Skip to main content
. 2024 Feb 2;24(3):984. doi: 10.3390/s24030984
Algorithm 1. The YOLOv5 object detection pseudocode
Input: images
Output: target detection information
  •   1.

      Load pre-trained YOLOv5x model: yolov5x.load_pretrained_model()

  •   2.

      Define image preprocessing steps: transform = transforms.Compose ([

                            transforms.ToTensor()])

  •   3.

      Input images: image = transform(Image.open(image_path)).unsqueeze(0)

  •   4.

      Input the image into the YOLOv5x model:

         with torch.no_grad():

            model.eval()

            predictions = model(image)

  •   5.

      Analysis of prediction results:

      boxes = predictions[..., :4] # Extract the bounding box coordinate information

      scores = predictions[..., 4] # Extract the confidence

      class_probs = predictions[..., 5:] # Extraction class probability

  •   6.

      Non-maximum suppression (NMS):

      Selected_boxes = torch.ops.torchvision.Nms (boxes, scores,

      iou_threshold = 0.5)

  •   7.

      Return the final result:

      final_boxes = boxes[selected_boxes]

      final_scores = scores[selected_boxes]

      final_class_probs = class_probs[selected_boxes]