Skip to main content
. 2024 Feb 5;14(3):345. doi: 10.3390/diagnostics14030345

Table 3.

Description of the proposed model architecture.

Model Content Details
Input Image Size 224 × 224 × 3, with 5120 training images and 1280 images in each class
Feature extraction Using EfficientNet with 1280 features
First Convolution Layer 32 filters; size = 3 × 3; ReLu; Padding = ‘Same’
First Max Pooling Layer Pooling Size: 2 × 2
Second Convolution Layer 64 filters; size = 3 × 3; ReLu; Padding = ‘Same’
Second Max Pooling Layer Pooling size: 2 × 2
Third Convolution Layer 128 filters; size = 3 × 3; ReLu; Padding = ‘Same’
Third Max Pooling Layer Pooling size: 2 × 2
Fourth Convolution Layer 256 filters; size = 3 × 3; ReLu; Padding = ‘Same’
Fourth Max Pooling Layer Pooling Size: 2 × 2
Fifth Convolution Layer 512 filters; size = 3 × 3; ReLu; Padding = ‘Same’
Fifth Max Pooling Layer Pooling Size: 2 × 2
Fully Connected Layer 4096 nodes; ReLU
Dropout Layer 50% Neurons dropped randomly
Dense_1 Layer 8320 nodes; ReLu
Dense_2 Layer 516 nodes; ReLu
Output Layer Four nodes; Softmax activation
Optimization Function Adam optimization
Learning Rate 0.001
Loss Function Categorical cross entropy