Table 5.
Paper | Classifier | Best Score (Accuracy) | XAI Method | Dataset |
---|---|---|---|---|
[15] | Support Vector Machines, KNN, MLP | 91.4% | LIME, SHAP | Dementia dataset |
[16] | CNN | 95.4% | HAM, PCR | MRI scans ADNI |
[17] | Graph Neural Network (GNN) | 53.5 ± 4.5% | GNN Explainer | ADNI |
[18] | EfficientNetB0 | 80% | Occlusion Sensitivity Mapping | MRI scans OASIS |
[19] | 3D CNN | - | Saliency Map, LRP | 18F-FDG PET |
[20] | KNN, RF, AdaBoost, Gradient Boosting Bernouli NB, SVM | 91% | DT | Cognitive and and PET images |
[21] | 3D CNN | 76.6% | 3D Ultrametric Contour Map, 3D Class Activation Map, 3D GradCAM | ADNI |
[22] | 3D CNN | 77% | Sensitivity Analysis Occlusion | MRI, PET |
Proposed Method | VGG16, VGG19, DenseNet169, DenseNet201, Ensemble 1 (VGG16, VGG19) Ensemble 2 (DenseNet169, DenseNet20), Proposed model (EfficientNetB3 & CNN) |
96% | Saliency maps, Grad-CAM (Gradient-weighted Class Activation Mapping) | MRI scans OASIS |