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Abstract: MCs are tissue-resident immune cells that strategically reside in barrier organs and respond
effectively to a wide range of stimuli, such as IL-33, a mediator released upon epithelial damage.
Adenosine triphosphate (ATP) accumulates at sites of tissue injury and is known to modulate MC
activities. This study investigated how an inflammatory tissue environment rich in IL-33 modulates
the ATP-mediated activation of MCs. Human primary MCs primed with IL-33 displayed a strongly
increased response to ATP but not ADP. This resulted in increased degranulation, IL-8 release, and
pERK1/2 signalling. Such effects are unique to IL-33 stimulation and not shared by the epithelial
alarmin, TSLP. MC exposure to IL-33 also increased membrane expression of purinergic and ATP-
binding P2X receptors. The use of selective P2X receptor inhibitors identified P2X7 receptor as the
key mediator of the enhanced ATP-induced ERK1/2 signalling and degranulation in IL-33-primed
MCs. Whilst the inhibition of P2X1 and P2X4 receptors had no effect on MC degranulation, inhibiting
these receptors together with P2X7 resulted in further decreased MC-mediated degranulation. These
data therefore point toward the potential mechanisms by which IL-33 contributes to the modulation
of ATP-mediated activation in human MCs.
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1. Introduction

Mast cells (MCs) display a broad spectrum of receptors, through which they respond
to several exogenous and endogenous mediators, resulting in the release of cytokines,
chemokines, growth factors, and/or lipid mediators [1,2]. IgE and anti-IgE, the complement
system, Toll-like receptor ligands, and adenosine triphosphate (ATP) are well known
inducers of MC activation and degranulation [3,4].

ATP, a purine nucleotide fundamental to almost all biological functions and the
ultimate source of energy for cells, is involved in a plethora of metabolic and non-metabolic
functions [5]. At low concentrations (about 10 nM), extracellular ATP, or ATP contained
in vesicles, serves as a neurotransmitter [6]. In inflammatory conditions, epithelial and
endothelial cells release ATP through various means, such as exocytosis, non-specific
release, or through ion channels such as pannexin [7–9]. In healthy tissue, extracellular
ATP is hydrolysed stepwise by CD39 and CD73 to ADP, AMP, and adenosine [10,11]. Both
ATP and its metabolites are key signalling molecules involved in inflammasome activation
and inflammatory cytokine secretion [12].

ATP and ADP can activate purinergic receptors, and ATP is able to activate all seven
members of the P2X receptor family (P2X1, P2X2, P2X3, P2X4, P2X5, P2X6, P2X7) and some
P2Y receptors (P2Y2, P2Y11, P2Y12), while ADP can only activate specific P2Y receptors
(P2Y1, P2Y12, P2Y13) [13,14]. Only three members of the P2X receptor family—P2X1,
P2X4, and P2X7—are expressed and functional in MCs [15,16]. Of these, P2X7 is the main
receptor responsible for ATP-induced MC degranulation [16,17]. Conversely, neither P2X1
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receptor activation nor P2X4 receptor activation induce MC degranulation, although P2X4
engagement can significantly increase IgE-mediated degranulation in mice [17,18]. All three
P2X receptors expressed by MCs promote calcium influx and the activation of intracellular
signalling pathways. The ATP affinity of each receptor differs greatly, ranging from sub-
micromolar concentrations for P2X1 receptor to low micromolar concentrations for P2X4
receptor. In contrast, P2X7 requires ATP concentrations above 100 µM for its activation [15].

Upon tissue trauma, a wide range of alarmins are released from epithelial and endothe-
lial cells, among which the most notable is IL-33, a member of the IL-1 family that was first
described by Schmitz et al. [19]. Since its discovery, IL-33 has been shown to influence sev-
eral inflammatory processes and has been linked to several pathological conditions [20,21].
In MCs, IL-33 promotes a wide range of functions. While IL-33 itself does not induce
degranulation, it promotes the release of several mediators, such as TNF-α, IL-6, MCP-1,
IL-13, and IL-5 [22]. IL-33 also potentiates IgE- and complement-mediated degranulation
and cytokine production, worsening inflammatory conditions and increasing the recruit-
ment of immune cells to the site of inflammation [23]. Conversely, prolonged exposure
to IL-33 leads to a decrease in FcεRI receptor expression and IgE-mediated activation in
MCs [24].

Exposure to ATP itself promotes the release of IL-33 by MCs and other cell types, such
as dendritic cells, keratinocytes, astrocytes, and human bronchial epithelial cells [25–29].
Jordan et al. [30] reported that the co-sensing of ATP and IL-33 potentiates the release of
specific cytokines from mouse bone marrow-derived MCs (BMMCs), boosting COX1/2
activation and prolonging the activation of the TAK1-IKK2-NF-κB signalling pathway,
which results in the production of pro-inflammatory cytokines (i.e., IL-2, IL-4, IL-6, and GM-
CSF), prostaglandins, and thromboxanes. Although a clear link between MC, IL-33, and
ATP in human diseases has not yet been defined, the activation of the TAK1-IKK2-NF-κB
pathway is known to play a role in cancer and autoimmune diseases such as psoriasis and
rheumatoid arthritis [31], diseases in which MC contribution has been investigated [32–34].
Straus et al. [35] observed a 3–6-fold increase in the release of IL-6, TNF-α, and IL-13 in
response to ATP in BMMCs and peritoneal MCs previously sensitized with IL-33.

The aim of our study was to investigate the effect of IL-33 priming on ATP-mediated
MCs activities using primary blood-derived human MCs as a model and to dissect the con-
tribution of the receptors involved. Our findings demonstrate an IL-33-driven enhancement
of ATP- but not ADP-mediated degranulation, cytokine secretion, and signalling in human
MCs that relied on P2X7 engagement. Furthermore, we suggest that an IL-33-dependent
microenvironment amplifies the effects of extracellular ATP, whereas the hydrolysis of
extracellular ATP prevents excessive MC activities.

2. Results
2.1. Human Primary Mast Cells Degranulate upon ATP but Not ADP Stimulation

Formerly, LAD2 MC models have shown that ATP concentrations over 300 µM are
able to induce MC degranulation [16], while ADP stimulation resulted in low-level de-
granulation in rat MCs [36]. We therefore investigated whether ATP and ADP can elicit
similar responses in blood-derived human primary MCs. The MC gating strategy is shown
in Figure S1A. Of the three ATP concentrations studied, only 1000 µM ATP resulted in a
significant increase in MC degranulation, measured through the externalization of CD63
and CD107a [37], (Figure 1A,B) compared to unstimulated cells. IgE/anti-IgE stimulation
was used as a positive control in all the MC activation experiments.

ADP stimulation did not produce a significant increase in MC degranulation at any of
the concentrations studied (Figure 1C,D). Therefore, we confirmed that ATP can trigger
degranulation in human primary MCs, while ADP stimulation exerts no effect.
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Figure 1. Human mast cell degranulation is induced by ATP stimulation. Degranulation in response 
to ATP (A,B), ADP (C,D), IgE and anti-IgE (positive control), or a negative control was measured by 
the externalization of CD63 (A,C) or CD107a (B,D) and analysed using flow cytometry. Data are 
mean ± SEM of n = 3 experiments from individual MC cultures. Statistical differences are indicated; 
**** p < 0.0001 (ordinary one-way ANOVA with Šídák’s post hoc test).  
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Figure 1. Human mast cell degranulation is induced by ATP stimulation. Degranulation in response
to ATP (A,B), ADP (C,D), IgE and anti-IgE (positive control), or a negative control was measured
by the externalization of CD63 (A,C) or CD107a (B,D) and analysed using flow cytometry. Data are
mean ± SEM of n = 3 experiments from individual MC cultures. Statistical differences are indicated;
**** p < 0.0001 (ordinary one-way ANOVA with Šídák’s post hoc test).

2.2. IL-33 Priming Modulates ATP-Induced Mast Cell Activities

Previously, IL-33 has been shown to not only regulate key MC activities such as cell
adhesion, survival, or proliferation but also play an important role in potentiating mediator
release, intracellular signalling, and degranulation induced through CD117, FcεRI, or
complement receptors [22]. The next step was to investigate whether IL-33 priming exerted
any significant effect on promoting ATP- or ADP-induced MC degranulation. Compared
to untreated cells, IL-33 priming resulted in the significant potentiation of ATP-mediated
MC degranulation at a concentration of 100 and 1000 µM (Figure 2A and Figure S1B).
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Figure 2. IL-33 enhances ATP-mediated MC activities. MCs were pre-treated for 24 h with media 
control or IL-33 at the concentrations indicated, followed by activation with IgE/anti-IgE, ATP, or a 
negative control (media). (A) Degranulation was measured by cell staining with an anti-CD63 anti-
body (n = 3 separate experiments from separate MC cultures); (B) effect of treatment with IL-33 5 
ng/mL (n = 3 experiments from separate MC cultures, left) and 50 ng/mL (n = 3 experiments from 
separate MC cultures, right) on ADP-induced MC degranulation measured by anti-CD63 antibody 
staining. (C) IL-8 cytokine secretion by IL-33-treated cells stimulated with ATP and ADP for 8 h (n 
= 6 independent experiments from six individual MC cultures). (D) Comparison of IL-33 and TSLP 
pre-treatments on ATP-induced cell degranulation as measured by CD63 flow cytometry staining 
(n = 4 separate experiments in separate MC cultures). Data are mean ± SEM. Statistical differences 
are indicated; ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 (two-way ANOVA 
with Šídák’s post hoc test). 

Figure 2. IL-33 enhances ATP-mediated MC activities. MCs were pre-treated for 24 h with media
control or IL-33 at the concentrations indicated, followed by activation with IgE/anti-IgE, ATP, or
a negative control (media). (A) Degranulation was measured by cell staining with an anti-CD63
antibody (n = 3 separate experiments from separate MC cultures); (B) effect of treatment with IL-33
5 ng/mL (n = 3 experiments from separate MC cultures, left) and 50 ng/mL (n = 3 experiments from
separate MC cultures, right) on ADP-induced MC degranulation measured by anti-CD63 antibody
staining. (C) IL-8 cytokine secretion by IL-33-treated cells stimulated with ATP and ADP for 8 h
(n = 6 independent experiments from six individual MC cultures). (D) Comparison of IL-33 and TSLP
pre-treatments on ATP-induced cell degranulation as measured by CD63 flow cytometry staining
(n = 4 separate experiments in separate MC cultures). Data are mean ± SEM. Statistical differences
are indicated; ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 (two-way ANOVA
with Šídák’s post hoc test).

Under the same conditions, when IL-33 was used at 5 ng/mL concentrations with
ADP stimulation, no potentiation of MC degranulation was observed for any of the ADP
concentrations tested (Figure 2B). However, when using 50 ng/mL IL-33 priming, ADP
stimulation at 100 µM resulted in significantly increased activation, albeit not to the same
magnitude as ATP-mediated stimulation.

Since we observed IL-33 influencing ATP responses, we subsequently investigated its
influence on the release of IL-8 by priming MCs for 24 h with 50 ng/mL IL-33, followed
by stimulation with different concentrations of ATP (10–1000 µM) and ADP (1000 µM) for
8 h (Figure 2C). IL-33 priming significantly increased the release of IL-8 for all ATP- and
ADP-stimulated cells compared to the untreated cells. These results further confirm the
enhancing effect of IL-33 pre-treatment on ATP-mediated MC activities.

Upon epithelial cell damage, several different mediators are released in the extracellu-
lar compartment. One of the released alarmins, TSLP, shares similar properties with IL-33
and has been shown to promote allergic inflammation and influence MC activities [38].
We therefore questioned if the effect of IL-33 priming on ATP-mediated MC activities is
also shared by TSLP. MCs were primed for 24 h with either IL-33 or TSLP 5 ng/mL, and
then we stimulated the cells using ATP (1000 µM) (Figure 2D). Similar to the previously
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obtained data, IL-33 priming increased ATP-mediated MC degranulation when compared
to the untreated cells, while TSLP priming did not. These findings point toward the distinct
modulatory properties of IL-33 in influencing ATP-mediated activities in MCs.

2.3. IL-33 Priming Modulates the Expression of P2X Receptors

Of the seven P2XRs known to be engaged by ATP, only three are functional in MCs,
namely P2X1, P2X4, and P2X7 receptors [15]. Previously, P2X7 has been shown to play an
important role in MC degranulation and activation [16]. The increased susceptibility of
the IL-33-pre-treated MCs to degranulation could be the result of an increased availability
of P2XRs at the cell membrane. To test this hypothesis, P2X1, P2X4, and P2X7 receptor
expression was measured according to geometric mean fluorescence intensity (GMFI) by
flow cytometry in MCs treated with IL-33 for 24 h and conducting a comparative analysis
with untreated cells. As shown in Figure 3, IL-33 priming resulted in significantly increased
expression of P2X1 at both IL-33 concentrations, while significant upregulation in P2X4
expression was observed only at the IL-33 concentration of 50 ng/mL. However, the
magnitude of the increase was lower than for P2X1. Conversely, P2X7 receptor expression
showed great variability among donors. When a transcriptomic analysis of IL-33 priming
was conducted on the MCs (Figures S2 and S3), IL-33 50 ng/mL had little effect on the
transcript levels of the P2XRs expressed by the MCs. While P2RX7 transcription was
significantly decreased, it was still at a high level. Exposure to IL-33 did increase transcripts
from genes such as CXCL8, IL-5, or IL-13. This suggests that the effect of IL-33 priming
on P2XR expression is likely to occur at a post-translational level over the timeframe
studied here.
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Figure 3. Mast cell P2X receptor expression and modulation by IL-33. (A–C) Representative histogram
indicating P2X1 (A), P2X4 (B), and P2X7 (C) expression upon treatment with media (5 or 50 ng/mL
IL-33 for 24 h). P2X1, P2X4, and P2X7 were stained and analysed by flow cytometry. The dotted
lines indicate cell staining with isotype control antibodies. (D–F) IL-33-treated or untreated MCs
were stained for P2X1 (n = 2), P2X4 (n = 5), and P2X7 (n = 4); the geometric mean of fluorescence
intensity (GMFI) was normalized to the negative control (untreated samples). Data are displayed as
mean ± SEM. Statistical differences are indicated by * p < 0.05 and ** p < 0.01, *** p < 0.001 (one-way
ANOVA with Šídák’s post hoc test).
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2.4. P2X7 Orthosteric Inhibitors Do Not Fully Inhibit the IL-33 Enhancing Effect on
ATP-Mediated Degranulation

To investigate the contribution of the P2X7 receptor to ATP-mediated MC degranula-
tion in general and more specifically to the potentiating effect given by IL-33 pre-treatment,
P2X7 inhibitors were tested in our MC degranulation assay. MCs were primed with IL-33,
incubated with or without orthosteric or allosteric inhibitors, and subsequently stimulated
with ATP. The allosteric inhibitor AZ-11645373 (Figure 4A) led to a significant decrease
in MC degranulation, independent of the IL-33 priming concentration and the concentra-
tions of ATP used. Similar results were obtained using an additional allosteric inhibitor,
AZ-10606120 (Figure 4B). Conversely, the use of two orthosteric P2X7 inhibitors—A438079
(Figure 4C) and A804598 (Figure 4D)—led to a decrease in degranulation only in the MCs
which were not pre-treated before ATP stimulation.
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Figure 4. Inhibition of P2X7 receptor by orthosteric and allosteric ligands in IL-33-treated mast cells.
MCs were left untreated or incubated with IL-33 for 24 h at 5 ng/mL. The MCs were then exposed to
5 µM concentration of the allosteric P2X7 inhibitors AZ-10606120 ((A), n = 4) and AZ-11645373 ((B),
n = 4) and 5 µM concentration of the orthosteric P2X7 inhibitors A438079 ((C), n = 3) and A804598 ((D),
n = 3) for 15 min before subsequent ATP stimulation. Data are mean ± SEM. Statistical differences
are indicated as follows: ns = no significance; * p < 0.05; ** p < 0.01 (one-way ANOVA with Šídák’s
post hoc test).
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Hence, we showed that P2X7 engagement contributes to ATP-mediated MC degranu-
lation. However, P2X7 orthosteric inhibitors do not fully inhibit the IL-33 enhancing effect
on ATP-induced degranulation.

2.5. IL-33 Priming Affects P2X7-Mediated pERK1/2 Signalling

To further characterize the effect of IL-33 priming on ATP-mediated MC activation, we
investigated the changes in pERK1/2 signalling upon stimulation. MCs were primed with
IL-33 and then stimulated with ATP for up to 45 min. When using 10 µM ATP (Figure 5A),
pERK1/2 signalling peaked at 30 min post-stimulation, with 5 ng/mL IL-33 significantly
boosting pERK1/2 signalling compared to the control cells. Increased pERK1/2 signalling
was also observed when MCs were exposed to IL-33 and stimulated with 100 µM ATP
(Figure 5B).
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Figure 5. Effect of the orthosteric P2X7 inhibitor on ERK 1/2 phosphorylation in IL-33-treated MCs
stimulated with ATP. MCs were left untreated or incubated with IL-33 for 24 h at the concentrations
indicated and stimulated with ATP concentrations of 10 µM (A) and 100 µM (B). ERK1/2 phospho-
rylation was measured flow cytometry using the geometric mean of fluorescence intensity (GMFI,
n = 3 separate experiments in separate MC cultures). (C,D) The A438079 P2X7 inhibitor was added
at a concentration of 5 µM to untreated (C) or IL-33-treated MCs (D) 15 min prior to stimulation
with ATP 1000 µM (n = 4 separate experiments from individual MC cultures). Data are mean ± SEM.
Statistical differences are indicated as follows: * p < 0.05, ** p < 0.01, *** p < 0.001 (two-way ANOVA
with Sidak’s post hoc test).

To gain more insight in the dynamics of pERK1/2 signalling upon P2X7 engagement,
we stimulated MCs with 1000 µM ATP for 0, 5, 15, 30, and 45 min with or without the
addition of the orthosteric inhibitor A438079 prior to stimulation (Figure 5C,D). Compared
to lower ATP concentrations, stimulation with ATP 1000 µM resulted in a faster increase
in pERK1/2 signalling, reaching the peak at 15 min post-stimulation. The addition of
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the orthosteric inhibitor significantly abated pERK1/2 signalling at 15 and 30 min post-
stimulation compared to the untreated MCs, regardless of the IL-33 priming concentration.

Our findings suggest that the enhanced pERK1/2 signalling mediated by IL-33 priming
is linked to ATP successfully ligating the P2X7 receptor.

2.6. ATP-Mediated Degranulation in Human Mast Cells Does Not Require P2X1 and P2X4
Receptor Engagement

As the use of P2X7 inhibitors highlighted the importance of P2X7 in ATP-mediated
MC activation, we sought to investigate whether P2X1 and P2X4 receptors might also play
a role in MC degranulation. MCs were pre-treated with 5 ng/mL IL-33 for 24 h, and prior
to stimulation with ATP, the P2X1 inhibitor NF449 and P2X4 inhibitor 5BDBD were applied
for 15 min (Figure 6A).
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Figure 6. The use of P2X1 and P2X4 receptors, alone or in combination, does not affect MC degranula-
tion. MCs were left untreated or incubated with 5 ng/mL IL-33 for 24 h. (A) The MCs were exposed
to NF449 (P2X1 inhibitor) and 5BDBD (P2X4 inhibitor) for 15 min before ATP stimulation at the
concentrations indicated (n = 3 separate experiments). A statistical analysis showed no significance
between the control, stimulated, and IL-33-primed cells. (B) The MCs were exposed to NF449 (P2X1
inhibitor), 5BDBD (P2X4 inhibitor), and A438079 (P2X7 inhibitor) alone or in combination for 15 min
before 1000 µM ATP stimulation at the concentrations indicated (n = 3 separate experiments using
different MC cultures). Statistical analysis showed no significant difference between the untreated
controls and IL-33-primed cells. Data are presented as mean ± SEM. Statistical differences are
indicated; * p < 0.05 (one-way ANOVA with Sidak’s post hoc test).



Int. J. Mol. Sci. 2024, 25, 1730 9 of 17

Unlike the effect observed using P2X7 inhibitors, P2X1 or P2X4 inhibition showed no re-
duction in MC degranulation, independent of the ATP concentration used, or IL-33 priming.

These results further suggest that P2X1 and P2X4 are not significantly involved in
ATP-mediated MC degranulation.

2.7. P2X1 and P2X4 Receptors Affect P2X7 Receptor Function

We have demonstrated that the P2X7, not P2X1 or P2X4, contributes to ATP-mediated
MC degranulation and receptor expression and that these activities are modulated by
IL-33. However, since IL-33 modulates P2X1 or P2X4 expression and have been shown
to modulate P2X7 responses in other cell types [39,40], we investigated whether these
receptors could affect ATP-mediated MC degranulation when acting in concert with P2X7
rather than individually. Therefore, MCs were primed with IL-33 and then incubated with
P2X1, P2X4, and P2X7 inhibitors (NF449, 5BDBD, A438079), alone or in combination, before
being subjected to stimulation with ATP.

As previously observed, the presence of the P2X7 inhibitor, A438079, led to a decrease
in MC degranulation, while the use of the P2X1 (NF449) and P2X4 (5BDBD) inhibitors,
alone or in combination, had no effect (Figure 6B). However, when the P2X1 or P2X4
inhibitors were mixed with the P2X7 inhibitor, MC degranulation was minimal in both
the untreated and IL-33-primed cells. In particular, the combination of the P2X1 and P2X7
inhibitors resulted in the complete inhibition of MC degranulation. However, we did not
observe any significant differences between the untreated and IL-33-primed cells. Thus,
our findings suggest that the P2X1 and P2X4 receptors exerted efflux and influx influences
on P2X7 receptor activation, irrespective of the IL-33 priming concentration used.

3. Discussion

Our study expands the current knowledge on the role of P2X receptors in human
MC activation and their contribution to, and regulation of, ATP-mediated degranulation
through describing experiments involving a IL-33 priming model. We have shown that high
ATP concentrations lead to MC degranulation, which is in line with the results published in
a previous study [16] wherein the stimulation of human LAD2 cells induced degranulation
at similar levels. Our results also align with the findings obtained by Gao et al. [41], who
showed that while ADP can potentiate degranulation in the LAD2 cell line, in the presence
of complement or antigenic stimulation, ADP alone has no effect.

IL-33 exerts an important influence on a broad range of biological processes related
to inflammatory conditions such as promoting the release of pro-inflammatory cytokines
and chemokines [42]. Our results demonstrate the influence of IL-33 in potentiating ATP-
mediated MC activities, namely degranulation, IL-8 release, and pERK1/2 signalling. These
results are consistent with those of previous studies that have reported increased MC ac-
tivation after IL-33 priming upon IgE or complement stimulation [24,43]. In contrast, the
simultaneous administration of IL-33 and ATP showed no additive effect on mouse BMMC
degranulation, suggesting the importance of sequential exposure [30]. IL-33 priming in-
duces IL-8 cytokine production at lower concentrations of ATP compared to degranulation
(10 µM versus 100 µM, respectively). We speculate that this discrepancy is due to two
separate causes. First, IL-33 produces an increased release of IL-8, which can be boosted by
activation [44], as also observed in our model using both IgE/anti-IgE and ATP.

Second, MC IL-8 release can occur independently of degranulation [45] or the need for
a different dose, as observed when using IgE/anti-IgE, Substance P, or other stimuli [46,47].

Consequently, these results suggest that even low ATP concentrations can initiate
localized inflammatory conditions, as IL-8 acts as a potent chemotactic agent for granu-
locytes and other immune and non-immune cells [48]. Furthermore, in neutrophils, IL-8
promotes the direct activation and release of neutrophil extracellular traps [49] and serine
proteases [50], which could contribute to inflammatory responses. In fact, IL-8 modulation
is known to play a role in diseases such as chronic obstructive pulmonary disease (COPD),
cystic fibrosis (CF), and COVID-19 [51–53].
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While IL-33 priming significantly modulated ATP-mediated MC activation, it did not
affect ADP-mediated stimulation. Previously, ADP has been found to enhance antigen-
mediated MC degranulation in rat MCs through the activation of the P2Y13 receptor, while
exposing P2Y1 to ADP alone has been shown to lead to intracellular calcium mobiliza-
tion [36]. It therefore appears that ADP only acts synergistically when MCs have been
previously exposed to direct activation, but ADP cannot induce MC degranulation in
human MCs alone. Also, in combination with IL-33, the effect of ADP on MC degranulation
is minimal.

TSLP and IL-33 are alarmins released by damaged or necrotic epithelial and endothelial
cells, affecting MC functionality in inflammatory conditions [24]. Our results therefore
show that the effects of IL-33 and TSLP vary in their specific modulatory activities on
ATP-mediated MC activation.

While IL-33 priming increased the membrane expression of the P2X1 and P2X4 re-
ceptors, as well as, to a certain extent, that of P2X7, we did not observe any significant
increase in transcription. These results contrast with the ones of Jordan et al. [30], who re-
ported that IL-33 upregulated P2X4 and P2X7 transcriptional expression in mouse BMMCs.
These results not only highlight major differences between human and mouse MC sys-
tems but also suggest that IL-33 modulates the membrane expression of P2X receptors
post-transcriptionally, possibly affecting their trafficking to the cell membrane.

The use of orthosteric and allosteric P2X7 receptor inhibitors proved that ATP-mediated
MC degranulation occurs mainly through P2X7 engagement, as their use significantly re-
duced MC degranulation. These results further establish P2X7 as the main receptor for
ATP-mediated degranulation in humans, confirming previous findings obtained using
MCs from different tissues and species or cell lines such as the LAD2 cell line, mouse
BMMCs, mouse peritoneal and meningeal MCs, mouse mastocytoma cells (P815), and MCs
from rat spinal cords [16,17,30,54–56]. The use of two different P2X7 inhibitor classes also
revealed variable effects of IL-33 priming, possibly elicited by conformational changes,
the modulation of receptor crosstalk, or P2X7 trafficking. Further studies are needed to
elucidate the underlying mechanisms of the IL-33-mediated modulation of P2X7 receptor
function.

The activation of P2XRs leads to increased downstream signalling through a wide
array of pathways, namely the ERK1/2, STAT3, NF-κB, Sarcoma Tyrosine Kinase, Protein
Kinase C, MAPK, and Phosphoinositide 3-Kinase pathways [57–59]. We demonstrated that
different ATP concentrations promote signalling through the ERK1/2 pathway. Of note,
the observed increased activation using ATP concentrations less than 100 µM suggests the
involvement of P2XRs other than P2X7, since concentrations over 100–300 µM are required
to elicit its activation [16]. When investigating the effect of IL-33 priming on pERK1/2
signalling, we showed that only low IL-33 concentrations potentiate the signalling effect.

Allosteric inhibitors effectively suppressed IL-33-primed ATP-mediated MC degranu-
lation, while orthosteric inhibitors did not significantly reduce ATP-mediated degranulation
through the P2X7 receptor. While allosteric inhibitors exert their function outside of ATP
binding sites by interfering with ATP binding via conformational receptor changes [60,61],
orthosteric inhibitors need to occupy all three ATP binding pockets on the P2X7 receptor to
produce full receptor inhibition [59,62], as ATP occupancy fully stabilizes the P2X7 open
state [63]. Since IL-33 produces a modulation in P2X7 receptor membrane expression,
this may result in the need for increased concentrations of orthosteric inhibitors to fully
block all available receptors, ultimately failing to fully inhibit ATP activation at equivalent
doses. Conversely, allosteric inhibitors require only one molecule to fully inhibit P2X7
activation, and could therefore be less affected by IL-33 receptor modulation compared
to orthosteric inhibitors. The use of the orthosteric A438079 P2X7 inhibitor significantly
reduced P2X7-mediated pERK1/2 signalling, regardless of IL-33 priming, unlike the effect
observed in MC degranulation, hence suggesting that ATP-mediated degranulation can be
both dependent and independent of ERK1/2 activation, depending on the circumstances
and the activation of other receptors such as P2X1 and P2X4.
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Furthermore, we demonstrated that P2X1 and P2X4 have a potential effect on ATP-
dependent P2X7 receptor activation, since the use of P2X7 inhibitors in combination with
either P2X1 or P2X4 inhibitors further inhibited ATP-mediated degranulation, with the
highest inhibition being achieved when using P2X1 and P2X7 inhibitors simultaneously.
However, priming with IL-33 did not substantially modify the observed inhibitory re-
sponses, suggesting that IL-33 preferentially modulates the P2X7 receptor activities in-
vestigated. These findings further outline the possible importance of P2X1 and P2X4 in
MC activation and in other tissues and species, since other authors have demonstrated
their contribution in calcium influx and the P2X4-mediated enhancement of IgE-mediated
degranulation in BMMCS [16,17,64].

However, it is important to acknowledge the limitations of our study. Donor hetero-
geneity in the ATP responses among the different MC cultures posed technical challenges,
as did the limited number of cells generated per each cell culture. Furthermore, MCs
cultured from blood haematopoietic progenitors may differ in receptor expression, granule
composition, phenotype, and sensitivity to stimulation compared to tissue MCs. How-
ever, tissue MCs themselves exhibit high tissue-specific morphological and functional
heterogeneity [65].

In conclusion, our results reveal the distinctive modulatory properties of IL-33 priming
on ATP-mediated MC activation, degranulation, intracellular signalling, and cytokine
release in human primary MCs, corroborating the data observed in other MC models.
Additionally, our results underscore the significant role of the P2X7 receptor in modulating
MC activities, hinting at its possible role in inflammation.

4. Materials and Methods
4.1. Generation of Human Blood-Derived Mast Cells

Human peripheral blood mononuclear cells (PBMCs) were isolated from leukocyte cones
as previously described [66,67]. Briefly, leukocyte cones were obtained from the National
Health Service Blood and Transplant blood bank (Manchester, UK) from 58 anonymous healthy
volunteers who gave informed consent for their donated samples to be used for research
purposes, as per the protocol approved by the University of Manchester Research Ethics
Committee (UREC ref 2018-2696-5711). PBMCs were isolated using Ficoll-Paque (GE healthcare,
Amersham, UK) density gradient centrifugation, and CD117+ progenitors were isolated by
positive magnetic selection by using the MACS CD117 microbead kit (Miltenyi Biotec, Bisley,
UK) following the manufacturer’s instructions.

Isolated PBMCs were cultured for 4 weeks in media supplemented with 0.5% BSA
Fraction V (Gibco, New York, NY, USA), 1% of Insulin transferrin (Gibco, New York, NY,
USA), and 100 µg/mL Penicillin–Streptomycin (Sigma-Aldrich, Gillingham, UK) contain-
ing 100 ng/mL of human Stem Cell Factor (GenScript, Oxford, UK), 50 ng/mL of IL-6
(GenScript, Oxford, UK), and 100 ng/mL of IL-3 (PeproTech, Cranbury, NJ, USA). At the
end of week 4, the culture media were progressively substituted with media devoid of
IL-3. After 8 weeks, the cells were tested for functional maturity using IgE/anti-IgE stim-
ulation, and the activation markers CD63 (cloneH5C6, BioLegend, San Diego, CA, USA)
and CD107a (clone H4A3, BioLegend, San Diego, CA, USA) were used as a proxy for
degranulation and measured via flow cytometry.

4.2. Flow Cytometric Analysis of Mast Cell Degranulation

Human MCs were seeded at a 106 cells/mL concentration and treated for 24 h with
either 5 ng/mL or 50 ng/mL of IL-33 (PeproTech, Cranbury, NJ, USA), or with 5 ng/mL
TSLP (PeproTech, Cranbury, NJ, USA). The MCs were then washed and subsequently
stimulated with ATP (ThermoFisher, Vilnius, Lithuania) at concentrations of 10 µM, 100 µM,
and 1000 µM, or with ADP (Sigma-Aldrich, Gillingham, UK) at concentrations of 10 µM,
100 µM, and 1000 µM, for a period of 1 h without IL-33 pre-treatment. For the degranulation
assay using IgE/anti-IgE stimulation, the cells were treated overnight with 1 µg/mL of
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human IgE (Merck, Gillingham, UK) and stimulated with 1 µg/mL of goat anti-human
anti-IgE (SeraCare, Milford, MA, USA) for 1 h.

For the P2X inhibition experiments, 5 µM of either NF449 (Tocris, Abingdon, UK),
5-BDBD (Sigma-Aldrich, Gillingham, UK), A438079, A839977, AZ-10606120, or AZ-11645373
(Alomone labs, Jerusalem, Israel) inhibitors were dispensed into IL-33-pre-treated cells and
washed cells for 15 min, and the cells were subsequently stimulated with ATP.

The cells were then washed in FACS buffer (PBS, 2% FCS, 2 mM EDTA) and incubated
with CD63, CD107a, and CD117 (clone A3C6E2) antibodies, with 5 µg/mL of Fc receptor
blocking reagent being added (BioLegend, San Diego, CA, USA), along with fluorescence
minus one (FMO) as a control. The cells were then stained with Live/Dead™ blue reagent
(Thermo Fisher, Eugene, OR, USA), washed using PBS, and fixed with 4% formaldehyde
solution (Thermo Fisher, Eugene, OR, USA). The cells were analysed on an LSR-II flow
cytometer and subjected to a subsequent analysis conducted using FlowJo® software
(BD Biosciences, Wokingham, UK).

4.3. Flow Cytometric Analysis of P2X Expression

Human MCs were seeded at a concentration of 106 cells/mL and treated for 24 h with
5 ng/mL or 50 ng/mL IL-33. The cells were then washed in FACS buffer (PBS, 2% v/v FCS,
2 mM EDTA) and incubated with either anti-P2X1 (1 mg/mL) (Cat# APR-022; isotype rabbit
IgG1), anti-P2X4 (1 mg/mL) (Cat# APR-024; isotype rabbit IgG1), or anti-P2X7 (1 mg/mL)
(Cat# APR-008; isotype rabbit IgG1; Alomone labs, Jerusalem, Israel) primary antibodies,
together with 5 µg/mL of Fc block. The cells were then washed and incubated with Alexa
Fluor 488 secondary antibody (2 mg/mL) (Thermo Fisher, Eugene, USA). The cells were
washed with PBS before and after cell staining with live/dead reagent and subsequently
fixed with 4% formaldehyde solution. The cells were analysed on a LSR-II flow cytometer
and subjected to a subsequent analysis conducted using FlowJo® software version 10.8.1.

4.4. Flow Cytometric Analysis of ERK1/2 Phosphorylation

Human MCs were seeded at a 106 cells/mL concentration and treated with either 5
ng/mL or 50 ng/mL IL-33. The cells were washed, rested for 2 h in media devoid of IL-6,
and subsequently stained with Live/Dead™ reagent. The cells were then activated for
either 0, 1, 5, 10, 15, 30, or 45 min by ATP or BzATP (Sigma-Aldrich, Gillingham, UK) at a
concentration of 10 µM or 100 µM. For when the P2X7 inhibitor A438079 was used, the cells
were treated with 5 µM of the inhibitor for 15 min prior to stimulation. The reaction was
stopped at the appropriate time by adding 1.6% formaldehyde solution diluted in PBS and
permeabilised in 100% Methanol. The cells were then washed again and incubated with
anti-phospho-ERK1/2 (pERK1/2, clone MILAN8R; isotype mouse IgG1; Thermo Fisher,
Eugene, USA), together with Fc receptor blocking reagent. The cells were analysed on a
LSR-II flow cytometer and subjected to a subsequent analysis conducted using FlowJo®

software version 10.8.1.

4.5. Cytokine Release Measurement Using Cytometric Bead Array (CBA)

Measurements of the number of released IL-8 cytokines were performed using CBA
on supernatants obtained from human MCs seeded at a 106 cells/mL concentration and
treated for 24 h with 5 ng/mL or 50 ng/mL of IL-33. The cells were then washed and
subsequently stimulated with ATP concentrations of 10 µM, 100 µM, and 1000 µM or
with ADP 1000 µM for 8 h. For IgE/anti-IgE stimulation, the cells were treated overnight
with 1 µg/mL of human IgE and stimulated with 1 µg/mL of goat anti-human anti-IgE
for 1 h. For CBA, the human IL-8 Flex Set Kit was used according to the manufacturer’s
instructions (BD Biosciences, Wokingham, UK). An analysis was carried out using a BD
FACSVERSE™ cytometer, and the cells were analysed using FCAP Array™ v3.0.1 Software
(BD Biosciences, Wokingham, UK).
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4.6. RNA Sequencing

MCs (106 cells/mL) from individual donors were treated with IL-33 50 ng/mL or left
untreated for 24 h at 37 ◦C and 5% CO2 in culture media devoid of IL-6. After treatment,
mRNA was extracted using the RNA Easy Micro Kit (Qiagen, Tokyo, Japan) according to
the protocol supplied. Extracted RNA was analysed using an Illumina HiSeq4000 sequencer
(Illumina, San Diego, CA, USA) [68]. Data pre-processing and alignment were carried out
by the Genomics Core Facility of the University of Manchester. The aligned reads were
then further analysed by the Bioinformatics Core Facility of the University of Manchester,
who used the R DESeq2 package [69], with significance set at an adjusted p value of <1e-04
(false discovery rate Benjamini–Hochberg method) for differentially expressed genes.

4.7. Statistical Analysis

Data were analysed using a one-way ANOVA with Šídák’s post hoc comparison tests
when studying the responses to different ATP/ADP concentrations or IL-33 pre-treatment.
A two-way ANOVA with Šídák’s post hoc test was used when studying the combined
effect of cytokine pre-incubation and ATP/ADP responses, as indicated. Significance for
the ANOVAs was set at p < 0.05. The differential expression of RNA sequencing data was
calculated using the Wald test, and significance was set at a false discovery rate adjusted
p of < 1e-04. All data were processed and analysed using GraphPad prism software v9,
and significant differences are indicated as follows: * p < 0.05, ** p < 0.01 *** p < 0.01,
and **** p < 0.0001. Data are presented as mean ± SEM of independent experiments using
individual MC cultures.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25031730/s1.
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