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Abstract
The simulation of human intelligence in robots that are designed to think and learn like humans is known as
artificial intelligence (AI). AI is creating a world that has never been seen before. By applying AI to do jobs
that would otherwise take a long time, humans have the chance to improve our planet. AI has great potential
in genetic engineering and gene therapy research. AI is a powerful tool for creating new hypotheses and
helping with experimental techniques. From the previous data of a gene model, it can help in the detection
of heredity and gene-related disorders. AI developments offer an excellent possibility for rational drug
discovery and design, eventually impacting humanity. Drug development and discovery depend greatly on
AI and machine learning (ML) technology. Genetics is not an exception to this trend, as ML and AI are
expected to have an impact on nearly every aspect of the human experience. AI has significantly aided in the
treatment of various biomedical conditions, including genetic disorders. In both basic and applied gene
research, deep learning - a highly versatile branch of AI that enables autonomous feature extraction - is
increasingly exploited. In this review, we cover a broad spectrum of current uses of AI in genetics. AI has
enormous potential in the field of genetics, but its advancement in this area may be hampered in the future
by a lack of knowledge about the accompanying difficulties that could mask any possible benefits for
patients. This paper examines AI's potential significance in advancing precision genetic disease treatment,
provides a peek at its use in genetic clinical care, examines a number of existing AI and ML uses in genetics,
provides a clinician primer on critical aspects of these technologies, and makes predictions about AI's
potential future applications in genetic illnesses.

Categories: Genetics, Medical Education, Nuclear Medicine
Keywords: genetic disease, drug repurposing, artificial neural networks, deep learning, machine learning, artificial
intelligence

Introduction And Background
The concept of creating robots is often considered the starting point for artificial intelligence (AI). Back in
1921, in his play "R. U. R" (Rossum's Universal Robots), writer Karel Capek introduced the term “robot,”
which is derived from the Czech word “robota.” In the context of the play, it referred to a factory where
bioengineered machines were used for labor under duress. Jumping forward to the middle of the 20th
century, the term “robot” became immortalized in contemporary science fiction, thanks to Isaac Asimov's
collection of short stories. Interestingly, even though the term was popularized relatively recently, the idea
of humanoid automatons dates way back to the third century in China. The U.S. Department of Defense
quickly grew interested in the numerous challenging mathematical problems that computers began to tackle
in the following years. A new golden era then began with the use of logistic data mining and medical
diagnosis following a period of slowdowns in the 1980s. Instruments with higher computational capacities
were created. Today, AI is regarded as an area of engineering that employs fresh ideas and creative
approaches to tackle complex problems. Computers may one day be as clever as people if advancements in
technological speed, capacity, and software coding are made in the future. One cannot ignore the crucial
role that modern cybernetics has played in the advancement of AI [1].

An AI system, sometimes known as an AI system, is a sophisticated piece of hardware or software that uses
AI concepts to carry out activities that would typically need human intelligence. A machine learning (ML)
system that was used to identify diabetic retinopathy in images of the retinal fundus received the first Food
and Drug Administration (FDA) approval for an autonomous AI system in 2018 in a variety of medical
sectors. Genetic engineering and AI have brought a new age of opportunities in biotechnology and
customized medicine. AI contributes to predicting and optimizing genome editing methods such as CRISPR-
Cas9. ML algorithms can analyze large-scale genetic sequence datasets, which can then be used to steer the
development of more accurate and effective genome editing technologies by predicting probable off-target
consequences [2]. Contrary to the previous generation of AI systems, which relied on the development of
solid decision rules and the curation of medical information by specialists, more recent AI research has used
ML techniques, which can take complicated interactions into consideration. Basic ML algorithms can be
generally divided into supervised and unsupervised algorithms based on the types of tasks they are intended
to accomplish. In order for supervised ML techniques to function, a large number of "training" instances
must be gathered, each of which contains inputs (such as fundus images) and the required output labels

1 2

 
Open Access Review
Article  DOI: 10.7759/cureus.52035

How to cite this article
Vilhekar R S, Rawekar A (January 10, 2024) Artificial Intelligence in Genetics. Cureus 16(1): e52035. DOI 10.7759/cureus.52035

https://www.cureus.com/users/559352-rohit-s-vilhekar
https://www.cureus.com/users/376126-alka-rawekar
javascript:void(0)
javascript:void(0)


(such as the presence or absence of diabetic retinopathy). The algorithm learns to create the appropriate
output for a given input on new cases by examining the patterns in all of the labelled input-output pairs. The
recent renaissance in AI has, to a large extent, been driven by the successful application of deep learning
(DL), which involves training an artificial neural network (ANN) with many layers (that is, a 'deep' neural
network) on huge datasets, to large sources of labelled data [3]. In genetics, AI refers to using sophisticated
computational methods to analyze and interpret genetic data. This multidisciplinary discipline uses AI to
decipher genetic data and provide academics and medical professionals with a better understanding of the
complicated functions of the genome. By creating algorithms that best represent a set of data, ML focuses on
the learning component of AI. ML employs subsets of data to produce algorithms that may use innovative or
unconventional combinations of features and weights that cannot be deduced from first principles, in
contrast to classical programming, in which an algorithm may be explicitly implemented using known
features [4]. ML offers the potential to improve the accuracy and reliability of echocardiography, which is
central to modern diagnosis and management of heart disease [5]. AI is thought to have human-like
qualities displayed by machines. When a computer exhibits cognitive behavior similar to that of humans,
such as learning or problem-solving, this phrase is employed [6]. The expanding scale and inherent
complexity of biological data have encouraged a growing use of ML in biology to build informative and
predictive models of the underlying biological processes. Precision medicine and "superhuman" powers are
frequently linked to the rise of AI in medicine. At the same time, it is frequently forgotten that routine tasks
make up a significant portion of a physician's day-to-day work and that assigning those tasks to AI would
free up human workers' time for higher-value tasks that typically call for human qualities such as creativity,
cognitive insight, meaning, or empathy [7]. AI in the field of computer science strives to replicate human
reasoning, learning, and knowledge storage. Exciting possibilities exist for using medical imaging more
effectively and efficiently, thanks to the potential new AI capabilities [8].

Review
Methodology
We looked up the Central Database and Medline using the Web of Science and PubMed, respectively. The
keywords used in the search were “artificial intelligence,” “machine learning,” “deep learning,” “virtual
screening,” “artificial neural networks,” “quantitative structure-activity relationship,” “drug repurposing,”
“AI and ML”, “genetics disease,” and “genetics.” Reviewing the papers' references, we also sought further
studies. These computerized searches identified papers, and the bibliographies of those studies were
reviewed for relevant citations (Figure 1).
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FIGURE 1: PRISMA flowchart of search strategy
Adopted from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Genome sequencing by artificial intelligence
AI has dramatically improved the process of genome sequencing, which is figuring out the nucleotide order
in a person's deoxyribonucleic acid (DNA). This is how AI aids in the sequencing of genomes. Because the
majority of hospitals have begun to incorporate medical electronic records into their patient care
operations, healthcare data are now more easily accessible through computers than through any other source
[9]. The patterns of patient health trajectories can be learned by an ML algorithm. Using information that
goes well beyond the particular doctor's practice experience, this facility can assist doctors in accurately
anticipating future events [10]. Working from crystallographic data collected by Rosalind Franklin and
Maurice Wilkins, Watson and Crick famously determined the three-dimensional structure of DNA in 1953.
This work contributed to a conceptual framework for both DNA replication and encoding proteins in nucleic
acids. However, it took some time before scientists were able to "read" or sequence DNA. Strategies used to
determine the sequence of protein chains did not appear to be easily transferable to nucleic acid studies
because DNA strands were much longer and comprised fewer, more comparable units than protein
molecules. It was necessary to establish new strategies [6]. More than 1,800 gene therapy clinical trials have
been approved globally, either currently ongoing or completed. The most frequently employed gene transfer
vehicles in clinical studies have been adenoviral vectors, retroviral vectors, and bare plasmids [11].
Ribonucleic acid sequencing (RNA-Seq), a recently developed transcriptome profiling technique, uses deep-
sequencing technology. Studying eukaryotic transcriptomes with this technology has already led to changes
in our knowledge of their size and complexity. Additionally, RNA-Seq provides a significantly more precise
way to determine the quantities of transcripts and their isoforms than alternative methods. he RNA-Seq
method, along with its real-world applications and the progress achieved in defining different eukaryotic
transcriptomes to date, is a promising method and is changing the way we think about gene expression,
revealing complex biological processes and offering insightful information about a wide range of subjects
such as environmental science, agriculture, and medicine [12]. Retrospective studies suggest that more
complex and precise prognostic models can be built with raw data from medical imaging. Large integrated
health systems have already used simple ML models to automatically identify hospitalized patients who are
at risk for transfer to the intensive care unit [10]. For a long time, computational tools have been crucial to
drug discovery and design, which has changed the entire drug design process. Traditional computational
approaches still have a lot of drawbacks, such as time costs, computational costs, and reliability. All of these
computational drug design barriers could be eliminated by AI, and, as a result, computational methods could
play a bigger part in drug development [13]. The ML strategy includes cross-validation, feature selection
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using the information gain method, merging three separate algorithms, and a majority vote for the final
scoring [14]. Some applications of AI genome sequencing are mentioned in Table 1.

Aspect Description

1. Accelerated sequencing AI shortens the time and expense associated with genome sequencing.

2. Error reduction AI decreases errors, increasing the accuracy of genome sequencing.

3. Variant identification AI swiftly and correctly pinpoints genetic variations related to diseases or traits.

4. Personalized medicine AI uses genomic data analysis to personalize medicines based on each patient's genetics.

5. Population studies Large-scale datasets are analyzed using AI to provide insights about population-level genetic variants.

6. Structural variation analysis Large-scale genomic rearrangements and structural changes can be found with the help of AI.

7. Data integration AI combines clinical, environmental, lifestyle, and genomic data to provide thorough insights.

8. Scalability AI makes it possible to scale up sequencing operations and handle enormous genomic datasets.

9. Ethical considerations Sensitive genomic data storage and dissemination provide ethical difficulties.

10. Regulatory compliance AI ensures that AI-driven sequencing complies with regulatory requirements and protects user data.

TABLE 1: AI-powered genome sequencing aspects
AI, artificial intelligence

Utilizing the drug design approach, this technology can be applied to the progress of genetics. We can make
significant gains if we put in more labor and time. The high-throughput next-generation sequencing (HT-
NGS) techniques were chosen as the 2007 method of the year because they offer new possibilities and have a
significant impact on mammalian genomics research. The route to gaining acceptability for these
revolutionary technologies, however, was not a straightforward one. The initial step of the HT-NGS
technique was using a sensitive charge-coupled device (CCD) camera to find the following fluorescently
tagged base (reversible terminator) in the lengthening DNA chain. This was carried out simultaneously on a
large number of DNA samples on DNA chips that were linked to either beads or a planar substrate, therefore
reducing reaction volumes in a miniature microsystem. The dye was removed, and the terminator was
changed into a regular nucleotide in the following step. To determine the following base in the sequence,
this cycle and technique were repeated. The concept outlined in this application is somewhat similar to that
employed in the so-called next-generation devices currently being marketed by firms like Roche, Illumina-
Solexa, Application binary interface (ABI), Helicos, and others [6].

Proteomics is a new category of "omics" that has grown quickly, particularly in the pharmaceutical industry.
Marc Wilkins coined the term “proteome” in 1995. The study of proteins' relationships, biological functions,
makeup, and architectures is known as proteomics. In comparison to genomics, proteomics offers a greater
grasp of the composition and operation of the organism [15]. In other treatment fields, neurological illnesses
predominate by a wide margin over diseases. However, due to lengthy timetables and high attrition rates,
discovering medications for illnesses of the central nervous system (CNS) continues to be the most difficult
area of drug development. AI and ML have emerged as vital tools to derive relevant insights and enhance
decision-making in drug development as a result of the enormous growth of biomedical data made possible
by cutting-edge experimental methods [16]. Any organism's ability to develop and survive depends on its
essential genes. To reduce the amount of resources needed for essentiality assays, the ML strategy is a
supplement to the experimental approaches. Previous research has shown that in order to improve
prediction, it is necessary to build a solid gold standard that serves as the class label for the train data. This
will improve the generalizability of prediction models across species. Findings also indicate that detecting
conditionally essential genes is a serious weakness of the ML approach [17]. Overall, the proteomics
workflow has not changed much over the past 20 years despite orders of magnitude increases in data
resolution, accuracy, sensitivity, and performance. Proteins are broken down by enzymes into peptides,
which are then separated by chromatography, ionized by electrospray (ES), and mass-analyzed before being
fragmented. The experiment's main goal is to detect and measure as many of the eluting peptides as we can.
Additionally, data completeness is crucial, particularly for ML applications. Numerous acquisition strategies
are mentioned in Table 2, each with a particular trade-off between speed, resilience, quantitative
correctness, and the depth of proteome coverage (percent of the expressed proteome collected). Peptides
from various experimental states are isotopically encoded using chemical labelling techniques, and the
patterns of "reporter ions" are used to quantify the differences between them. Proteomics is a multi-step
process that requires meticulous control at each stage to prevent non-biological influences from interfering
with protein expression and interaction. Laboratory tests can be used to study cells, DNA, or tiny molecules,

2024 Vilhekar et al. Cureus 16(1): e52035. DOI 10.7759/cureus.52035 4 of 9

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


but proteins are the class with the greatest number and frequency of assays, which reflects their crucial
importance in medicine. These facts also point to the enormous medical potential of novel protein-based
biomarkers. Furthermore, enzymatic tests or immunoassays are frequently used in clinical assays to examine
a particular target. The ability to quantify several proteins simultaneously and with considerably higher
specificity is one promise of mass spectrometry (MS)-based proteomics. However, because of conceptual
and technological constraints, this promise is just now beginning to be fulfilled [18]. Different acquisition
methodologies are used in the field of AI genome sequencing to improve capabilities, increase accuracy, and
expand the applications of genomic data analysis given in Table 2.

Acquisition strategies Description

Partnerships and

collaborations

Access to large and varied genetic datasets can be gained through forming alliances and working together with academic institutions, biotechnology businesses, and healthcare organizations. These kinds

of partnerships make it easier to develop and validate AI models more broadly.

Mergers and acquisitions
Businesses in the AI and genomics industries may merge or buy other companies to pool resources and expertise. Fusing AI technology with already existing genome sequencing tools can spur innovation

and produce all-encompassing solutions.

Data licensing and sharing
Large-scale genomic dataset acquisition and curation are areas of expertise for some organizations. By granting licenses or sharing these datasets with AI-focused businesses, strong machine learning

models can be developed and trained, improving the precision and applicability of genetic investigations.

In-house data generation
Businesses that leverage AI to drive genomic sequencing may make investments in internal data production resources. This gives more control over the caliber and variety of the information used to train

AI models since it entails directly gathering, processing, and analyzing genomic data.

Strategic alliances with

sequencing platforms

AI-focused businesses are able to directly incorporate their algorithms into the sequencing workflow by forming strategic agreements with DNA sequencing platform suppliers. This partnership makes it

possible to analyze and understand data in real time, which expedites the process of sequencing a genome.

Crowdsourcing and citizen

science initiatives

Including the public in citizen science or crowdsourcing projects can be a useful acquisition method. Encouragement of individuals to share their genomic data for study enables AI-powered platforms to

access a larger and more varied pool of genetic data.

Investment in research and

development

By allocating resources toward internal research and development, organizations can foster innovation in AI algorithms tailored for the interpretation of genomic data. This tactic aids in the development of

proprietary technologies and keeps one ahead of the curve in the field of genomics and AI convergence.

Open-source collaboration
Collaboration and information sharing are encouraged by using or contributing to open-source initiatives in the AI and genomics sectors. Through pooled knowledge, open-source projects offer a platform

for the creation and enhancement of AI algorithms for genome sequencing.

Clinical trial collaborations
Clinical genetic data can be accessed through working with pharmaceutical companies and clinical trial activities. Real-world patient data can be used to enhance and test AI applications in genome

sequencing, leading to more accurate and therapeutically meaningful outcomes.

Global expansion and

market access

AI-powered genome sequencing firms are able to collect a vast array of genetic variations by expanding their operations worldwide and acquiring access to varied populations. This tactic improves the AI

models' resilience and generalizability to various racial and geographic groups.

TABLE 2: Some acquisition strategies along with brief descriptions
AI, artificial intelligence

Precision making in genome
Our world is experiencing a technological revolution that is being fueled by ever-increasing computational
capacity. High-throughput computation, high-throughput genomics, and “big data” resources from
biobanking have grown in significance for genetics research. Recently, the use of precision medicine has
gained much support. In order to maximize individual therapy, it centers on the unique patient, taking into
consideration genetic, biomarker, phenotypic, or psychological aspects [19]. The Online Mendelian
Inheritance of Man estimates that roughly 4000 genes have mutations that can cause phenotypes [20].

The last 10 years have seen a significant increase in investment in techniques to promote precision
medicine, leading to new treatments, increased knowledge of disease mechanisms, and, ultimately, disease
prevention. Precision medicine emphasizes finding the best strategies and individualized care based on a
person's genetic, environmental, and lifestyle characteristics. The results of the Human Functional
Genomics Project (HFGP), which focused on 500 healthy adult individuals, provide indisputable proof of
human biological variety in both health and disease. This has been well demonstrated by numerous studies
using immune cells (cytokines) as an endpoint, demonstrating that cytokine types and amounts rely on
environmental factors (such as the time of year), genetic background, and intestinal microbiota
composition. In addition, the most recent research from the HFGP revealed that 11 distinct host variables
jointly accounted for up to 67% of inter-individual variation in the production of activated cytokines in
healthy people [21]. With patient-level AUROCs (The AUROC is calculated as the area under the ROC curve)
of 0.85, 0.75, 0.74, 0.79, 0.81, and 0.67 on the held-out dataset (i.e., the test dataset), Coudray et al.
developed a DL-based image analysis method for mutation prediction in non-small lung cancer in their
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seminal study, which was published in 2018. This method was used to predict mutations in serine/threonine
kinase 11 (STK11), epidermal growth factor receptor (EGFR), FAT1, SETBP1, and KRAS (Kirsten rat sarcoma
virus) [22].

The ANN model uses the “relu” activation function and consists of three hidden layers, each with 64
neurons. The “sigmoid” activation is used by the output layer to perform binary classification. In total, 300
decision trees are used to generate the random forest model. The training data are used to train both models,
and the test data are used to evaluate them. In real life, you would substitute your own data for the dataset
loading portion and modify the architecture and hyperparameters in accordance with the particulars of your
issue. For a more thorough analysis, you might also think about utilizing cross-validation. Synthetic gene
circuits allow programming in DNA the expression of a phenotype at a given environmental condition. The
recent integration of memory systems with gene circuits opens the door to their adaptation to new
conditions and their re-programming [23]. The creation of algorithms that can extrapolate a set of rules
from a specified “training” dataset is one of the main objectives of ML. In what is known as "supervised
learning," the algorithm should ideally be able to correctly categorize previously unseen datasets into the
proper categories. One method of this categorization, also known as sorting, involves categorizing all data
inputs into one of two states, such as being above or below a specific linear threshold. The term "linear
classification" refers to this kind of supervised learning, and numerous algorithms have been created to
accomplish this goal [24]. ML models that were used to identify patients with positive outcomes were trained
using all of the parameters. For the deep neural network model, there were three hidden layers with a total
of 15 ANNs each. For the random forest model, 300 decision trees were used. To evaluate the accuracy of the
ML models, we generated the ASTRAL (Accurate Species TRee ALgorithm) score, one of the well-known
prognostic scoring systems for acute stroke. In simple words, it means the utilization of deep neural
networks and random forest models for predicting positive outcomes in acute stroke patients. The models
were trained using a comprehensive set of parameters, and their accuracy was evaluated using the ASTRAL
score. The use of ML in this context aims to enhance the prediction and understanding of patient outcomes
based on various input factors [25]. The copy number (CN) itself, which is a simple series of chemical
processes, will be the first (basic) version. Additionally, because it solely consists of micro-reversible
reactions with mass-action kinetics, it is thermodynamically consistent. Although small, this first version
makes a lot of enzymatic multiplicity assumptions that are unlikely to be true. As a result, we will suggest a
second iteration of the model that is biologically plausible in the sense that it may be expressed in terms of
well-known biochemical motifs but is not thermodynamically explicit. This system and the previous one
vary primarily in that the former is segmented. This divided system will henceforth be referred to as c-CN.
DNA strand displacement (DSD), a sort of DNA-based computing, is used to develop the d-CN, a variant of
the CN. DSD is a biocompatible molecular computing paradigm that is fully based on how DNA strands
interact and Watson-Crick complementarity. By this, we mean that DSD computers have the potential to be
utilized to regulate molecular systems because they may theoretically be injected into animals and interact
with their biochemistry. It has been demonstrated that DSD systems are capable of doing any type of
computing, including the emulation of any chemical process network. DSD systems are reasonably simple to
materialize experimentally, and their behavior can also be precisely anticipated using simulation tools like
Visual DSD or Peppercorn. A wide range of computational techniques and resources are now available for
creating DNA-based circuits. Multiple initiatives to create intelligent DSD systems have been made.
Examples include oscillators, switches, logic gates, linear-threshold circuits, and consensus procedures [26].
Microarrays, particularly the Illumina HumanMethylation Infinium BeadArray, are one of the most widely
used techniques for determining the methylation profiles over the entire genome [27]. The natural selection
theory is the foundation of the genetic algorithms, which are crucial in solving such complex issues.
Numerous problems are optimized in the literature using genetic algorithms. These techniques have given
computational biologists efficient ways to locate the ideal values for huge datasets. Image reconstruction
has been done using genetic algorithms. These algorithms build on sub-algorithms to increase their
precision and accuracy [28].

Thus, genetic biomarkers have particular promise for psychiatric illnesses. Over the past 10 years, genome-
wide association studies of prevalent diseases have become more sophisticated, building the information
foundation for more accurate genetic risk prediction at the individual level. In this study, we cover the
underlying ideas behind assessing genetic risk using modern techniques, the advantages and disadvantages
of various strategies, utility evaluations, and applications for various psychiatric diseases and associated
features [29]. Utilizing sizable multidimensional biological datasets that contain individual heterogeneity in
genes, function, and environment, precision medicine aims to build and optimize the pathway for diagnosis,
therapeutic intervention, and prognosis. This gives doctors the chance to individually adapt early
interventions, whether they are therapeutic or preventative in nature. AI systems may now reasonably
forecast risk for several malignancies and cardiovascular diseases from existing multidimensional clinical
and biological data by utilizing high-performance computer capabilities [30].

Future outlook and obstacles
The science of AI, which is rapidly expanding, has applications to genetic diseases that have the potential to
revolutionize how many chronic conditions are diagnosed and treated. Algorithms supporting predictive
models for the risk of developing genetic disorders or their complications have been built using ML
principles [31]. Although preimplantation genetic testing for aneuploidy and time-lapse incubators have
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been developed to help raise the likelihood of a live birth, the results are still far from ideal. AI is rapidly
being used in the medical industry to help increase the success rates of in vitro fertilization (IVF) procedures
[32]. Large and complicated genomic datasets are processed using a particular form of AI algorithm, known
as DL, in various fields, such as clinical genomics [33]. It is now possible to address unmet clinical needs in
genetics and uncover novel mechanistic insights, thanks to the large datasets that have quickly accumulated
from electronic medical records, high-definition multi-omics (including genomics, proteomics,
transcriptomics, and metagenomics), and imaging modalities (endoscopy and endomicroscopy). Although
the use of AI methods has made it simpler to analyze, combine, and interpret huge genetics datasets, the
requirement for objective prospective validation studies, as well as the substantial heterogeneity in AI
methods, datasets, and clinical outcomes, are currently preventing the use of AI in clinical practice [34]. The
field of heart failure (HF) has benefited from enhanced biomarker discovery, thanks to technological
advancements. Using high-throughput omics systems to profile HF at the level of genes, transcripts,
proteins, and metabolites has improved the efficiency of a traditionally long and arduous process.
Additionally, advances in AI have simplified the understanding of big omics datasets and enhanced analysis.
Clinicians can benefit from the use of omics and AI in biomarker discovery by discovering signs of HF risk,
monitoring care, figuring out prognoses, and creating druggable targets. AI has the potential to enhance HF
patient care when used together [35]. Patient care may advance with the development of AI and ML
technologies. Applications, as mentioned in Table 3, include cancer diagnosis and monitoring, identifying
at-risk populations of people, classifying genetic variations, and even predicting the ancestry of a patient.
This article discusses the difficulties and factors to be taken into account when implementing these tools in
clinical practice, as well as some recent and potential applications of AI in genetic medicine [36]. The
scientific community is growing more interested in developing the current therapeutic approaches to
treating cancer, even if surgery, chemotherapy, and radiotherapy will continue to be the gold standard for
cancer treatment for many years to come. In the future, the use of computational input and support will
produce a real-world clinical environment, and a significant technological revolution will avoid emotional
issues, cultural and moral norms, and exhaustion in the real-time prediction and diagnosis of human health-
related disorders [37]. The applications listed in Table 3 demonstrate the various and significant applications
of genetics and AI in the fields of genetics and healthcare. Examples include cancer detection and
monitoring, identifying at-risk populations, classifying genetic variants, and predicting patient ancestry.

 Applications How AI is applied Impact

Cancer

diagnosis and

monitoring

Genomic data can be analyzed by machine learning models to find patterns linked to cancer. These models can

help in cancer recurrence probability prediction, subtype categorization, and early diagnosis.

AI-assisted early diagnosis and monitoring lead to more individualized and efficient treatment plans,

which enhance patient outcomes.

Identifying at-

risk

populations

Large-scale genetic databases can be analyzed by AI algorithms to determine which people are more

susceptible to a given disease, such as inherited disorders or complicated disease susceptibility.

Public health initiatives can be strengthened by implementing screening programs, preventive measures,

and targeted interventions for populations that are at risk.

Classifying

genetic

variations

Genetic variants can be categorized and interpreted by machine learning algorithms, which can differentiate

between potentially hazardous and benign mutations. Understanding the genetic foundation of diseases

requires knowledge of this.

Precise categorization of genetic variants facilitates the diagnosis of hereditary illnesses, directs

therapeutic choices, and expands our comprehension of the genetic foundations of ailments.

Predicting

ancestry of a

patient

AI systems are able to predict an individual's ancestral ancestry by analyzing genetic markers. To do this, the

genetic profile is compared to reference datasets made up of various demographic groups.

Because various genetic variants and susceptibilities might be associated with particular populations,

ancestry prediction holds potential implications in personalized medicine. It also helps with customized

healthcare planning.

TABLE 3: Cancer diagnosis and monitoring, identifying at-risk populations, classifying genetic
variations, and predicting patient ancestry are examples of the diverse and impactful applications
of genetics and AI in healthcare and genetics
AI, artificial intelligence

Conclusions
This review's objective is to outline the current course of human genetic research in light of developments
in phenome-wide research, a cutting-edge area of study that is frequently contrasted with genome-wide
research. The previous patterns in human genetic research should always be evaluated before discussing
potential future trajectories. Genomic data interpretation has been sped up by AI-driven techniques,
allowing for more accurate diagnosis and personalized treatment regimens for people with genetic illnesses.
New opportunities for early intervention and prevention have been made possible by the capacity to
anticipate illness risk and consequences based on genetic information. Ensuring equal access to these
technologies across a varied population and addressing ethical issues about privacy and data security are
some of the challenges presented by the integration of AI in genetics. Collaboration between geneticists,
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physicians, and AI experts will be essential to leveraging the advantages of AI in genetics as the field
develops. AI-powered genetics has the potential to change healthcare by delivering more focused, effective,
and tailored methods for illness management and prevention, provided that ethical, legal, and social
ramifications are carefully considered.
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