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Abstract: The paper presents the investigation of the biological properties of Poly(Lactide)—Copper
composite material obtained by sputter deposition of copper onto Poly(lactide) melt-blown non-
woven fabrics. The functionalized composite material was subjected to microbial activity tests
against colonies of Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli, Pseudomonas
aeruginosa) bacteria, Chaetomium globosum and Candida albicans fungal mold species and biochemical–
hematological tests including the evaluation of the Activated Partial Thromboplastin Time, Pro-
thrombin Time, Thrombin Time and electron microscopy fibrin network imaging. The substantial
antimicrobial and antifungal activities of the Poly(Lactide)–Copper composite suggests potential
applications as an antibacterial/antifungal material. The unmodified Poly(Lactide) fabric showed
accelerated human blood plasma clotting in the intrinsic pathway, while copper plating abolished
this effect. Unmodified PLA itself could be used for the preparation of wound dressing materials,
accelerating coagulation in the case of hemorrhages, and its modifications with the use of various
metals might be applied as new customized materials where blood coagulation process could be well
controlled, yielding additional anti-pathogen effects.

Keywords: antimicrobial; blood coagulation; composite; copper; melt-blown; poly(lactide);
magnetron sputtering

1. Introduction

Nonwoven materials are gaining a lot of interest due to their unique characteristics,
including light weight, large surface area, high porosity as well as air permeability and
ease of processing [1,2], as well as due to the economic aspect and compliance with the
assumptions of a circular economy. As a result, nonwovens have been increasingly used
for a wide scope of applications, including various medical products, such as hygienic
products, scaffolds for tissue engineering as well as wound dressings [3].

As far as wound dressings and other fibrous based medical devices (such as implants
or scaffolds) are concerned, nonwovens ensure an open structure suitable for drainage of
exudates and thus limit the risk of infection [4]. Moreover, owing to their three-dimensional,
fibrous structure, nonwovens mimic the architecture of a natural tissue and provide a proper
matrix for its regeneration [3,5]. High porosity of nonwovens enables the growth of a newly
formed tissue within its structure and allows for the proper transport of nutrients and
waste removal [5]. Therefore, nonwovens may be used for the regeneration of different
types of tissues, for example skin and epithelial tissue [5–15].
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Up to now, the majority of medical nonwovens have been produced by electrospin-
ning [3,5]. However, this method is difficult to up-scale due to non-repeatable results, high
production costs, low production capacity, practically no manufacturing capabilities. There-
fore, melt blowing is gaining a lot of attention, since it offers an industrial scale production
of fibrous materials at low cost, high throughput and with good reproducibility [12,16].

Medical nonwovens may be produced from different fibers, including natural and
synthetic polymers. Currently a lot of attention is given to biodegradable polymers, among
which polylactic acid (PLA) is one of the most common and extensively researched [16–20].
PLA degrades mainly through hydrolysis and the resulting degradation products may be
eliminated by means of natural biological processes, without any adverse effects [16,18–20].
Moreover, PLA exhibits numerous advantages from the medical point of view, such as
biocompatibility, biodegradability, bioreabsorbability, thermoplastic processability and eco-
friendliness [16,18–20]. Therefore, PLA is widely used for medical applications, including
wound management [19,20].

During the last few decades, the use of nonwoven wound dressings has been vastly
studied and multiple different approaches have been proposed, including antibacterial and
active substance (API)-releasing materials [3,21–40]. The incorporation of antimicrobial
agents into wound dressings is vastly researched, since wounds are susceptible to microbial
contamination, which may result in severe complications [3]. Hence, the prevention of
secondary infection of wounds is of the utmost importance.

As the continuation of our research program directed at antibacterial composites [41–44],
we present here the paper on PLA–Cu composites consisting of a hemostatic matrix [39,45–49]
and hemostatic metal [50–56].

Between different antimicrobial agents, copper is gaining a growing attention [57–64].
The biocidal effect of copper may be associated with several different mechanisms [62–64].
These include the displacement of essential metals from their native binding sites [64].
Another explanation of copper’s toxicity towards microorganisms is the denaturation of
nucleic acids or changes in their conformational structure [63,64]. These may be caused, for
instance, by binding to or disordering of helical structures and by cross-linking between
and within nucleic acid strands [63]. Furthermore, the antibacterial properties of copper
may be associated with the alteration of proteins and inhibition of their biological assembly
and activity [63,64]. Other proposed mechanisms involve the plasma membrane perme-
abilization, membrane lipid peroxidation, oxidative phosphorylation, osmotic balance or
ligand interactions [63,64].

At the same time, copper exhibits lower toxicity in comparison to many other heavy
metals, such as silver [61,65,66]. This is associated with the fact that, despite the high
sensitivity of microorganisms towards copper, human tissue does not exhibit susceptibly to
it [64–66]. Moreover, copper occurs naturally in plants, as well as in animal and human
tissues [60]. It is an essential element, which has multiple important functions in terms of
human health [60,62,65,67,68]. Therefore, it is considered that the deficiency of copper is
more problematic than its toxicity [60]. This is related to the fact that the human body is
able to metabolize copper [60]. Additionally, there is a variety of different mechanisms at
the cellular, tissue and organ levels, which act as a protection against copper toxicity [60].
Furthermore, copper is considerably cheaper than silver, which is one of the most popular
antimicrobial agents [62,67].

In terms of wound management, copper is believed to be a crucial element related
to the wound-healing process [69,70]. According to the literature, copper enhances the
angiogenesis process, as it induces the generation of the vascular endothelial growth factor
(VEGF) [69,70]. Moreover, it was stated that copper increases the expression of integrin
and positively affects the stabilization of fibrinogen and collagen [68–70]. Finally, copper
plays an important role in matrix remodeling, cell proliferation and reepithelization due to
the up-regulation of the activity of copper-dependent enzymes, proteins and polysaccha-
rides [71–73]. The positive influence of copper on the process of wound healing has been
confirmed in the literature [68–74].
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In this study, the functionalization of melt-blown PLA fiber material by copper was
performed using magnetron sputtering method. It is a versatile method enabling the
deposition of well-controlled, thin films/layers on a modified substrate. Another advantage
of magnetron sputtering is the fact that it is considered to be an eco-friendly, low-cost and
waste-free technology [18,75,76]. Since both Cu and PLA derived materials can be used as
worthy neutral or active components during the dressing and treatment of wounds [77],
the authors decided to investigate the effect of PLA–Cu composites on the important
process that initiates wound healing, i.e., blood coagulation. An important mechanism
for the initiation of blood coagulation after an injury is contact with a negatively charged
surface. This can be both wound contaminations as well as substances released from the
body after an injury. The former may be sand or silica-rich earth, but also substances
of pathogenic origin as a defensive evolutionary adaptation of terrestrial vertebrates to
activate blood clotting, close a wound and stop blood loss. The latter are substances such
as collagen and nucleic acids that come into contact with blood after the damage to the
blood vessels. All of the above activate the blood contact factors of the intrinsic blood
coagulation pathway present in the plasma by exposure to a negatively charged surface.
These factors include factor XII (FXII), factor XI (FXI), plasma prekallikrein and high
molecular weight kininogen (HK). Their collective activation, along with the entire intrinsic
course of the coagulation cascade, can be monitored by activated partial thromboplastin
time (aPTT) measurement [78]. The resulting fibrin network can be observed using scanning
electron microscopy (SEM). Therefore, the authors decided to use these methods to further
investigate such biochemical-hematological aspects of PLA–Cu composites.

2. Materials and Methods
2.1. Materials
2.1.1. Polymers

• Poly(Lactic acid) (PLA) polymer was purchased from NatureWorks LLC (Minnetonka,
MN, USA), type Ingeo™ Biopolymer 3251D, MFR = 30–40 g/10 min (190 ◦C/2.16 kg),
Tmp = 160–170 ◦C in the form of granulate, and was used for the fabrication of nonwo-
ven samples.

2.1.2. Magnetron Usable Material

• Copper target was from Testbourne Ltd. (Basingstoke, UK) with 99.99% purity.

2.1.3. Microbiological Strains

• The following bacterial and fungal strains were purchased from Microbiologics
(St. Cloud, MN, USA):

• Escherichia coli (ATCC 25922).
• Staphylococcus aureus (ATCC 6538).
• Pseudomonas aeruginosa (ATCC 27853).
• Chaetomium globosum (ATCC 6205).
• Candida albicans (ATCC 10231).

2.1.4. Activated Partial Thromboplastin Time (aPTT), Prothrombin Time (PT) and
Thrombin Time (TT)

Standard human blood plasma lyophilizates, aPTT reagent (Dia-PTT), PT reagent
(Dia-PT) and TT regent (Dia-TT) and 0.025 M CaCl2 solution reagent were purchased from
Dia-PTT (Diagon Kft, Budapest, Hungary) and a coagulometer (K-3002 OPTIC, KSELMED®,
Grudziądz, Poland) was used for measurements. The reagents were prepared before the
measurements according to the manufacturer’s instructions.
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2.2. Methods
2.2.1. PLA–Cu Composites Synthesis
PLA Nonwoven Fabrics

Poly(Lactic acid) nonwovens were fabricated by the melt-blown technique. A one-
screw laboratory extruder (Axon, Limmared, Sweden), with a head with 30 holes of
0.25 mm diameter each, was used. Processing parameters for fabrication of Poly(Lactic
acid) nonwoven samples are presented in Table 1.

Table 1. Melt-blown technique processing parameters applied for preparation of PLA nonwovens.

Melt-Blown Processing Parameters

Temperature of the extruder in zone 1 195 ◦C

Temperature of the extruder in zone 2 245 ◦C

Temperature of the extruder in zone 3 260 ◦C

Head temperature 260 ◦C

Air heater temperature 260 ◦C

Air flow rate 7–8 m3/h

Mass per unit area of nonwovens 200 g/m2 (a)

Polymer yields 6 g/min
(a) In the work [42]: 102 g/m2..

Magnetron Sputtering Modification of Poly(Lactide) Nonwovens

The PLA nonwoven samples were modified using a direct current (DC) magnetron
sputtering system produced by P.P.H. Jolex s. c. (Czestochowa, Poland). Magnetron DC
sputtering parameters applied for the modification of nonwovens are presented in Table 2.

Table 2. DC magnetron sputtering processing parameters applied for the modification of
PLA nonwovens.

DC Magnetron Sputtering System Processing Parameters

Target Copper (99.99%)

Power discharge 0.5 kW (a)

Power density 0.70 W/cm2 (b)

Working pressure 2.0 × 10−3 mbar

Working atmosphere Argon

Distance between sample and target 15 cm

Deposition time 5 min; 10 min; 20 min

Sputtered sample size 60 cm × 20 cm

In the work [42]: (a) Power discharge 0.7 kW; (b) Power density 0.72 W/cm2.

2.2.2. PLA–Cu Composite Physical Characterization

Atomic Absorption Spectrometry with Flame Excitation (FAAS)
Determination of the copper content in composite samples was performed using a

single-module Magnum II microwave mineralizer from Ertec (Wroclaw, Poland) and a
Thermo Scientific Thermo Solar M6 (LabWrench, Midland, ON, Canada) atomic absorption
spectrometer equipped with a 100 mm titanium burner, coded lamps with a single-element
hollow cathode, background correction: D2 deuterium lamp.

The total copper content of the sample M (mg/kg; ppm) was calculated according to
Equation (1) [79]:

M =
Ci × V

mi

[
mg
kg

]
(1)
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where:
Ci—metal concentration in the tested solution (mg/L);
mi—mass of the mineralized sample (g);
V—volume of the sample solution (mL).

Microscopy Analysis

The morphology of the investigated samples was assessed using a VHX-7000N
digital microscope (Keyence, Osaka, Japan). The applied magnification was equal to
500× and 2500×.

Specific Surface Area and Total Pore Volume Analysis

The specific surface area was determined by the Brunauer, Emmet and Teller method
(BET). Measurements were carried out on an Autosorb-1 apparatus (Quantachrome Instru-
ments, Boynton Beach, FL, USA) using nitrogen as a sorption agent and an adsorption
isotherm at 77 ◦K. Prior to the analysis, the samples were dried at 105 ◦C for 24 h and
degassed at room temperature. In each experiment, approximately 2 g of a given sample
was weighed and used. Measurements were made in duplicate, and the results were
presented as a mean value.

2.2.3. PLA–Cu Composite Biological Characterization
Antimicrobial Properties

The antibacterial and antifungal activity of PLA–Cu(t) fabrics were tested according to the
EN ISO 20645:2006 [80] and EN 14119: 2005 [81] standards, respectively, against E. coli (ATCC
25922), S. aureus (ATCC 6538) and Ch. globosum fungus (ATCC 6205), analogously to our previous
works [42,43]. The following concentrations of inoculum were used: E. coli—CFU/mL = 1.3 × 108,
S. aureus—CFU/mL = 1.9 × 108, Ch. globosum—CFU/mL = 2.5 × 106.

Biochemical–Hematological Properties

1. Activated Partial Thromboplastin Time (aPTT)

Standard human blood plasma lyophilizates were dissolved in 1 mL deionized wa-
ter. A piece of the studied fabric (1 mg square slice) was added to each 200 µL plasma
sample, vortexed and incubated for 15 min at 37 ◦C. For aPTT measurements, the Dia-PTT
(kaolin and cephalin) reagent was resolved and 0.025 M CaCl2 solution reagent prepared,
according to the manufacturer’s instruction. APTT measurements were performed on a
coagulometer for each sample: 50 µL of plasma sample and 50 µL of suspension of Dia-PTT
were introduced into a measuring cuvette and placed in the thermostat of the coagulometer
at 37 ◦C. The mixture was left for 3 min, then the measurement was started by adding
50 µL of 0.025 M CaCl2 solution to the cuvette. Unused fabric remaining at the bottom of
the incubation tubes along with the remaining plasma was primed for polymerization by
adding the appropriate volume of reagents (Dia-PTT), incubated as previously described
and made for polymerization by adding CaCl2 solution. Additional samples containing
PLA material alone with plasma to which only CaCl2 solution was added for polymeriza-
tion were also prepared. Similarly, the samples were prepared for the measurements of the
remaining times.

2. Prothrombin Time (PT) and Thrombin Time (TT)

For PT, cuvettes with 100 µL of plasma were incubated at 37 ◦C in the thermostat of
the coagulometer for 2 min (37 ◦C), after which 100 µL of Dia-PT was added and the mea-
surement was started. Dia-PT contained tissue thromboplastin from rabbit brain, calcium
ions and preservative, and was shaken each time before adding to obtain a homogeneous
suspension. For TT, cuvettes were placed in the thermostat at 37 ◦C and 50 µL of plasma
was introduced and incubated for 2 min. A total of 100 µL of Dia-TT was then added to the
plasma and the time of fibrin clot formation was measured. All such samples were frozen
(−80 ◦C) for storage and shipment for SEM.
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The SEM (scanning electron microscope) analysis of Poly(Lactide) fiber materials
and protein fibrin from associated blood plasma was performed on a scanning electron
microscope model Quanta 200 (FEI company, Hillsboro, OR, USA) equipped with a Q150R
S vacuum sputtering machine. The surface of each preparation was sprayed with a con-
ductive substance (gold). The SEM microscopic analysis was carried out in a high vacuum
using the energy of the probe beam 20 ekV. Magnification was 1000×.

3. Results and Discussion
3.1. Magnetron Sputtering Modification of Poly(Lactide) Nonwovens

The PLA samples were modified by surface deposition of metallic copper using a
direct current (DC) magnetron sputtering system. Copper electron configuration 1s2 2s2 2p6

3s2 3p6 3d10 4s1 4p0p0p0 enables its electro-donor, as well electro-acceptor, reactivity [82].
Therefore, metallic copper can chemisorb the array of small molecules and ions, and also
serves as an electron donor in the copper-mediated Living Radical Polymerizations [83–85]
(Figure 1). In these reactions, copper can serve as an electron acceptor or as an electron
donor reagent.
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Figure 1. Metallic copper interaction/chemisorption with compounds: (1) oxygen [86]; (2) water and
alcohols [87–89]; (3) ammonia [90–92] and hydrazine [93]; (4) carbon oxide [94–96]; (5) cyanides [95];
(6) carboxylic acids [93,97–103]; (7) sp/sp2 hydrocarbons [104,105]; (8) alkyl iodides [106] and in
copper-mediated Living Radical Polymerizations [83–85].

The copper properties summarized in Figure 1 suggest the formation of PLA–Cu
composites with copper-polylactide bonds, which are illustrated schematically in Figure 2.
Thus, some copper atoms deposited on the PLA surface (layers or islands) can interact with
carbonyl oxygen acting as an electro-donor and forming a covalent Cu-O− bond in the
form of free-radical complex.
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Cu—acts as electron acceptor).

It seems natural that copper atoms, both chemisorbed or dispersed on the PLA sur-
face, retain their reactivity (Figure 1) and therefore influence the biological properties
of composites.

3.2. Physical Characteristics of PLA–Cu Composites
3.2.1. Atomic Absorption Spectrometry with Flame Excitation (FAAS)

The copper contents in the examined samples were assessed by the FAAS method
and are presented in Table 3. The results of the determination of copper content in the
PLA–Cu(t) composites show that the Cu concentration depends on the applied magnetron
sputtering deposition time (PLA–Cu(5): 5 min—0.85 g/kg (0.013 mol/kg); PLA–Cu(10):
10 min—13.36 g/kg (0.21 mol/kg); PLA–Cu(20): 20 min—32.92 g/kg (0.52 mol/kg)). The
obtained results correspond to our previous studies [66]. The largest (in terms of quantity)
increase in the amount of copper deposited on the substrate was observed while tran-
scending 5 min. For a PLA–Cu(5) sample, the copper content increased drastically by over
16 times.

Table 3. Results of the determination of copper content in tested samples.

Sample Name

S. d. Time Cu Concentration
Final Sample Name
PLA–Cu(t)(mc)

This Work Lit. Data [96]

[min.] [g/kg] [mol/kg] [g/kg] [mol/kg]

PLA - - - 0.004 0.00006

PLA–Cu(t)

PLA–Cu(5) 5 0.85 0.013 PLA–Cu(5)(0.01)

PLA–Cu(10) 10 13.36 0.21 PLA–Cu(10)(0.21)

PLA–Cu(10) 9.91 0.16 PLA–Cu(10)(0.16)

PLA–Cu(20) 20 32.92 0.52 PLA–Cu(20)(0.52)

PLA–Cu(30) 27.89 0.43 PLA–Cu(30)(0.43)

S. d. time—sputtering deposition time t. Cu(t)(mc): t = 5, 10 and/or 20 min of copper sputtering, respectively;
mc—molal concentration of copper on composite surface: 0.014, 0.21 or 0.52 (mol/kg), respectively. The results
have been measured in triplicate and are presented as a mean value with ±deviation equal to approximately 2%.
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3.2.2. Microscopy Analysis

The microscopic images of the investigated samples obtained from the digital optical
microscope are presented in Figure 3. It may be observed that the obtained copper coatings
are uniform and cover not only the surface of the fibers, but the coating is also present in
between the fibers and fills in the void spaces. However, the fibrous structure of the PLA
nonwoven is preserved. The observations under the higher magnification showed that the
PLA fibers were not damaged during the magnetron deposition process.
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SEM micrographs of PLA and composites PLA–Cu(10)(0.16) and PLA–Cu(30)(0.43)
were presented in earlier work [96].

3.2.3. Specific Surface Area and Total Pore Volume Analysis

Figure 4 presents the N2 adsorption–desorption isotherms of the investigated samples.
The shape of the obtained isotherms resembles the type II isotherm according to the IUPAC
classifications of physisorption isotherms, i.e., the sigmoid or S shaped [107–109]. This type
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of isotherm is typical for monolayer–multilayer sorption on nonporous or macroporous
surfaces [107,108]. Moreover, for all of the samples the appearance of a hysteresis loop was
observed, that is usually associated with the presence of the mesoporosity and the capillary
condensation in mesopores [107,108]. It may be noticed that the amount of adsorbate
increased exponentially with growing pressure for all of the examined samples. For the low
relative pressure, the increase in the amount of adsorbate was slow, while in the range close
to p/p0 = 1 a rapid increase in the amount of adsorbed nitrogen occurred. This may be
due to the fact that nitrogen molecules diffused firstly into the micropores at low pressure,
and then were adsorbed in a monolayer and in subsequent layers at higher pressure [95].
However, it must be noted that the so-called “knee” or Point B, i.e., the beginning of the
middle, almost linear, section [93], is not very distinctive. The more gradual curvature,
especially in the case of the PLA–Cu(10) sample, may be observed, that suggests the overlap
of the monolayer formation and the beginning of the multilayer adsorption [107]. The most
distinctive Point B was observed for the unmodified PLA. The shape of the hysteresis loops
resembles the H3 type [107,108], which is typical for slit-shaped pores [109], and may occur
when the macropores are not fully filled with the pore condensate [107].
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The Total Pore Volume and specific surface area of the Poly(Lactide) melt-blown
nonwoven sample (PLA) and Poly(Lactide)–Copper composite material are presented in
Table 4.

Table 4. The specific surface area and total pore volume for unmodified PLA sample and copper
composites PLA–Cu(t).

Sample Name Copper Concentration. Specific Surface Area (SSA) Total Pore Volume (TPV)
Mol/kg m2/g cm3/g

PLA - 0.9721 3.858 × 10−3

PLA–Cu(n)(mc)

PLA–Cu(5)(0.01) 0.01 0.6465 2.235 × 10−3

PLA–Cu(10)(0.21) 0.21 0.6489 2.221 × 10−3

PLA–Cu(20)(0.52) 0.52 0.6372 2.006 × 10−3

The results have been measured in duplicate and are presented as a mean value with ±deviation equal to
approximately 2%.
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The specific surface area of the Poly(Lactide) material sample (PLA) was equal to
0.9721 [m2/g]. The copper magnetron modification of Poly(Lactide) nonwoven resulted
in a sudden decline to values 0.65–0.64 (m2/g) for its composites PLA–Cu(5)(0.01)–PLA–
Cu(20)(0.52). The decrease of the observed specific surface area for the modified samples
PLA > PLA–Cu(n)(mc) may be related to the lower mesoporosity of the composites. These
were confirmed by the Total Pore Volume, which decreased from 3.858 × 10−3 (cm3/g)
for the PLA nonwoven fabric to 2.01–2.24 × 10−3 for the PLA–Cu(n)(mc) sample. The
rapid decrease of the SSA and TPV factors of the starting PLA during copper sputtering
suggests a covering of the structural holes of the polymer by deposited copper atoms.
Consequently, small changes of these factors during prolonged deposition of Cu can be
related to the appearances of additional flat layers of copper coating on the PLA surface in
the magnetron sputtering process. This is in agreement with the results obtained from the
digital microscopy analysis, which revealed that the copper coating was deposited not only
on the surface of the fibers, but also in between the fibers, filling the void spaces.

3.3. Biological Properties

The antibacterial activity of copper, resulting from its chemical properties (Figure 1), is
well documented in the literature against numerous different strains and for all chemical
states, i.e., elemental, oxides, ions as well as complexes [59–62]. Copper, as a redox active
metal, exerts also a substantial role in the oxidative defense system [57,58].

3.3.1. Antimicrobial Properties

The Poly(Lactide) nonwoven (PLA) and Poly(Lactide)–Copper composites (PLA–Cu0(t))
were subjected to antimicrobial activity tests against Gram negative (E. coli, P. aeruginosa), Gram
positive (S. aureus) and a colony of Ch. globosum and C. albicans (Tables 5 and 6). Results
of these studies prove that the modification of nonwoven fabrics material with Cu provides
antimicrobial properties against representative microorganisms (Tables 5 and 6), expressed by
inhibition zones of bacterial and fungal growth on Petri dishes. For a Poly(Lactide) nonwoven
fabric sample without copper modification, a visible growth of microorganisms, covering the
surface of the control sample (PLA), was observed. The results indicate that copper biocidal
surfaces are effective against Gram-positive and Gram-negative bacteria and representative
species of fungi. The mechanism responsible for the observed effect is the so-called “contact
killing”. The microbes in contact with the copper present on the surface of the examined samples
suffer rapid membrane damage and DNA degradation [110–114].

Table 5. Results of antimicrobial activity tests of polylactide nonwoven PLA and Polylactide–Copper
composites PLA–Cu(t) on the basis of standard EN-ISO 20645:2006 [80] compared with the literature
data [42].

Sample
Name

Average Inhibition Zone (mm)

E. coli S. aureus P. aeruginosa

This Work Lit.
[42] This Work Lit.

[96]

PLA 0 0 0

PLA–Cu(n)(mc)

PLA–Cu(5)(0.01) 0 0 0

PLA–Cu(10)(0.16) 2 1

PLA–Cu(10)(0.21) 1 1 1

PLA–Cu(20)(0.52) 2 1 1

PLA–Cu(30)(0.43) 2 1

The following concentrations of inoculum were used: E. coli—CFU/mL = 1.3 × 108 (1.2 × 108 in [93]);
S. aureus—CFU/mL = 1.9 × 108 (1.7 × 108 in [96]).
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Table 6. Results of antimicrobial activity tests of alginate composites on the basis of EN 14119: 2005
standard [81].

Sample
Name

Average Inhibition Zone (mm)

Ch. globosum C. albicans

PLA 0 0

PLA–Cu(n)(mc)

PLA–Cu(5)(0.01) 0 0

PLA–Cu(10)(0.21) no grow no grow

PLA–Cu(20)(0.52) no grow no grow

Concentration of inoculum [CFU/mL]: Ch. globosum—2.5 × 106, C. albicans—0.8 × 108.

According to the literature, the “contact killing” occurs due to the cellular damage
resulting from the direct physical interaction between microbes and a surface coated with
metallic copper [62]. The mechanism of “contact killing” is associated with the release
of copper ions from the surface and their accumulation in the membrane [115,116]. This
results in the destabilization of the membrane due to the decrease in its potential and
finally leads to the membrane damage [115,116]. As a consequence, copper ions enter
and accumulate within the cell [102,103], which triggers the following effects. First of
all, the reactive oxygen species in the form of hydroxyl radicals are generated due to the
Fenton-like reactions [117–119]. The newly formed free radicals may then cause protein
and lipid oxidation [104]. Moreover, they may damage the DNA structure and cause its
degradation [115,116]. The released copper ion itself may interact with metal-binding sites
of enzymes and cause their inhibition [117–119]. For example, copper ions damage Fe–S
clusters in cytoplasmic hydratases by coupling to sulfur followed by the displacement
of iron [117–119]. This results in the depletion of sulfhydryl groups such as cysteine
of glutathione [117–119]. Similarly, copper ions may compete with other metal ions for
divalent cation-binding sites on proteins [119]. Finally, the copper ions may influence the
microbial respiration, which may be suppressed due to the cytochrome inhibition [115,116].

The obtained results correspond to our previous studies [41–43]. Antimicrobial tests
revealed the dependence of the amount deposited copper on the substrate in between on
the antibacterial properties. Samples modified with time over 5 min using DC magnetron
sputtering exhibit an antimicrobial character, due to the higher amount of copper detected
on their surface, than the samples exposed for less than 5 min.

3.3.2. Biochemical–Hematological Properties
Blood Plasma Clotting—Activated Partial Thromboplastin Time (aPTT)

Poly(Lactide) nonwoven fabrics without magnetron sputtering modification (PLA)
exhibit a shorter clotting time initiated by contact (intrinsic pathway) measured as the
activated partial thromboplastin time (aPTT), whereas the modification of nonwoven fabrics
with Cu provides a disappearance or even a reversal of such an effect. PLA–Cu(5)(0.01)
still shows some shortening of the clotting time, but this is statistically not significant;
PLA–Cu(10)(0.21) causes a statistically significant prolongation of aPTT, while the clotting
time for PLA–Cu(20)(0.52) differs only a little from the results obtained for plasma alone
(Figure 5). The materials do not significantly affect the prothrombin (PT) and thrombin
times (TT), see Figures 6 and 7.
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Figure 5. Effect of selected materials on aPTT. The samples: PLA, PLA–Cu(5)(0.01); PLA–Cu(10)(0.21);
PLA–Cu(20)(0.52) and C—plasma control (n = 6, 5, 5, 6, 6, respectively; data differ significantly from
that which is normally distributed in a Shapiro–Wilk test, * p < 0.05 in one-tailed Mann–Whitney
U Test relative to C). Results are presented as mean (×), median (horizontal line), range (bars) and
interquartile range (box), the orange dot is outlier maximum extreme value.
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is formed. Thrombin time uses thrombin as the final activator of fibrinogen to fibrin con-
version. Results suggest that fabrics have no impact on factors participating in the above 
mentioned activation, indicating here additionally the importance of contact factors in the 
intrinsic way and the probable activation of blood coagulation on the negatively charged 
surface of PLA. 

The observed shortening of the clotting time for PLA and its non-toxicity and biodeg-
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Figure 7. Effect of selected materials on TT. The samples: PLA, PLA–Cu(5)(0.01); PLA–Cu(10)(0.21);
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that which is normally distributed in a Shapiro–Wilk test). Results are presented as mean (×), median
(horizontal line), range (bars) and interquartile range (box).

Only PLA–Cu(10)(0.21) led to some prolongation of contact clotting activation in
human blood plasma, as indicated by the longer aPTT. There was no such effect on PT,
so only contact factors (XI, XII, HK) could probably be adsorbed on the Cu surface and
their diminishing concentration in plasma thus was responsible for aPTT prolongation. No
change of the coagulation cascade in extrinsic pathway (PT) was observed, therefore, the
elements of extrinsic and both pathways were not affected. Such a conclusion could also
be supported by the few studies describing the influence of transition metals on contact
factors, including examining copper, nickel, cobalt and zinc, which showed the influence
on aPTT and the binding of factors XI, XII and HK in human plasma [105,106]. Regardless
of this observation, other PLA modifications with copper had no negative influence on
coagulation, so they could potentially be used as dressing materials, taking into account
their additional properties examined in the current study.

The aPTT is an indicator of the efficiency of the intrinsic (contact) mechanism of
generating blood plasma coagulation through the formation of thrombin and the generation
of a fibrin clot. The aPTT determines the time of formation of a fibrin clot after maximum
activation on a negatively charged surface: in the presence of kaolin (silicates and cephalin)
contact factors—FXII, FXI, PK and HK initiate the blood coagulation cascade. The tested
plasma is incubated with a suspension of kaolin and cephalin—the activators of the intrinsic
coagulation pathway by contact with a negatively charged surface, and then after the
addition of Ca2+ ions, the time of clot formation is measured. FXII and HK play an
important role in blood clotting activation on the negatively charged surface, where FXII is
autoactivated in the contact complex with the participation of the previously mentioned
components. PLA in its coiled polymer structure contains many oxygen groups of a
carbonyl group on which, due to the electronegativity difference within the carbon atom,
polarization occurs, and a dipole is formed with a partial negative charge on the oxygen
atom. Many such atoms in close proximity to each other are good activators of the intrinsic
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pathway of blood coagulation, as in the case of silica, polyphosphates, nucleic acids and
other similar substances. To date, PLA has not been well studied in this regard. Our results
showed that it is an activator of blood coagulation as it contributes to the shortening of
the clotting time in the aPTT test, which measures the path of intrinsic blood coagulation
activation. Cu reverts this effect by contact factor absorption, however, with the appropriate
copper content, it does not cause negative adverse effects in the form of negative inhibition
and prolongation of clotting.

Prothrombin Time (PT) and Thrombin Time (TT)

No statistical effect was observed when PT and TT times were measured, where blood
clotting is triggered by extrinsic pathway (tissue factor—thromboplastin, calcium ions), or
thrombin, respectively (Figures 6 and 7). Extrinsic pathway starts with tissue factor, which
activates factor VII leading to fibrin formation, when prothrombinase complex is formed.
Thrombin time uses thrombin as the final activator of fibrinogen to fibrin conversion.
Results suggest that fabrics have no impact on factors participating in the above mentioned
activation, indicating here additionally the importance of contact factors in the intrinsic
way and the probable activation of blood coagulation on the negatively charged surface
of PLA.

The observed shortening of the clotting time for PLA and its non-toxicity and biodegrad-
ability, on the one hand, would make it a good dressing material, accelerating blood clotting
in the case of injuries and hemorrhages, but on the other hand, it poses a risk of unwanted
clots when this material is used as a product for the preparation of endovascular implants or
other medical inserts intended to cause unwanted thrombosis. Therefore, the modification by
shielding of PLA material by various transition metal atoms, including copper, may be impor-
tant in obtaining its novel derivatives with various new properties, including those that do not
lead to the unwanted activation of blood coagulation. In the course of the current research,
we have shown that coating PLA with a layer of copper eliminates the properties that activate
blood coagulation, leads to a return to normal control values and may even slightly extend
them, acting as an anticoagulant, which depends on the thickness of the metallic layer. For a
sample with a thick Cu layer—PLA–Cu(20)(0.52), the activation effect disappears completely
with a slight increase in clotting time (Figure 7). Additionally, changes in the network of forming
fibrin can be observed, as has been demonstrated in SEM studies as the agglomerates of fibrin
proteins on Poly(Lactide) fiber material (PLA) (Figure 8b).
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4. Conclusions

The paper presents biological characterization of Poly(Lactide)–Copper composite ma-
terials obtained by sputter deposition of copper on the Poly(Lactide) melt-blown nonwoven
fabrics. The functionalized composite materials were subjected to microbial activity tests
against colonies of Gram-positive (S. aureus), Gram-negative (E. coli, P. aeruginosa) bacteria,
fungal molds (Ch. Globosum, C. albicans) and biochemical–hematological tests including
the evaluation of the activated partial thromboplastin time, prothrombin time, thrombin
time and electron microscopy fibrin network imaging (SEM). The unmodified Poly(Lactide)
fabric showed accelerated aPTT human blood plasma clotting in the intrinsic pathway,
while copper plating abolished this effect by probable surface absorption of contact factors.
No effect, regardless of modification, was observed in the case of the extrinsic pathway—PT
and activation by thrombin—TT. Unmodified PLA itself could be used for the preparation
of wound dressing materials, accelerating coagulation in the case of hemorrhages, and its
modifications with the use of various transition metals might be a way to search for new
materials where blood coagulation process could be well controlled, yielding additional
anti-pathogen effects. The substantial antimicrobial and antifungal activities of PLA–Cu0

suggest potential applications as an antibacterial/antifungal material.
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