Skip to main content
. 2024 Feb 5;14(3):345. doi: 10.3390/diagnostics14030345

Table 5.

Comparison of the proposed method with the state-of-the-art.

Paper Classifier Best Score (Accuracy) XAI Method Dataset
[15] Support Vector Machines, KNN, MLP 91.4% LIME, SHAP Dementia dataset
[16] CNN 95.4% HAM, PCR MRI scans ADNI
[17] Graph Neural Network (GNN) 53.5 ± 4.5% GNN Explainer ADNI
[18] EfficientNetB0 80% Occlusion Sensitivity Mapping MRI scans OASIS
[19] 3D CNN - Saliency Map, LRP 18F-FDG PET
[20] KNN, RF, AdaBoost, Gradient Boosting Bernouli NB, SVM 91% DT Cognitive and and PET images
[21] 3D CNN 76.6% 3D Ultrametric Contour Map, 3D Class Activation Map, 3D GradCAM ADNI
[22] 3D CNN 77% Sensitivity Analysis Occlusion MRI, PET
Proposed Method VGG16, VGG19, DenseNet169, DenseNet201,
Ensemble 1 (VGG16, VGG19) Ensemble 2 (DenseNet169, DenseNet20), Proposed model (EfficientNetB3 & CNN)
96% Saliency maps, Grad-CAM (Gradient-weighted Class Activation Mapping) MRI scans OASIS