Skip to main content
. 2024 Jan 29;24(3):865. doi: 10.3390/s24030865
Algorithm 1: Proposed ML-Based Adaptation Algorithm
Input: L is the learning module, K is knowledge learned from training, C is task
context set such as connection, battery, data, time, associated data, task state, etc., A
is attribute set defined for tasks and their results from mobile devices, P is processing
module, TD is training dataset, T is mobile devices computational tasks, R is followed
for results obtained from task execution, and D is decision set after probability analysis.
T is declared as tasks, W is Wi-Fi.
Output: Adoptive Decision to of fload tasks
Steps
Get TaskT
get context for task T:x=(t,w)     where t,wT×W
if K then
          train_model(K,P,T,A,C,L);
whiledD&&riResdo
PredictResultsrid,x
end while
Decision Selection:
        d=argumentminj=1mwj*ri(d,x)rndnumber num 0num 1if(rndnumber<ϵ)drandom_decision()end ifend if
else
      drandom_decision(prediction rates)end else
Decision if finalized as d:
        executetaskdection(d)
Train Prediction Model:
Storage:
xDA=o1x,o2x,o3x,,onx,r1x,d,r2x,d,r3x,d,,rmx,d,dTD
        iftimelearning thenKnowledge learned from Training Data (TD)KLTDEnd if
Go to Step 1