection model based on the YOLOV5 architecture.
By incorporating additional detection heads, the Res-DenseYOLO model enhanced the
recognition capability of distant cow behaviors in the target image. Furthermore, we en-
hanced the model’s ability to extract image features in actual cowshed environments by
incorporating dense modules into the existing residual modules, ensuring accuracy. In
addition, the incorporation of a dense module into the original residual module enhanced
the model’s capability to effectively image features, thereby ensuring its accuracy in actual
dairy cowshed environments. Moreover, by incorporating the CoordAtt attention mecha-
nism and anchor frame loss function, the convergence speed during model training was
further improved. As a result of these modifications, Res-DenseYOLO achieved improve-
ments of 0.7% in accuracy, 4.2% in recall rate, and 3.7% in mAP compared to YOLOVS.
Our research model also demonstrated comparable performance advantages compared
to other mainstream object detection models. The data used in this study were collected
through surveillance cameras in the cowshed, eliminating the need for special acquisition
equipment and providing convenience for future research on animal behavior recognition
in intensive farming domains.
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