|
Algorithm 1. The YOLOv5 object detection pseudocode |
Input: images Output: target detection information
-
1.
Load pre-trained YOLOv5x model: yolov5x.load_pretrained_model()
-
2.
Define image preprocessing steps: transform = transforms.Compose ([
transforms.ToTensor()])
-
3.
Input images: image = transform(Image.open(image_path)).unsqueeze(0)
-
4.
Input the image into the YOLOv5x model:
with torch.no_grad():
model.eval()
predictions = model(image)
-
5.
Analysis of prediction results:
boxes = predictions[..., :4] # Extract the bounding box coordinate information
scores = predictions[..., 4] # Extract the confidence
class_probs = predictions[..., 5:] # Extraction class probability
-
6.
Non-maximum suppression (NMS):
Selected_boxes = torch.ops.torchvision.Nms (boxes, scores,
iou_threshold = 0.5)
-
7.
Return the final result:
final_boxes = boxes[selected_boxes]
final_scores = scores[selected_boxes]
final_class_probs = class_probs[selected_boxes]
|