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Abstract: Glioblastoma (GBM) is characterized by an immunosuppressive tumor microenvironment
(TME) strictly associated with therapy resistance. Cyclooxygenase-2 (COX-2) fuels GBM proliferation,
stemness, and chemoresistance. We previously reported that COX-2 upregulation induced by temo-
zolomide (TMZ) supported chemoresistance. Also, COX-2 transfer by extracellular vesicles released
by T98G promoted M2 polarization in macrophages, whereas COX-2 inhibition counteracted these
effects. Here, we investigated the COX-2 role in the stemness potential and modulation of the GBM
immunosuppressive microenvironment. The presence of macrophages U937 within tumorspheres
derived from GBM cell lines and primary cultures exposed to celecoxib (COX-2 inhibitor) with or
without TMZ was studied by confocal microscopy. M2 polarization was analyzed by TGFβ-1 and
CD206 levels. Osteopontin (OPN), a crucial player within the TME by driving the macrophages’
infiltration, and CD44 expression was assessed by Western blot. TMZ strongly enhanced tumorsphere
size and induced the M2 polarization of infiltrating macrophages. In macrophage-infiltrated tumor-
spheres, TMZ upregulated OPN and CD44 expression. These TMZ effects were counteracted by
the concurrent addition of CXB. Remarkably, exogenous prostaglandin-E2 restored OPN and CD44,
highlighting the COX-2 pivotal role in the protumor macrophages’ state promotion. COX-2 inhibition
interfered with TMZ’s ability to induce M2-polarization and counteracted the development of an
immunosuppressive TME.

Keywords: glioblastoma; COX-2; COXIB; temozolomide; tumor microenvironment; macrophages;
osteopontin

1. Introduction

Glioblastoma (GBM) is a devastating disease characterized by a unique tumor microen-
vironment (TME) bearing a poor prognosis and relapse [1]. Many of the latest approaches
have failed to improve outcomes; thus, new targeted therapies are desperately needed [2,3].
An extensive understanding of TME physiology is a critical issue in helping the devel-
opment of effective treatments. TME is a “complex integrated system formed by the
interaction of tumor cells with surrounding tissues and immune cells” [4]. The GBM mi-
croenvironment is enriched in neoplastic and non-neoplastic cells, such as tissue-resident

Cells 2024, 13, 258. https://doi.org/10.3390/cells13030258 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells13030258
https://doi.org/10.3390/cells13030258
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-0551-5076
https://orcid.org/0009-0002-7862-3323
https://orcid.org/0000-0002-6661-8116
https://orcid.org/0000-0002-9923-5445
https://orcid.org/0000-0001-7027-2691
https://doi.org/10.3390/cells13030258
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells13030258?type=check_update&version=1


Cells 2024, 13, 258 2 of 17

cell types, resident microglia cells, and the newly recruited immune cells. The macrophages
infiltrating the tumor, “glioblastoma-associated macrophages” (GAMs), represent the major
cellular immune component adopting different activation states (pro-inflammatory “M1”
and anti-inflammatory/pro-tumoral “M2” phenotypes) [5] and ably influence the TME
secreting soluble mediators [6–8]. Despite the abundance of immune cells, the TME is a
highly immunosuppressive due to M2-like GAMs secreting immunosuppressive factors
(i.e., IL-6, TGF-β, IL-10) contributing to immune evasion [7].

In the context of the cellular heterogeneity of the TME, GBM stem cells (GSCs) account
for a small population showing self-renewal, multilineage differentiation, and high resis-
tance to conventional therapy [9]. In the TME, the physiological heterotypic interaction
between GAMs and GBM cells, including GSCs, promoting recruitment of additional
macrophages and the suppression of CD4+ and CD8+T cell infiltration and activity, actively
sustains the tumor cell proliferation, invasion, angiogenesis, and stemness potential [10,11].
Specifically, secreted molecules from GSCs can induce the recruitment and polarization
of GAMs, which in turn, sustain GSCs’ self-renewal by secreting stemness-supporting
factors [10].

Osteopontin (OPN), a secreted multifunctional phosphorylated glycoprotein, plays a
crucial role within the TME in several physiological and pathological processes, including
macrophage recruitment and polarization, cell growth, and angiogenesis [12–14]. OPN is
expressed in various immune cells and plays a role in initiating immune responses [15,16].
OPN is upregulated within glioblastoma-infiltrating neutrophils and macrophages and is
associated with the infiltration of these cells within tumor specimens [17]. Moreover, the
high OPN expression in GBM correlates positively with the grade and GAM infiltration
and negatively with patient prognosis [14,18,19]. Furthermore, OPN acts as a significant
regulator of GSC phenotype. The OPN stable knockdown impairs the sphere formation in
U87MG, U251MG, T98G and LN18, GBM cell lines downmodulating the main stemness
transcription factors and EGFR activation [20,21].

OPN activity in the TME is favored by its association with cell surface receptors such
as integrins and CD44, a hyaluronan transmembrane receptor and a well-established GBM
stem cell marker [22]. The OPN–CD44 interaction triggers the CD44 cleavage and the release
of its intracellular domain (CD44-ICD) that translocates into the nucleus and, enhancing the
expression of hypoxia-inducible factor, modulates the GBM hypoxic microenvironment [23,24].
The critical role of the OPN–CD44 interaction in maintaining the stemness phenotype has
been shown [20]. Cells with a variant OPN construct lacking a C-terminal domain responsible
for interactions with CD44 were not able to generate spheres [20].

In the TME, OPN is associated with chemoresistance in several cancers [13]. The TMZ,
a DNA alkylating agent used as a standard first-line treatment for adult GBM patients,
significantly enhanced the OPN expression and NF-κB activation in human U251MG cells.
Moreover, the OPN silencing restored the TMZ sensitivity by blocking the NF-κB and Bcl-2
expression induced by TMZ [25].

Recently, we studied the influence of COX-2 on TMZ resistance, demonstrating the
ability of TMZ to significantly upregulate COX-2 expression and pathways involved in
the GBM-chemoresistance in TMZ-resistant GBM cells. Of note, the COX-2 inhibitor
counteracted the TMZ action, demonstrating that the effects on T98G cells are owing to
TMZ-induced COX-2 upregulation [26]. We have also reported that TMZ induced the COX-
2 transfer by extracellular vesicles from T98G to human recipient macrophages, promoting
the M2 phenotype polarization. Interestingly, the treatment with the selective COX-2
inhibitor, NS398, concurrent with TMZ, overcame the TMZ-induced overexpression of
β-catenin, O-6-methylguanine-DNA methyltransferase (MGMT), and SOX-2 in T98G and
lowered the levels of COX-2 shuttled in extracellular vesicles. These data confirmed the
crucial role of the COX-2/PGE2 system in the cascade of events activated by TMZ and
implicated in GBM chemoresistance [27].

To further elucidate the role of COX-2 in the TMZ resistance of GBM, here we inves-
tigated the potential ability of TMZ-induced COX-2 to influence the stemness potential
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evaluated through GBM-sphere generation, a three-dimensional (3D) model which, better
than 2D models, considers the tumor complexity. A COX-2 inhibitor, celecoxib (CXB), alone
or combined with TMZ, was used on T98G (TMZ-resistant) and U87MG (TMZ-partially re-
sistant) [28] and GBM primary cultures. The heterotypic interaction of human macrophage
cell line U937 with tumorspheres derived from treated GBM cells has been studied to define
the COX-2 role in the modulation of the TME. Given the crucial role played by OPN in
macrophage recruitment, we also verified whether TMZ could affect OPN levels and if this
process was modulated by COX-2 inhibition.

2. Materials and Methods
2.1. Cell Lines

Human GBM cell lines, T98G and U87MG, were acquired from the European Collec-
tion of Authenticated Cell Cultures (ECACC,T98G: ECACC 92090213, U87MG: ECACC
89081402); human monocyte cell line, U937 were acquired from Cell Lines Service (Ep-
pelheim, Germany). U937 cells are intensely used in macrophage–GBM cell interaction
because of their ability to mimic the macrophage differentiation process [29–31]. T98G and
U87MG cells were cultured according to manufacturer recommendations in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented with 10% (v/v) of fetal calf serum (FCS),
2 mM L-glutamine, 100 U/mL penicillin, and 100 mg/mL streptomycin (complete medium)
(EuroClone, West York, UK). U937 cells were cultured in RPMI-1640 medium (EuroClone,
West York, UK) supplemented with 10% (v/v) of FCS, 2 mM L-glutamine, 100 U/mL
penicillin, and 100 mg/mL streptomycin (complete medium). All cells were maintained
at 37 ◦C in 5% CO2 and 95% humidity, and media were totally replaced every 3 days. To
induce the in vitro differentiation of U937 into a macrophage-like phenotype (M0), cells
were incubated with 100 ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich,
Saint Louis, MO, USA) for 48 h as previously reported [32].

T98G cells express high levels of MGMT (“TMZ-resistant”) and are COX-2-positive
cells; U87MG, COX-2-positive cells, do not express MGMT (“TMZ-partially resistant”) [28].
Cell number and viability were assayed by trypan blue staining under microscopy (Eclipse
50i, Nikon Corporation, Tokyo, Japan).

2.2. GBM Primary Cultures

Resected tissues from two GBM patients were obtained from the Operative Unit of
Neurosurgery at the San Salvatore Hospital of L’Aquila. Each patient signed a written
consent in accordance with the approved ethical permit from the regional ethics Internal
Review Board (20 January 2015). Primary cell cultures (GL25 and GL44) were generated
from fresh resected tumors, clinically and histologically characterized as GBM, and frozen
at early passages as previously described [33]. Thawed primary cultures before use were
characterized for stemness properties by immunofluorescence staining after NeuroCult™
differentiation medium incubation (Stem cell Technologies, Vancouver, BC, Canada). In
particular, the cells were differentiated in the three neural lineages (neurons, astrocytes, and
oligodendrocytes) through the specific media for 35 days. Supplementary Figure S1 shows
representative images of GL25 and GL44 cells differentiated into astrocytes, neurons, and
oligodendrocytes. Both the primary cultures were able to differentiate into a larger amount
of GFAP+ astrocytes, NF200+ neurons, and a few OP4+ oligodendrocytes, confirming their
stemness potential (Supplementary Figure S1).

Basal COX-2 expression was evaluated in primary cultures in adherent and tumor-
sphere conditions, and the results of representative Western blotting and relative densit-
ometric analysis are shown (Supplementary Figure S2). Both cultures express COX-2 at
higher levels in tumorspheres with respect to adherent cells.

2.3. Tumorsphere Formation Assay

The tumorsphere formation assay is a widely used method to obtain putative CSCs. For
tumorsphere generation, all adherent cultures (5 × 105 cells/well) were grown in ultra-low
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attachment plates in serum-free DMEM/F12 (1:1, vol/vol) with B27-reagent (Thermo Fisher
Scientific, Waltham, MA, USA), EGF and FGF-β (both 20 ng/mL) (ImmunoTools GmbH,
Friesoythe, Germany), penicillin/streptomycin, and glutamine (tumorspheres’ complete
medium). Media were replaced every 3 days until sphere formation (~7 days) [34]. The
morphology was detected and analyzed by microscope, Nikon Eclipse TS100, and area was
assessed using ImageJ software 1.54d. Briefly, 10 bright field images at 4× magnification were
randomly taken from all cells and analyzed. The tumorsphere average area (total area/number
of tumorspheres) was expressed in mm2 (Supplementary Figure S3).

2.4. Reagents and Treatments

The selective COX-2 inhibitor, celecoxib (CXB) (Sigma-Aldrich, Saint Louis, MO, USA)
was stored in a stock solution in DMSO at −20 ◦C and diluted in complete culture medium
before use. Temozolomide (TMZ) (Sigma-Aldrich) was dissolved in 10% dimethylsulphox-
ide (DMSO) (stock solution of 51.5 mM). Working concentrations were daily prepared in
PBS. Based on our previous report [26] and other GBM in vitro studies [35,36], for both ad-
herent cell lines, we choose the concentrations of CXB 50 µM and TMZ 200 µM. The drugs
were used as single agents or combined and were added simultaneously. Cells treated with
DMSO alone (vehicle) were used in all the experiments as the “control” (not treated, CNTR).
After 72 h treatment, the cells were counted, and 5 × 105 of treated and not-treated cells
were grown in tumorsphere complete medium in the presence of macrophages (70,000 cells)
until sphere generation.

To evaluate the effects of exogenous PGE2 (Sigma-Aldrich) on GBM cells, cells were
plated at 5000 cells/ cm2, left to adhere, and then simultaneously incubated with CXB and
TMZ, as previously described, and with PGE2 (10 µM) for 72 h [37].

2.5. Proliferation Assay

The proliferation of primary cultures exposed to increasing concentrations of TMZ
(10–400 µM) or the drug vehicle DMSO (CNTR) (72 h) was evaluated by cell-counting kit-8
(CCK-8). Absorbance at 450 nm was detected using a microplate reader (BioRad, Hercules,
CA, USA). Data were expressed as optical density values (OD). The concentrations of
TMZ ranged between 10 and 200 µM did not affect the cell viability of both cultures
(Supplementary Figure S4). The higher concentration (400 µM) significantly reduced it to
less than 50% in both primary cultures. The concentration of 200 µM TMZ, able to maintain
the proliferation at 72 h above 50%, was chosen for both primary cultures. Similar to T98G,
both primary cultures can be defined “TMZ-resistant”.

2.6. Macrophage Infiltration into Tumorspheres

To detect the presence of U937 within tumorspheres, the macrophages were alone
labeled with the fluorescent lipophilic dye PKH26 that stably integrates into the cell mem-
brane (Sigma-Aldrich). Briefly, 106 macrophages mL−1 were centrifuged for 5 min. Pellets
were resuspended with 1 mL of Diluent C. Then, 4 µL of PKH26 was added to the cell sus-
pension. After incubation of the cell/dye suspension for 5 min, the staining was stopped by
adding 2 mL of serum. Cells were washed following two more centrifugation steps (400× g
for 10 min) to ensure the removal of unbound dye and then resuspended in a complete
medium. The PKH26-labeled macrophages were incubated with GBM cell suspensions
previously treated with CXB and TMZ. Cocultures of tumorspheres and macrophages were
left to adhere overnight on coverslips pre-coated with poly-lysine (30 µg/mL) (Sigma-
Aldrich). Coverslips mounted with Vectashield Mounting Medium (Vector Laboratories,
Inc., Newark, CA, USA) were examined with a Leica TCSSP5 confocal microscope (Le-
ica, Wetzlar, Germany). Z-stack images were generated and analyzed with Leica TCSSP5
confocal microscope software LAS-AF. Red fluorescent spots (3 fields/condition) were
analyzed by the image processing tool of ImageJ software calculating the “corrected total
cell fluorescence” (CTCF) = integrated density – (area of selected cell × mean fluorescence
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of background readings). For each image, three background areas were used to normalize
against autofluorescence.

2.7. Western Blot

Cells were collected in ice-cold RIPA buffer (Merck KGaA, Darmstadt, Germany)
containing a 100 mM protease inhibitor cocktail (Sigma-Aldrich). Protein concentra-
tion was determined by a BioRadTM BCA Protein Assay Kit (BioRad). Total cell lysates
(25 µg protein/lane) were separated by 10% SDS-PAGE in reducing conditions with β-
mercaptoethanol 5%. Proteins were electroblotted onto 0.45 µm nitrocellulose membranes
(BioRad). Following incubation with 5% non-fat dry milk in Tris-buffered saline for 1h
at room temperature, the membranes were incubated overnight at 4 ◦C with primary
antibodies (Table 1). As secondary antibodies, peroxidase-conjugated anti-rabbit and
anti-mouse IgG antibodies (dilution 1:2000) were acquired from Sigma-Aldrich. The ECL
(Amersham Pharmacia Biotech, Buckinghamshire, UK) was used according to the manu-
facturer’s instructions to detect chemiluminescent signals. Emission was captured using
the chemiluminescence documentation system ALLIANCE (UVITEC, Cambridge, UK).

Table 1. List of primary antibodies used in the present study.

Primary Antibody Dilution Company

rabbit monoclonal anti-COX-2 1:1000 Cell Signaling Technology, Danvers, MA, USA

rabbit monoclonal anti-osteopontin 1:1000 Boster Biological Technology, Pleasanton, CA, USA

mouse monoclonal anti-CD44 1:1000 Cell Signaling Technology, Danvers, MA, USA

mouse monoclonal anti-β-actin 1:1000 Bio-Rad, Hercules, CA, USA

2.8. ELISA Kit

TGFβ-1, IL-10, IL-1β, and OPN levels were quantified in the supernatants of tu-
morspheres by an enzyme-linked immunosorbent assay (ELISA) (Sigma-Aldrich). The
supernatants were centrifuged at 1000× g (15 min). All the concentrations were determined
by comparison to a standard curve. Results are expressed as pg/mL.

2.9. Flow Cytometry Analysis

M2-like macrophages were identified as CD206-positive [38]. Cell suspensions of
GBM-spheres were dissociated by Accutase solution to obtain a single cell suspension [39],
incubated with BSA 2% (10 min), and stained with a monoclonal mouse APC-conjugated
CD206 antibody (BD Biosciences, San José, CA USA) or with the APC Mouse IgG1, κIsotype
Control (BD Biosciences). The histograms of the CD206 fluorescence signal were obtained
from gated events with the forward and side light-scatter characteristics of the dissociated
cell populations. As a negative control, the U937 macrophage cell line (M0) without the
addition of GBM cells was used. Fluorescence was measured using a FACSCanto™ II flow
cytometer and FACSDiva software v6.1.3.

2.10. Statistics Analysis

Statistical analysis was performed while using GraphPad Prism 6.01 (GraphPad Soft-
ware, San Diego, CA, USA). A Student’s unpaired t-test was used to compare the two means.
The data were also evaluated using a one-way ANOVA test followed by a Tukey’s post hoc
test. Data were from independent experiments repeated two or three times and performed
in duplicate or triplicate. The results were shown as the means ± SD (standard deviation)
or means ± SEM (standard error mean). p values less than 0.05 were considered significant.
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3. Results
3.1. Effect of CXB, TMZ, and Their Combination on Tumorsphere Formation and
Macrophage Infiltration

Adherent cell lines and primary cultures were exposed at the same time to CXB and
TMZ as single drugs or in a drug-combination approach for 72h. Then, an equal number of
treated cells (5 × 105) were cultured in GSC medium in the presence of macrophages until
tumorsphere formation. Phase contrast images showed that all the not-treated (CNTR)
cells generated tumorspheres, although of different sizes. The CXB treatment slightly
modified the spheres’ size; conversely, TMZ significantly increased it when compared to
relative CNTR (Supplementary Figure S3), confirming the results of Gao et al. [40]. The
drug combination (CXB+TMZ) treatment hindered the formation of tumorspheres, which
appeared smaller and irregular compared to other treatments (Supplementary Figure S3).

The presence of the human macrophage U937 within GBM spheres was verified follow-
ing red fluorescence PKH26 staining by confocal immunofluorescence images (Figure 1A).
To assess the tumorsphere infiltration, the macrophages were previously labeled with
PKH26 (red spots), and the red fluorescence, quantified by ImageJ calculating the corrected
total cell fluorescence (CTCF), indicated that macrophages were effectively internalized in
GBM spheres (Figure 1B). Overall, tumorsphere-infiltrating macrophages were significantly
higher in TMZ-treated cultures than CNTR in cell lines and primary cultures (Figure 1B).
The red fluorescence was considerably lower than control levels after CXB+TMZ treat-
ment in all cell cultures, suggesting that the drug combination harmfully affected both
tumorsphere formation and macrophage infiltration (Figure 1B).
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(A) U937 were stained with PKH26 Red Fluorescent Cell Linker and cultured with adherent GBM 
cells previously exposed for 72 h to CXB, TMZ, or their combination until tumorsphere formation. 
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Figure 1. Detection of human macrophage cell line U937 in GBM spheres by confocal microscopy.
(A) U937 were stained with PKH26 Red Fluorescent Cell Linker and cultured with adherent GBM
cells previously exposed for 72 h to CXB, TMZ, or their combination until tumorsphere formation.
Representative Z-stack projections of tumorspheres from T98G, U87MG, and primary cultures
(GL25, GL44) after infiltration of PKH26-labeled macrophages (red) are shown. Dapi dye (blue) was
used to counterstain nuclei. Images are from one of two independent experiments (magnification
63×). (B) Quantification of tumorsphere-infiltrating macrophages. For the quantification of the red
fluorescence of PKH26-labeled macrophages, digital images were analyzed by ImageJ software. The
red fluorescence intensity was expressed as the mean values of CTCF (corrected total cell fluorescence)
± SD and are expressed as the fold change vs. CNTR. A one-way ANOVA with a Tukey’s post hoc
test was applied (* p < 0.05, ** p < 0.01, *** p < 0.001).
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3.2. COX-2 Inhibition Affects the Immunosuppressive Macrophage M2 Phenotype

The phenotype of tumorsphereinfiltrating macrophages has been analyzed. GBM cells
previously exposed or not (CNTR) to CXB, TMZ, or their combination were cocultured with
macrophages until the tumorspheres’ generation. To verify the M2 polarization, TGF-β1,
the most common M2-related marker, was assayed in supernatants. Figure 2A–D shows
the TGF-β1 levels released by cell cultures in the presence of macrophages. The COX-2
inhibition did not cause a TGF-β1 modulation; otherwise, the TMZ exposure increased
TGF-β1 levels in all cell cultures, being significant in T98G and U87MG compared to CNTR
(Figure 2A,B). Of note, the drug combination CXB+TMZ induced a relevant lowering
of TGF-β1 in the supernatants of T98G, U87MG, GL25, and GL44 cells relative to TMZ
(Figure 2A–D). Interleukin 10 (IL-10), another immunosuppressive cytokine and M2 marker,
was also assayed in the same samples. As for TGF-β1, the results (Figure 2E–H) show that,
in all cells, TMZ alone induced a significant increase in IL-10 levels, which were strongly
reduced in the presence of the CXB + TMZ combination.
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Figure 2. M2-phenotypic shift after macrophage–tumorsphere interaction. GBM cells were treated
with CXB, TMZ, and a drug combination for 72 h, then cultured in tumorsphere medium with
macrophages. The levels of TGF-β1 and IL-10, M2-related markers, were assessed in coculture
supernatants by ELISA (A–D and E–H, respectively). Data from three experiments are expressed as
the mean ± SEM. A one-way ANOVA with a Tukey’s post hoc test was used (* p < 0.05, ** p < 0.01,
*** p < 0.001).

To further confirm the M2 polarization state of macrophages that infiltrated into GBM
tumorspheres, the surface expression of the M2-differentiation marker, CD206, was also
analyzed by flow cytometry (Figure 3A–D). Overall, TMZ remarkably upregulated CD206
in U937-infiltrated tumorspheres, while the drug combination significantly counteracted
the TMZ effect reducing CD206 levels (Figure 3A–D).
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marker, CD206, was evaluated by flow cytometry, and data were expressed as the percentage of
CD206-positive cells (A–D). Data from two experiments are expressed as the mean ± SEM. One-way
ANOVA with Tukey post-hoc test was used (* p < 0.05, ** p < 0.01). Flow cytometric profiles of CD206
positive cells from one representative experiment are also shown.

The content of interleukin-1β (IL-1β), a cytokine associated with the M1-activation
state, was also measured in the supernatants of cell lines and primary cultures exposed
to CXB, TMZ, or their combination in the presence of macrophages. CXB alone did not
change IL-1β levels, while, when combined with TMZ, it could significantly increase the
IL-1β secretion from all cells with respect to TMZ (Figure 4A–D).

All these findings suggested that TMZ caused a macrophage M2 phenotype shift
following interaction with GBM cells, and the drug combination effectively counteracted
the action of TMZ.

3.3. COX Inhibition Counteracted TMZ-Induced OPN Overexpression

OPN is generally expressed both by GBM cells and macrophages [11]. The amount of
OPN secreted in supernatants of CXB-, TMZ-, or CXB+TMZ-treated cells in the presence
of U937 is shown in Figure 5. The basal OPN expression was higher in U87MG than in
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T98G cells and GBM primary cultures, thus confirming previous evidence [20]. In all cell
systems, the TMZ exposure enhanced the OPN release compared to CNTR, CXB, and the
drug combination treatment (Figure 5A–D). Of note, CXB, which alone did not significantly
influence the OPN levels, when added together with TMZ, counteracted the TMZ-induced
OPN secretion in both cell lines and primary cultures (Figure 5A–D). The effect of CXB,
when combined with TMZ, could be due to its ability to inhibit the TMZ-induced COX-2,
involved in the OPN upregulation, thus allowing TMZ to perform its actions optimally,
such as the OPN reduction.
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Representative Western blot images and the results from the densitometric analysis of
OPN levels in GBM spheres from CXB-, TMZ-, and (CXB+TMZ)-treated cells are shown in
Figure 6. In GBM cell lines, the OPN expression levels of the CNTR were not significantly
affected by CXB, while the TMZ upregulated the OPN expression both in TMZ-partially
resistant (U87MG) and TMZ-resistant (T98G) cell lines, and this increase was significant
for T98G versus CNTR (Figure 6A,B). The combination CXB+TMZ significantly reduced
the OPN expression with respect to TMZ alone, thus counteracting the TMZ effect in both
cell lines (Figure 6A,B). In GBM primary cultures, GL25 and GL44, a similar trend was
observed; in fact, the effect of TMZ, associated with an increase in OPN expression versus
CNTR when used alone, was significantly counteracted by the concomitant exposure to
CXB (Figure 6C,D).
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Figure 6. COX-2 inhibition counteracted TMZ-induced OPN overexpression. OPN immunoblotting
assays were performed on T98G, U87MG (A,B), and primary cultures (C,D) stimulated for 72 h with
CXB, TMZ, or their combination and cultured in GSC medium with macrophages. β-Actin was used
as a loading control for normalization. Representative images are shown (OPN predicted band size
75 kDa, observed band size ~110 kDa, β-Actin 42 kDa). Values are expressed as the fold increase
versus CNTR (mean ± SEM) of three independent experiments. A one-way ANOVA with a post hoc
Tukey’s test was used (* p < 0.05, ** p < 0.01).

3.4. COX-2 Inhibition Counteracted the TMZ-Induced CD44 Upregulation

Through binding with CD44, OPN promotes the stemness phenotype and chemoresis-
tance in glioma [41]. Therefore, we evaluated the effect of the TMZ alone or combined with
COX-2 inhibitor on the CD44 expression in GBM spheres derived from cells previously
treated with CXB, TMZ, or their combination for 72h, and then cultured with macrophages.
As shown in Figure 7A,B, the Western blot analysis of T98G and U87MG revealed a CD44
upregulation after TMZ exposure, even if it was significant versus CNTR only in the T98G
cell line. Remarkably, the drug combination was able to drastically reduce the CD44 expres-
sion in both cell lines with respect to TMZ (Figure 7A,B). As observed for OPN expression
(Figure 6), also for CD44 levels, the primary cultures showed a trend similar to cell lines
since TMZ induced an increase in CD44 levels, and the drug combination lowered the
CD44 expression to the CNTR levels in both primary cultures (Figure 7C,D).
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Figure 7. COX-2 inhibition counteracted the TMZ-induced CD44 upregulation. Immunoblotting
assays for CD44 were performed on T98G, U87MG (A,B), and primary cultures (C,D) previously
treated for 72 h with CXB, TMZ, or their drug combination and cultured with macrophages in
GSC medium to generate tumorspheres. β-Actin was used as a loading control for normalization.
Representative images are shown (CD44 80 kDa, β-Actin 42 kDa). Values are expressed as the fold
increase versus CNTR (mean ± SEM) of three independent experiments. A one-way ANOVA with a
post hoc Tukey’s test was used (* p < 0.05, ** p < 0.01).

3.5. Effect of Exogenous PGE2 on TMZ-Induced OPN in GBM Cells

Aiming to better define the COX-2 role in TMZ resistance, the effect of exposure to
exogenous PGE2 was evaluated on OPN and CD44 levels of T98G and U87MG, and GL44
in the presence of macrophages. Since primary cultures showed a similar trend, we selected
GL44 to evaluate the effect of exogenous PGE2. The PGE2 addition significantly enhanced
the secreted OPN in T98G and U87MG but not in GL44 compared to CNTR (Figure 8A–C).
Interestingly, in T98G, U87MG, and GL44, the exogenous PGE2 significantly enhanced the
OPN levels in CXB+TMZ-treated cells (green bar) with respect to the drug combination
treatment (grey bar) (Figure 8A–C). A similar trend was observed in Western blotting: PGE2
alone strongly enhanced the OPN protein levels, and when added to CXB+TMZ-treated
cells, a re-established expression of OPN was detected in GBM cell lines as primary culture
even if it was not significant (Figure 8D–F). Additionally, exogenous PGE2 upregulated the
CD44 expression compared to CNTR and significantly counteracted the effect of the drug
combination in T98G and U87MG spheres (Figure 8G,H). A lower cellular response to the
PGE2 addition in CD44 expression was observed in GL44 cells (Figure 8I).
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Figure 8. PGE2 contributed to GBM chemoresistance. OPN levels secreted in (A) T98G-, (B) U87MG-,
and (C) GL44-sphere supernatants were assessed by ELISA upon stimulation with exogenous PGE2
and the drug combination CXB+TMZ for 72 h in the presence of macrophages. OPN immunoblotting
assays of (D) T98G, (E) U87MG, and (F) GL44 treated as described above were normalized vs. β-Actin.
CD44 immunoblotting assays of (G) T98G, (H) U87MG, and (I) GL44 treated as described above were
normalized vs. β-Actin. Representative images are shown. Values are expressed as the fold increase
versus CNTR (mean ± SEM) of two independent experiments. A one-way ANOVA with a post hoc
Tukey’s test was used (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

4. Discussion

TMZ resistance is an important limitation for treating GBM, one of the most aggressive
cancers. Generally, chemoresistance is strongly influenced by the complex interactions
of cancer cells and highly tumorigenic GSCs with TME cell components, particularly
macrophages. Increasing evidence has demonstrated the role of GAMs in GBM resistance.
In the TME, a pro-tumor M2 macrophage polarization is promoted and sustained by a
marked increase in immunosuppressive cytokine IL-10, which induces cell growth by
activating JAK/STAT3, a COX-2 inductor signaling pathway [42].

COX-2, the enzyme responsible for PGE2 production, is highly upregulated in GBM,
and is associated with tumor growth, poor prognosis, and the ability to mediate pleiotropic
effects that support proliferation, angiogenesis, and immunosuppression [43]. COX-2
and PGE2 are produced by microglia and macrophages, and PGE2 in the TME is linked
to an increased expression of glioma-derived monocyte chemoattractant CCL2/MCP-1,
leading to the active recruitment of TAMs [44]. Previous studies have pointed out that the
COX-2/PGE2 signaling pathway significantly contributes to the M2 macrophage polar-
ization [45]. In particular, the M2 phenotype is promoted on macrophages by PGE2 after
activating the E-series of prostaglandin receptors (EP). About the mechanism involved, the
activation of PI3K/Akt signaling by EP receptors is considered a central node for inducing
M2 macrophage polarization after COX-2 activation [46,47]. If the COX-2/PGE2 axis is
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responsible for M2 shifting, its inhibition can effectively counteract the TMZ effects associ-
ated with its ability to upregulate COX-2, including the phenotypic shift of macrophages
towards M2. The PI3K/Akt signaling block by the COX-2 inhibitor or COX-2 gene silencing
by siRNA could be an interesting aspect to study also in our models.

The current study aimed to investigate mechanisms underlying TMZ resistance by
evaluating the TMZ-induced COX-2 ability to affect the stemness potential and modulate
the TME of GBM. To this purpose, CXB, a COX-2 inhibitor, combined with TMZ, was used
on adherent cells subsequently cultured in GSC medium in the presence of macrophages.
It is known that chemotherapy, increasing the chemoattractant factor production, strongly
induces monocyte recruitment into the tumor which differentiate into M2 and suppress anti-
tumor immunity [48]. Here, further deepening our previous data, we evaluated the CXB
and TMZ combination on the stemness potential of GBM cells and also on the functional
heterotypic interaction of human macrophage cell line U937 with human GBM spheres. We
show evidence that TMZ improved the adherent cell’s ability to generate tumorspheres
as well increase macrophage infiltration. Surprisingly, tumorspheres derived from TMZ-
treated GBM cells released higher amounts of TGF-β1 and IL-10 and were featured by a
higher percentage of CD206-positive cells, supporting a macrophage polarization towards
the M2 phenotype and, thus, an immunosuppressive and pro-tumor microenvironment. Of
note, the COX-2 inhibition, combined with the chemotherapy drug, effectively counteracted
the effect of TMZ both at the level of tumorsphere growth and macrophage infiltration.
Also, the increase in IL-1β secretion along with the simultaneous decrease in TGF-β1, IL-10,
and CD206 levels suggest that the COX-2 inhibition could redirect macrophages towards a
pro-inflammatory, anti-tumor M1 phenotype, opposing the effects of TMZ.

To the best of our knowledge, this is the first study showing the ability of TMZ to
induce the COX-2 level increase in the tumorsphere model and the promotion of the
immunosuppressive microenvironment in the context of resistant GBM cells. These effects
seem to be mediated by the TMZ ability to upregulate COX-2; in addition, the inhibition of
this enzyme counteracted the TMZ-induced effects.

New strategies to counteract the establishment of a GBM immunosuppressive TME
are aimed at repolarizing M2 to the M1 phenotype and reducing the recruitment of tumor-
promoting macrophages by targeting chemoattractant molecules such as OPN. Moreover,
OPN silencing in human GBM primary cultures significantly reduced macrophage recruit-
ment, sensitizing them to CD8+T cell killing and improving the survival of glioma-bearing
mice [11]. Also, OPN has been associated with drug resistance in several cancer types since
it is overexpressed in tumor stem cells, crucial players in resistance [49,50]. OPN, via the
activation of the CD44 receptor, supports the GBM spheres’ growth and tumorigenicity by
the involvement of the PI3K/Akt/mTOR pathway [20,21]. OPN/CD44 crosstalk activation
has been reported to promote the stemness phenotype and radioresistance [41]. Moreover,
OPN silencing by siRNA enhanced the TMZ-induced apoptosis in U251MG cells and
repressed the TMZ-induced NF-κB activation [25].

About the link COX-2/OPN, OPN via α9β1integrin receptor activates the p38 and ERK
signaling pathways which upregulate COX-2 expression and activity in tumor-associated
macrophages, leading to enhanced angiogenesis and tumor growth [51]. It has been
demonstrated that CXB significantly suppressed the ability of OPN to affect human prostatic
carcinoma cell line (PC-3) migration [50]. Also, in the xenograft model, mice fed with CXB
showed an evident reduction in OPN-induced tumor growth [52]. On the other hand,
the COX-2 inhibitor can downregulate OPN levels; the mechanism underlying this effect
could be the blockade of NR4A2 (nuclear receptor subfamily 4, group A, member 2) and
Wnt/β-catenin signaling, important components involved in OPN regulation [53,54].

In the present work, the TMZ treatment of adherent cells positively affected the OPN
and CD44 release in macrophage-infiltrated tumorspheres, sustaining the pro-tumorigenic
status. COX-2 inhibition once again significantly reverted the TMZ effect. In particular,
the COX-2 inhibition, in a drug combination approach with TMZ, reduced the stemness
potential and hindered tumorspheres’ macrophage recruitment, affecting the GBM mi-
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croenvironment. Interestingly, when COX-2 was inhibited, the exogenous PGE2 addition to
adherent cells weakened the drug combination effect, being able to increase the expression
of OPN and CD44 in macrophage-infiltrated tumorspheres. This trend has been observed
in all cellular models, even if in the GL44 primary culture it was not statistically significant.
Overall, despite the higher heterogeneity of primary cultures compared to cell lines, the
trend of the various parameters observed in our experimental conditions is similar between
cellular models, even if not always accurately specular.

Emerging research has demonstrated that, paradoxically, chemotherapy can actively
induce changes supporting tumor progression and resistance. In GBM, TMZ, despite
being a cornerstone treatment with a hopeful initial response, is a critical factor that
causes resistance in most patients, which quickly relapses. Even if further and more
wide-ranging studies are needed to deepen the effects of the COX-2 inhibitor on the TMZ
ability to affect the TME in the context of GBM, our data emphasize the paradoxical and
alarming pro-tumor effect of TMZ, a treatment that while inducing the recruitment of
macrophages, promoted their M2-phenotypic shift, counteracting its efficacy and enriched
tumor population with GSCs, resulting in a drug resistance increase. The most important
contributor to TMZ resistance is MGMT, which can counteract DNA alkylation damage
induced by TMZ. The high methylation status of the MGMT gene promoter region, which
may change throughout treatment, results in a decreased expression of MGMT protein
correlating with a prolonged survival in GBM patients [55–57]. However, low MGMT
levels (deficiency and low expression) are still sufficient to confer resistance to TMZ [58],
suggesting the existence of MGMT-independent mechanisms, such as enhanced antioxidant
systems that contribute to the acquired TMZ resistance [59].

5. Conclusions

The published data support the notion that TAM could be a target whose function
can be pharmacologically influenced to prevent its recruitment and/or pathological ac-
tivation in the TME. In particular, a deeper understanding of the COX-2 functional role
in an immunosuppressive TME could open up new, targeted, and more effective ther-
apeutic approaches beyond those based on TMZ. Here, the collected results emphasize
the paradoxical role of TMZ that counteracts itself efficacy by increasing COX-2 levels
and highlight the crucial role of the COX-2/PGE2/OPN axis as an attractive and potent
therapeutic target for GBM treatment. Experiments of COX-2 gene silencing, aimed at
understanding the contribution of TMZ-induced COX-2 in resistance mechanisms, are
currently ongoing. Moreover, our next goal will be evaluating the drug combination effect
on macrophage infiltration on organoids, complex 3D cell structures that better mimic
the TME, and macrophage-infiltrated organoids, to better define the COX-2 impact in the
TMZ-resistance mechanism.
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