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Abstract: In this study, the synthesis and characterization of grafted cellulose fiber with binary
monomers mixture obtained using a KMnO4/citric acid redox initiator were investigated. Acryloni-
trile (AN) was graft copolymerized with acrylic acid (AA) and styrene (Sty) at different monomer
ratios with evaluating percent graft yield (GY%). Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty)
were characterized by SEM, FT-IR, 13C CP MAS NMR, TGA, and XRD. An AN monomer was used
as principle-acceptor monomer, and GY% increases with AN ratio up to 60% of total monomers
mixture volume. The adsorption behaviors of Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were
studied for the adsorption of Ni(II) and Cu(II) metal ions from aqueous solution. Optimal adsorption
conditions were determined, including 8 h contact time, temperature of 30 ◦C, and pH 5.5. Cell-g-
P(AN-co-AA) showed maximum adsorption capacity of 435.07 mg/g and 375.48 mg/g for Ni(II)
and Cu(II), respectively, whereas Cell-g-P(AN-co-Sty) showed a maximum adsorption capacity of
379.2 mg/g and 349.68 mg/g for Ni(II) and Cu(II), respectively. Additionally, adsorption equilibrium
isotherms were studied, and the results were consistent with the Langmuir model. The Langmuir
model’s high determinant coefficient (R2) predicted monolayer sorption of metal ions. Consequently,
Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) prepared by a KMnO4/citric acid initiator were found
to be efficient adsorbents for heavy metals from wastewater as an affordable and adequate alternative.

Keywords: modified cellulose; graft copolymerization; monomer mixture; metal ion adsorption;
optimization

1. Introduction

Cellulose remains the most important raw material used in the textile industry, which
can be extracted from cotton, wood, and plant- based cellulosic fibers. Its physical and chem-
ical properties have been modified by different chemical modifications, cross-linking [1–4],
substitution [5], functionalization, and by grafting with different types of monomers [6–14].
Cellulose and its modified fibers are used in various fields, such as paper, biomedical,
biological, packaging, composite preparation, and adsorption. In the last two decades, a
remarkable amount of global attention has been paid to the usage of cellulose-based sorbent
in the treatment and removal of toxic heavy metals as pollutants from the wastewater.

There are many toxic and harmful organic and inorganic contaminants on the sur-
face and water resources. Heavy metal ion pollution has increased significantly in our
society due to the accelerated pace of industrialization and other human inputs [15,16].
The existence of heavy metals in drinkable water at levels far over the allowable limit,
in particular, is gravely affecting human health and the environment, having long-term
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consequences on the human body [17–20], mainly due to their no or low biocompatibility
and high toxicity [21]. Water purification procedures, such as ion exchange, sedimentation,
coagulation, ultrafiltration, adsorption, absorption, and others have been reported in the
literature [22,23]. Among these, adsorption is considered the most economic, available,
and effective technique for the removal of heavy metals from water. It has several char-
acteristics, including effectiveness, low cost, higher tendency, and reusability to remove
contamination [24]. Hence, it is required to develop an efficient biobased substance to re-
move heavy metals from water. In comparison to inorganic adsorbents, organic compounds
generated or developed from natural biopolymers such as starch [25,26], chitosan [27–30],
cellulose [31,32], pectin [33,34], and others are more appropriate due to their sustainability
and biodegradability.

In recent decades, cellulose and its bio-renewable fiber as adsorbents have become
the most common low-cost biopolymer. Since the adsorption capacity of cellulosic raw
materials is restricted, cellulose needs to be chemically treated to produce an effective
adsorption activity [35–37]. The coveted recyclable, non-toxic, biodegradable, and environ-
mentally beneficial features of cellulose-based grafted copolymers have always piqued the
interest of researchers. The characteristics and chemical structures of the monomers affect
the grafted copolymers’ hydrophilic/hydrophobic and sorption efficiencies in addition to
their thermal and chemical stabilities. Grafted cellulose with methacrylamide (MAm) in
presence of N,N-methylene bisacrylamide were prepared and applied in sorption of Fe(II),
Cu(II) and Cr(VI) ions [38]. Adsorption properties of the synthesized thermoresponsive
cellulose-graft-poly(N-isopropyl acrylamide) copolymer for Cu(II), Pb(II), Ni(II) and Cd(II)
ions have been studied [39]. Graft copolymerization of glycidyl methacrylate onto cellulose
was carried out by γ-initiated graft polymerization and was applied as an adsorbent for
Pb(II), Cu(II), and Cd(II) ions [40]. In addition, it was also prepared by microwave-assisted
technique for the adsorption of Hg(II) [41]. For the sorption of Co(II) ions, cellulosic cot-
ton fibers, modified with methacrylic acid and glycidyl methacrylate, were synthesized
utilizing gamma irradiation [42]. Additionally, graft copolymerization of cellulose cotton
fibers with polyacrylonitrile was prepared in order to extract and eliminate Au(III), Pd(II),
and Ag(I) precious metal ions [43]. An adsorbent for Cr(VI) ions from water was devel-
oped by grafting acrylonitrile (AN) onto recovered cellulose from sisal fiber [44] as well as
grafted acrylic acid (AA) to adsorb Ni(II) and Cu(II) metal ions [45]. Cellulosic materials
extracted from Gosweilerodenron balsamiferum wood residues were graft-copolymerized
with AN and AA and then examined to eliminate Cu(II) and Cd(II) from wastewater
medium [46]. Cellulose Nano Crystals (CNCs) extracted from Banana fiber were grafted
with butyl acrylate (BA) using ceric ammonium nitrate (CAN) as an initiator and its ad-
sorption efficiency was studied for the removal of Pb(II) ions from the aqueous [47]. To
remove Cu2+ from aqueous solutions, bamboo cellulose nanofibers-graft-poly (acrylic acid)
(BCN-g-PAA) and bamboo cellulose nanofibers graft-poly (acrylic acid)/sodium humate
(BCN-g-PAA/SH) were prepared and used as biosorbents [48]. 2-mercaptobenzamide
modified itaconic acid-grafted-magnetite nanocellulose composite [P(MB-IA)-g-MNCC]
was prepared using EGDMA as a cross linking agent and K2S2O8 (KPS) as a free radical
initiator for adsorbing Hg(II) metal ions from aqueous solutions [49]. Nanofabricated
cellulose-graft-(2-hydroxyethyl methacrylate) (HEMA/CNF) was firstly synthesized using
the microwave-assisted technique in the presence of ceric ammonium nitrate (CAN) ini-
tiator, then was fabricated by electrospinning using N,N-dimethylacetamide-LiCl solvent
for adsorption of Cd(II) and Pb(II) metal ions from waste water [50]. Acrylamide and AN
mixture was grafted onto cellulose by using ascorbic acid and hydrogen peroxide as redox
initiator for removal the toxic Cd(II), Pb(II), and Zn(II)metal ions from the water [51]. For
the purpose of studying the sorption behavior for Fe(II), Cu(II), and Cr(VI) ions, cellulose
grafted with 2-hydroxy methacrylate and its binary monomer mixture with AA, AN, and
acrylamide were examined [52]. Cellulose was first extracted from pine needles, then
grafted by glycidyl methacrylate with other binary monomers to adsorb Fe(II), CU(II), and
Cr(VI) ions [53]. 2-Acrylamido-2-methpropane sulfonic acid and its binary mixture with
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acrylonitrile were grafted onto cellulose extracted from rice husk for studying their adsorp-
tion efficiencies towards Pb(II) metal ions [54]. Extracted cellulose from agricultural residue
rice husk was grafted with N-isopropylacrylamide (NIPAM) and comonomer acrylic acid
(AAc) using potassium persulfate as free radical initiator and examined as adsorbents
for Cu(II), Ni(II), and Pb(II) metal ions from wast water [55]. Also, Cellulose extracted
from agro-waste rice Cell-g-NIPAM-co-GMA graft copolymer was prepared by KPS and
its adsorption behavior was examined towards Pd(II), Ni(II), and Cu(II) removal from
aqueous solution [56]. Cell-g-HEMA-co-GMA graft copolymer prepared by KPS initiator
was used as adsorbent for the removal of different divalent metal ions [57].

The purpose of our study was to prepare an improved chemically modified cotton
cellulose fiber (Cell) that exhibited higher thermal stability and efficient adsorption capacity
using low-cost and simple method, KMnO4/citric acid redox initiator [58], by introducing
new binary Acrylonitrile (AN)/acrylic (AA) acid and also acrylonitrile/styrene (Sty) mix-
tures into cellulose fibers as novel graft copolymers, compared to individual monomers
as well as to their other binary mixtures [32,35,37,55,59]. Moreover, we aimed to assess
the behavior of Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) for Ni(II) and Cu(II) metal
ions and to determine the underlying mechanisms. Accordingly, the adsorption behav-
ior of Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) towards Ni(II) and Cu(II) metal ions
from aqueous medium were examined at different adsorption factors, such as adsorption
contact time, pH medium, adsorption temperature, and initial metal ion concentration,
to determine the optimized adsorption conditions. The adsorption data were applied in
different adsorption isotherm models for evaluating the sorption mechanism and also were
compared with other studies [32,35,37,55–57,59] to investigate the effect of the graft poly-
merization initiation system and the type of binary monomer mixture on the adsorption
efficiencies towards heavy metal ions removal.

2. Materials and Methods
2.1. Materials

Cellulose cotton fiber (75 g/m2), produced by the El-Mahalla Company for Spinning
and Weaving—EL-Mahalla ELkobra, Egypt, was used. Acrylonitrile (AN), acrylic acid
(AA), and styrene (Sty) were received from Wako Pure Chemical Industries, Ltd., Tokyo,
Japan, and were purified by distillation. Potassium permanganate, dimethylformamide
(DMF), and ethyl acetate were purchased from Kishida Chemical Co., Ltd., Osaka, Japan
and used as received. Citric acid, acetone, methanol, sodium hydroxide, nickel chloride,
and copper chloride were purchased from Wako Pure Chemical Industries, Ltd., Tokyo,
Japan, and were used without further purification.

2.2. Graft Copolymerization of Binary Vinyl Monomers Mixture onto Cellulose Fibers

Grafting of the binary mixture was carried out using the most efficient conditions
obtained from our previous work [58]. Briefly, using a cellulose material to liquid ratio of
1:100 (wt/vol), one gram of pure cellulose was impregnated in 0.05 mol/L aqueous KMnO4
solution. The treatment method was run for 30 min at 60 ◦C under continuous shaking, then
the samples were washed several times using distilled water. Subsequently, the optimized
conditions of the graft copolymerization obtained from our previous work [58] were used
for grafting of AN-other monomer mixtures (AA or Sty) onto cellulose at various volume
(%) ratios: 10:0; 8:2; 6:4; 4:6; 2:8; and 0:10 to attain a total monomer ratio of 10 vol% in
the grafting solution. After the reaction time (one hour), the sample was removed from
the flask and washed with dist. H2O several times to remove the unreacted monomers.
The homopolymer was removed from the grafted samples by washing with DMF for AN
homopolymer, ethyl acetate for AA homopolymer, and methanol for Sty homopolymer.
Finally, the pure grafted cellulose samples were dried at 40 ◦C for 24 h and the percent graft
yield (GY%) was calculated using the following equation.

GY (%) =
W2 − W1

W1
× 10 (1)
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where W1 and W2 are the weights of initial cellulose, and grafted cellulose, respectively.

2.3. Characterization
2.3.1. Scanning Electron Microscopy (SEM)

Surface morphology of the pure cellulose and grafted samples were examined by
Hitachi S-4100 SEM (Hitachi High-Tech, Tokyo, Japan) at an accelerating voltage of 10 KV.

2.3.2. Solid State NMR Measurement (13C CP MAC NMR)

Solid state 13C NMR analysis was measured on Delta2-NMR spectrometer (B0 = 9.4 T)
(Jeol Ltd., Tokyo, Japan) with resonance frequency of 100.52 MHz at Kyushu University.
Samples were held in Aurum tube-capped zirconia rotors (6 mmϕ). The decoupling with
TPPM at γB1/2P = 100 kHz and the 5-KHz spinning speed were used. Take note that
through a comparison of the data for untreated cellulose, the compatibility of the data
using both different instruments/conditions were proven.

2.3.3. Fourier Transform Infrared Spectroscopy (FT-IR Spectra)

The Bio-Rad FTS 6000 spectrometer (Tokyo, Japan) was used to record IR spectra for
cellulose and its graft copolymer samples with 32 scans at a maximum resolution of 2 cm−1.
A 10 µm-thick layer of material was used by weighing 1.0 mg of sample pressed onto to
potassium bromide. The scanned range of FT-IR spectra was 400–4000 cm−1.

2.3.4. Thermogravimetric Analysis (TGA)

A pure cellulose, cellulose graft copolymer with AN and with binary vinyl monomers
were characterized by TGA by using Seiko TG/DTA6300 (Seiko Instruments Inc., Chiba,
Japan) in nitrogen atmosphere. The weight of measured samples were in the range of
1.1–1.4 mg and TGA were recorded from 28 to 530 ◦C and heated at a rate of 10 ◦C/min.

2.3.5. X-ray Measurements

The X-ray diffractogram (XRD) of cellulose samples were measured with Rigaku
RINT2100H/KLC X-ray diffraction instrument (Rigaku, Tokyo, Japan) with Ni-filtered Cu
Kα radiation at room temperature with 2θ range of 5–30◦.

2.4. Adsorption of Metal Ions from Aqueous Medium

In distilled water, 50 mL solutions of each metal ion were prepared by dissolving
correctly weighed metal chlorides. Each batch experiment used 0.05 g of cellulose samples
in metal ion solution. The instrument UV-Vis spectroscopy (Hitachi U-3200 spectropho-
tometer, Hitachi High-Tech, Tokyo, Japan) was used to determine the concentration of metal
ions remaining in the solution after a predetermined duration. Influence of the medium
pH (2.0–6.5), contact time (0.5–36 h), temperature (20–45 ◦C), and concentration of metal
ion (20–1000 mg/L) on the adsorption efficiency of the grafted cellulose samples was also
investigated in batch tests. The following Equations (2) and (3) were used to determine the
adsorption capacity ‘qe’ and the percent uptake (Pu) [60,61].

qe =
Ci − Ce

Wt
V (2)

Pu =
Ci − Ce

Ci
× 100 (3)

where Ci = initial concentration of metal ions (mg/L), and Ce = equilibrium concentration
in medium after time (mg/L), v = volume of the metal ion solution (L), and Wt = weight of
the adsorbent sample (g).

All the graft copolymerization and adsorption experiments were repeated three times.
Results were expressed as mean ± SD.
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3. Results and Discussion
3.1. Graft Copolymerization

The individual grafting of acrylic acid (AA), and styrene (Sty) have been studied by
using redox system of KMnO4/citric acid with the efficient reaction conditions obtained
before in our previous work [58]. It was found that the grafting of AA and Sty have no
or slight efficiencies onto cellulose in presence of the redox system compared with AN,
which has high effect as shown in Table 1. From these results, the grafting of AA and
Sty monomers onto cellulose were not active to attach directly to cellulose backbone by
KMnO4/citric acid redox system. According to the obtained results and our previous
studies [58], AN was used as the principle and acceptor monomers to the other monomer
in the grafting binary monomers mixtures.

Table 1. Effect of different monomer concentration and binary monomer mixture ratio of (10% v
monomer conc.) on the percent graft yield, time = 60 min, [KMnO4] = 0.05 mol/L, [citric acid] = 0.02
mol/L, T = 70 ◦C.

Monomer
(V%) Percent Graft Yield (GY%) Monomer Ratio (10%)

(AN: Vinyl Monomer)

Percent Graft Yield
(GY%)

AN AA Sty AN:AA AN:Sty

2 7.8 00.0 00.0 100:00 69.3 69.3
4 19.8 00.0 00.0 80:20 54.9 43.4
6 49.1 00.0 00.0 60:40 71.3 79.5
8 68.4 00.0 00.0 40:60 48 23.2

10 69.3 3.3 00.0 20:80 13.2 4.2

The grafting behavior of the binary mixtures of AN with other monomers at the
abovementioned reaction conditions are presented in Table 1 and Figure 1a,b. Grafting of
binary vinyl monomer mixtures onto cellulose was carried out using AN as the principal
monomer [62–64]. The higher percentage of grafting in the binary monomer mixtures
can be explained by the fact that the insertion of the electron-acceptor monomers, AN, as
well as the electron–donor monomers, AA and Sty, to AN increase the reactivity of the
monomers towards grafting.

In the case of AN/AA and AN/Sty mixtures, as shown in Figure 1a,b, grafting of
AA on the cellulose is very low. However, in the case of the mixture, the percent graft
yield (GY%) increases with increasing the ratio of AN up to 60% from the total monomer
percentage (10%). This is attributed to the higher reactivity of AN over that of AA and
Sty, and thereby leading to less free radical sites on the monomeric units, and hence, a
decreased graft yield has been shown by decreasing the percentage of AN. As a result, GY%
depends on the monomer ratio in the initial mixture and on their concentration as well as
shown in Table 1.

3.2. Characterization of the Grafted Cellulose
3.2.1. SEM Analysis

Structural and morphological properties of pure cellulose (pure-cell), cellulose-graft-
polyacrylonitrile (Cell-g-PAN), cellulose-graft-poly(acrylonitrile-co-acrylic acid) (Cell-g-
P(AN-co-AA)), and cellulose-graft-poly(acrylonitrile-co-styrene) (Cell-g-p(AN-co-Sty))
were measured through SEM analysis (Figure 2). After graft copolymerization, the cel-
lulose fibers’ smooth surface transformed into a rough and more thick structures with
tiny clumps of the grafted polymers attached to it, especially with grafted binary mixture
cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty).
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tration = 10 v%, time = 60 min, [KMnO4] = 0.05 mol/L, M:L ratio = 1:100, temperature = 70 ◦C, [citric
acid] = 0.02 mol/L. (b) Percent graft yield (GY%) of AN + Sty binary mixture onto cellulose, monomer
concentration = 10 v%, time = 60 min, [KMnO4] = 0.05 mol/L, M:L ratio = 1:100, temperature = 70 ◦C,
[citric acid] = 0.02 mol/L.
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P(AN-co-Sty).

3.2.2. FT-IR Analysis

Figure 3 shows the IR spectra of pure-cell, cell-g-PAN, C-g-P(AN-co-AA), and C-
g-P(AN-co-Sty). The FTIR Spectra of all grafted cellulose samples showed the typical
characteristic peaks of cellulose. The absorption peaks around 3360 cm−1 were related to
the hydroxyl groups (–OH) and the band at 2905 cm−1 was attributed to C–H stretching
vibration. Other bands at 1430 cm−1 and 1050 cm−1 correspond to the –CH2 bending
vibration and C–O–C stretching vibration in the glucopyranose ring, respectively. In
the IR spectrum of Cell-g-PAN, the band at 2243 cm−1 was assigned to the nitrile group
(CN). Compared with the IR spectrum of Cell-g-PAN, the IR spectra of cellulose graft
poly(acrylonitrile-co-acrylic acid) has shown an additional absorption band at 1728 cm−1

due to the carbonyl group (C=O) of acrylic acid (Figure 3). Moreover, another absorption
band at 2243 cm−1 was observed due to CN group of acrylonitrile in comparison to
pure cellulose. The distinctive peaks of cellulose include a strong and broad band
at 3500–3000 cm−1, which represents the O–H bond from AA. Hence, this supplied
evidence for the grafting of both monomers onto cellulose. In the IR spectrum of Cell-g-
P(AN-co-Sty), the peak at 889 cm−1 was related to C–H aromatic group of Sty, as well
as bands at 1492 cm−1 and 3150–2850 cm−1 range, corresponding to the aromatic ring
mode and aromatic C–H/CH2 stretching of polystyrene. According to these results,
AN, AA, and Sty successfully introduced pure cellulose by the graft-copolymerization
using KMnO4/citric acid redox system. Figure 3b represents IR of C-g-P(AN-co-AA) and
Cell-g-P(AN-co-Sty) after adsorption of Ni(II) and Cu(II) ions. The peak of C=O group
in Cell-g-p(AN-co-AA) exhibited low intensity and shifted to 1770 and 1762 cm−1, due
to the formation of complexes with Ni(II) and Cu(II) metal ions [37,65]. Furthermore,
the peaks of C-H aromatic group and aromatic ring in Cell-g-P(AN-co-Sty) shifted
to1528 and795 cm−1 after adsorption of Ni(II), respectively, and also shifted to 795 and
788 cm−1 after adsorption of Cu(II) ions, respectively. In addition, the peaks related
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to CN slightly shifted to 2462 and 2458 cm−1 in Cell-g-P(AN-co-AA) and Cell-g-P(AN-
co-Sty), respectively. This strongly supports the coordination between Cell-g-P(AN-co-
AA), Cell-g-P(AA-co-Sty), and heavy metal ions, which suggests that carboxylic group
and aromatic rings are involved in the adsorption of the heavy metal ions from the
aqueous medium.
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3.2.3. Solid State NMR Analysis

Cellulose samples grafted with the binary mixtures of vinyl monomers were examined
by 13C Cp MAS NMR analysis. As previously discussed, graft-cellulose with AN exhibits a
spectrum with an intense and clearly recognizable peak at 125 ppm, attributed to the nitrile
carbons, and a broad resonance at about 40 ppm, according to the polyacrylonitrile (PAN)
backbone’s carbon resonance [58].

In Figure 4, the spectrum of the cellulose graft poly(acrylonitrile-co-acrylic acid) is
reported. Resonance belonging AA are well observable: the resonance peaks due to AA
backbone are found at 31 and 42 ppm which overlap with peak of carbon resonance of PAN
backbone and the resonance of carbonyl carbon is detected at 176 ppm. The grafting reaction
has no effect on the cellulose backbone structure; in fact, the spectral range 60–116 ppm
remains unaltered. Also, the characteristic signals for AN are observed, along with the AN
backbone at 40 ppm and nitrile group resonance at 137 ppm.
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Figure 4. 13C CP MAS NMR spectra of pure cellulose, cellulose-graft-polyacrylonitrile, and its binary
monomer mixtures with AA and Sty.

The 13C spectrum of cellulose graft poly(acrylonitrile-co-styrene) shows extra peaks
resulting from the polystyrene bonded to the polyacrylonitrile grafts. The main chain CH
and CH2 carbons give rise to the peaks at 22–28 ppm, while the tertiary aromatic carbons
resonate at the clear intense peak of 122 ppm and the quaternary aromatic carbon resonates
at approximately 140 ppm.

3.2.4. Thermal Analysis

Thermal characterization and degradation of cellulose and its grafted samples with
AN and mixture of monomers were studied by TGA as shown in Table 2 and Figure 5.
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TGA of pure cellulose showed 6% of weight loss at up to 100 ◦C, which represents the
water desorption stage. In addition, this peak was observed in cell-g-PAN with 4% weight
loss. The difference between pure cellulose and cell-g-PAN is attributed to the presence
of the hydrophobic PAN chain polymer. In the decomposition stage from 250 ◦C to
370 ◦C, there is a difference between TG of cellulose and TG of cell-g-PAN in cellulose. At
250–300 ◦C, there is about 10% weight loss in the grafted samples which is comparable
to thermal decomposition of PAN [58]. In the range 300–370 ◦C, a sharp weight loss was
observed in pure cellulose with 78% and in cell-g-PAN with 36%, which can be referred to
depolymerization of cellulose backbone chain through the degradation of glycosidic bonds
(C–O–C) with the decomposition of the grafted chain. The final decomposition temperature
was observed at 530 ◦C with 2% residue left in pure cellulose and 33% in cell-g-PAN.

Table 2. Thermal analysis data the grafted cellulose with different monomers and different monomers
mixtures.

Sample
(IDT-FDT ◦C)

Mass Loss of Stages (%) Residue (%)
at 530 ◦C

First Second Third Fourth

UN-C 28–115 ◦C
6%

270–382 ◦C
75.5% -- -- 2.00%

Cell-g-PAN 28–103 ◦C
4%

250–300 ◦C
10.3%

300–384 ◦C
37.2% -- 33%

Cell-g-P(AN-co-AA) 28–100 ◦C
4.5%

235–300 ◦C
4.2%

300–370 ◦C
49.9%

370–465 ◦C
15.13% 25%

Cell-g-P(AN-co-Sty) 28–150 ◦C
3.4%

260–320 ◦C
7.7%

320–380 ◦C
33.3%

390–434 ◦C
39.11% 9%
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In the case of cell-g-p(AN-co-AA) sample, the weight loss of water desorption stage is
lower than cell-g-PAN, which is attributed to more hydrophobic polymers with the grafted
binary mixture. Also, the slight increase in the thermal stability in the temperature range of
250–300 ◦C with 4.2% weight loss was observed compared to the same stage in cell-g-PAN.
The weight loss in the temperature range of 300–370 ◦C was 49.9%. Moreover, there was an
extra decomposition stage at the temperature range of 370–465 ◦C, which is attributed to the
decomposition of carboxylic group from AA [29,59,66], with 15.13% weight loss. The residue at
350 ◦C was 26%. The TGA of grafted copolymer cell-g-P(AN-co-Sty) showed the degradation
stage in the temperature range of 260–380 ◦C with 41% weight loss, which indicated higher
thermal stability compared with pure cellulose, cell-g-PAN and cell-g-p(AN-co-AA) as shown
in Table 2 and Figure 5. Furthermore, there is an extra stage starting from 390 to 434 ◦C,
which is attributed to the degradation of the Sty polymer chain. The final decomposition
temperature was at 530 ◦C with 9% residue left. From TG curves, it can be observed that
grafting of AN decreases the thermal stability of cellulose, while grafting of the binary mixture
increases the thermal stability of cellulose, compared to individual monomers as well as to
their other binary mixtures [32,35,37,55,59], especially in the presence of polystyrene.

3.2.5. X-ray Diffraction Analysis

The diffractograms of grafted cellulose with different monomer mixtures are presented
in Figure 6 and Figure S1a–d. X-ray of pure cellulose shows diffraction peaks at diffraction
angles (2θ) values of 14.5, 16.3, and 22.5, which corresponds to (101), (10l’) and (002)
reflections of cellulose I, respectively [58]. The X-ray curves in all Figures show that the
intensities of the cellulosic peaks decrease sharply on increasing the ratio of AN in the
grafting process. The values of the crystallinity degree (Cr%) are calculated [58,67] and
are listed in Table 3. In the case of grafting using AN/AA, the Cr% is different than that
grafting using AN only. Also, cellulose-graft poly(acrylonitrile-co-styrene) samples showed
a decreasing in Cr%. This decrease of Cr% may be due to the interference of bulky pendant
chains of PSty. and PAN grafted onto cellulose molecules.
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Table 3. Crystallinity degree (Cr%) of grafted cellulose with different monomers and different
monomers mixtures, monomer concentration = 10 v%, Cr% of untreated cellulose = 78.6%.

Monomers Ratio
(AN Monomer)

Total Conc. = 10 v%

Degree of Crystallinity
(Cr%)

Monomer
Concentration

(v%)

Degree of
Crystallinity

(Cr %)

AN:AA AN:Sty AN

100:00 46.2 46.2 10 46.2
80:20 52.6 42.9 8 47.3
60:40 53.3 41.7 6 50.0
40:60 55.2 44.7 4 53.0
20:80 57.7 55.6 2 57.1
00:100 69.5 --

In Figures 6 and S1a, we can observe that the ratios of 80:20 and 60:40 of the monomer
mixtures have more effect on the crystallinity of cellulosic fiber compared with the other
ratios, where the monomer mixture of AN/Sty has observed effect in comparison with
grafting of AN onto cellulose with the same volume concentration of the monomer. From
the data listed in Table 3, the degree of crystallinity is affected by GY%, and also is affected
by the type and the ratio of the binary monomer mixture used in the grafting onto cellulose.
Generally, the decline in crystallinity ratio of the grafted cellulose samples is the result of
the disorientation of the cellulose crystals upon grafting with different monomers, chiefly
with AN/Sty binary monomer mixtures.

3.3. Sorption Properties of Cellulose Graft Copolymer

The following preliminary experiments were performed to investigate the optimal
conditions for the metal ions adsorption test from the aqueous solution by the grafted
cellulose samples.

3.3.1. Effect of the pH Medium and Contact Time

Pure cellulose, Cell-g-P(AN-co-AA), and Cell-g-P(AN-co-Sty) with higher percent
graft yield were examined as adsorbents to evaluate their optimum adsorption efficiencies
towards Ni(II) and Cu(II) at 30 ◦C and 8 h. Firstly, the pH of the solution medium was
examined in the range of 2.0–6.5 to determine the most suitable one for metal adsorption.
The pH value strongly affects metal ions adsorption, precipitation, and charge surface of
the adsorbent samples, as shown in Figure 7a. With increasing the pH of the medium,
the sorption of Ni(II) and Cu(II) metal ions proportionally increases up to pH 5.5 with
cell-g-p(AN-co-AA) and cell-g-P(AN-co-Sty). The low adsorption efficiency of metals ions
at a pH lower than 4.0 can be ascribed to the competitive behavior of the adsorption of
metal ions and hydronium ions (H3O+) for the same adsorption sites of the copolymers.
Additionally, the metal ions were found as hydroxides when the initial pH was higher than
6.0, which caused turbid solutions and interfered with other parallel studies. As a result,
the pH of medium for the other adsorption experimental tests with factors was carried out
at pH 5.5.

In Figure 7b, the effect of contact time on the adsorption efficiency of cellulose graft
copolymer samples was examined for Ni(II) and Cu(II) metal ions at pretest condition of
pH 5.5, 50 mg adsorbent, 600 mg/L metal ion concentration, temperature (30 ◦C), and
50 mL volume of the adsorption solution. The adsorption behaviors of the metal ions are
similar, which is very fast with increasing the adsorption time till 4 h followed by slow
uptake rate till 8 h. After 8 h of contact time, the equilibrium was observed and hence, no
distinguished adsorption of metal ions was recorded after that time on the adsorbents. This
indicated that both the complete saturation of the sorption sites and the quick diffusion of
the metal ions onto the adsorbents’ surface had occurred.
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3.3.2. Effect of Temperature

Temperature effect on the metal ion adsorption was examined within the range of
20–45 ◦C (Figure 8). The adsorption efficiencies of Ni(II) and Cu(II) ions increase with
increasing medium temperature till 30 ◦C, then decrease with further increases in tempera-
ture. The lower adsorption ratio of metal ions onto the adsorbents may be attributed to
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the slower diffusion rate of the metal ions and the fast desorption rate compared with the
adsorption rate.
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3.3.3. Effect of Metal Ion Concentration

To study the effect of metal ion concentration, the adsorption rate and percent uptake
were recorded with pure cellulose, Cell-g-PAN, Cell-g-P(AN-co-AA), and Cell-g-P(AN-
co-Sty) with initial metal ion concentration in the range 20–1000 mg/L at the optimized
adsorption conditions of pH 5.5, 8 h contact time, and temperature of 30 ◦C, as shown
in Figure 9a,b. The amount of Ni(II) and Cu(II) ions uptake by Cell-g-PAN and Cell-g-
P(AN-co-Sty) was increased with metal ion concentration till 600 mg/L. In the case of Cell-
g-P(AN-co-AA), the adsorption efficiency of Ni(II) reached equilibrium at concentration
700 mg/L. Adsorption ratios decrease with metal ion concentration, and the adsorption
capacity is constant after 700 mg/L of initial concentration, which indicated that the active
sites on graft copolymer becomes lower and there are no sufficient active adsorption sites
on the adsorbents to remove higher number of the metal ions. In Figure 9b, cellulose graft
copolymer derivatives show the same behavior in the Cu(II) ion adsorption, but lower than
adsorption behavior towards Ni(II) ions. Cell-g-P(AN-co-Sty) and Cell-g-P(AN-co-AA)
adsorb about 5- and 6-times adsorption amount compared to Cell-g-PAN. The adsorption
capacities of Cell-g-PAN for Ni(II) and Cu(II) at the initial metal concentration 600 mg/L
were 76.2 mg/g (Pu of 12.7% Pu) and 61.56 mg/g (Pu of 10.26%), respectively. Also, at
600 mg/L initial metal ion concentration, adsorption capacities of Cell-g-P(AN-co-AA)
for Ni(II) and Cu(II) were 435.07 mg/g (Pu of 72.51%) and 375.48 mg/g (Pu of 62.58%),
respectively. On the other hand, the adsorption efficiencies of Cell-g-P(AN-co-Sty) for Ni(II)
and Cu(II) were 379.2 mg/g (Pu of 66.2%) and 349.68 mg/g (Pu of 58.28%), respectively.
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From the above results, and by comparing the adsorption efficiency to pure Cell and
Cell-g-PAN with adsorption efficiency of Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty), it
was observed that excellent adsorbents for metal ions are in the order of: Cell-g-P(AN-co-
AA) > Cell-g-P(AN-co-Sty) > Cell-g-PAN > pure-Cell and adsorption efficiency of metal
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ions is in the order of: Ni(II) > Cu(II) at the optimized adsorption conditions of pH 5.5,
8 h. contact time, and 30 ◦C temperature. The enhanced metal ion adsorption capacity
of the cellulosic material brought about by the incorporation of vinyl monomer can be
linked to the presence of the nitrile, phenyl and carboxylic groups on the grafts which
provide additional adsorption sites for the metal ions [46]. At comparative manner of graft
copolymerization, the adsorption of metal ions from aqueous solution by Cell-g-P(AN-co-
AA) is relatively higher than by Cell-g-P(AN-co-Sty) due to the presence of more carboxylic
group adsorbing sites.

3.3.4. Adsorption Isotherm Studies

In order to explain the adsorption behavior and mechanism of Cell-g-P(AN-co-AA)
and Cell-g-P(AN-co-Sty) towards Ni(II) and Cu(II) metal ions, the linear forms of Fre-
undlich and Langmuir adsorption isotherm were applied. Their related parameters were
determined for Ni(II) and Cu(II) metal ions with concentration range 20–600 mg/L at the
optimized adsorption conditions (Figure 10a,b). The Freundlich model was frequently used
to characterize the surface’s inhomogeneity. According to the Langmuir model, adsorp-
tion takes place at the adsorbent’s outside interface. The homogenous adsorbent surface
and equivalent adsorbent sites were postulated by the Langmuir adsorption isotherm
model [68]. As a result, the adsorbate monolayer forms on the adsorbent surface. The
following equations represent the Freundlich and Langmuir models [69].

Freundlich model log qe =
1
n

logCe + logKF (4)

Langmuir model
1
qe

=
1

qmKL

1
Ce

+
1

qm
(5)

where Ce is the Ni(II) and Cu(II) equilibrium concentrations in medium (mg/L), n is the
Freundlich exponent interrelated to adsorption power (Heterogeneity factor), KF represents
the Freundlich constant (mg/g), qm represents the maximum adsorption efficacy (mg/g),
KL is the Langmuir constant (L/mg), and qe is the adsorption capacity (mg/g).

Figure 10a,b and Table 4 represent the fitting curves and fitting parameters for the
isotherm models, respectively. The Langmuir adsorption isotherm was found to be the
most appropriate model based on correlation coefficient values (R2), since its R2 values are
higher than those of the Freundlich model. This implies that the metal ions chemisorb in a
monolayer onto the grafted copolymer surface. The following formula [70] provides the
properties and feasibility of the Langmuir model according to the dimensional separation
factor (RL):

RL =
1

KLCi + 1
(6)

where Ci is the initial concentration of Ni(II) and Cu(II). The RL values verify if the adsorp-
tion is irreversible (RL = 0), linear (RL = 1), unfavorable (RL > 1), or favorable (0 < RL < 1).
The values of RL for Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were less than 1, which
indicate suitable adsorption isotherm type of Ni(II) and Cu(II) metal ions onto the Cell-g-
P(AN-co-AA) and Cell-g-P(AN-co-Sty) surfaces in the investigated concentration range.
The n value, which reflects the adsorption route’s favorability, varies with sorbent het-
erogeneity. Moreover, the value of RL < 1 and n > 1 both indicated that graft copolymer
absorbents had favorable adsorption behavior.
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isotherm models, respectively. The Langmuir adsorption isotherm was found to be the 

most appropriate model based on correlation coefficient values (R2), since its R2 values are 

higher than those of the Freundlich model. This implies that the metal ions chemisorb in 

a monolayer onto the grafted copolymer surface. The following formula [70] provides the 

properties and feasibility of the Langmuir model according to the dimensional separation 

factor (RL): 

RL =  
1

KL Ci +  1
 (6) 

where, Ci is the initial concentration of Ni(II) and Cu(II). The RL values verify if the ad-

sorption is irreversible (RL = 0), linear (RL = 1), unfavorable (RL > 1), or favorable (0 < RL < 

1). The values of RL for Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were less than 1, 

which indicate suitable adsorption isotherm type of Ni(II) and Cu(II) metal ions onto the 

Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) surfaces in the investigated concentration 

range. The n value, which reflects the adsorption route’s favorability, varies with sorbent 

heterogeneity. Moreover, the value of RL < 1 and n > 1 both indicated that graft copolymer 

absorbents had favorable adsorption behavior. 

  

Figure 10. Langmuir (a) and Freundlich (b) isotherm models for the adsorption of Ni(II) and Cu(II) at
contact time = 8 h, pH = 5.5, T = 30 ◦C, adsorbent amount = 0.05 g, and V = 50 mL.

Table 4. Adsorption isotherm parameters for Ni(II) and Cu(II) adsorption onto grafted cellulose with
binary monomer mixtures.

Isotherm Constants
Cell-g-P(AN-co-AA) Cell-g-P(AN-co-Sty)

Ni(II) Cu(II) Ni(II) Cu(II)

Langmuir

KL (L/mg) 0.0018 0.0016 0.0017 0.0013
qm (mg/g) 446.43 384.62 387.59 362.32
R2 0.9989 0.9997 0.9988 0.9991
RL 0.7976 0.5142 0.4905 0.5709

Freundlich
KF (L/mg) 11.5659 9.4146 9.7029 6.6039
n 1.4432 1.5051 1.5058 1.4535
R2 0.9981 0.9941 0.9962 0.9942
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3.3.5. Comparative Study

Comparative adsorption capacities of Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty)
sorbents for Ni(II) and Cu(II) removal with other reported similar sorbents are listed in
Table 5. Compared to previously published data, the sorption efficiencies of the Cell-
g-P(AN-co-AA) and Cell-g-P(AN-co-Sty), which were synthesized by the simple graft
copolymerization method used KMnO4/citric acid redox initiator, are significantly higher.
For example, Cell-g-AASO3H-co-AAc has qmax of 112.74 and 109.77 mg/g for Ni(II) and
Cu(II) metal ions [32] as listed in Table 5.

Table 5. Comparison of Adsorption Capacity for Ni(II) and Cu(II) Removal for different Adsorbents.

Adsorbent qmax
(mg/g)

Ci
(mg/L) pH T

(◦C)
Time

h Ref.

Ni (II) Cu(II)

Cell-g-AASO3H-co-AAc 112.74 109.77 200 6 30 2 [32]

CC-g-(AA-co-AM) -- 157.51 600 5 27 0.5 [35]

CE–PAANa -- 106.3 600 5 24 [37]

Cell-g-NIPAM-co-AAc 79.78 84.67 200 5 30 6 [55]

Cell-g-NIPAM-co-GMA 74.68 82.92 200 6 (Ni)
5(Cu) 30 6 [56]

Cell-g-HEMA-co-GMA 83.80 71.40 200 6 30 6 [57]

Cell-g-HEMA-co-AAc 85.32 84.82 200 5 (Ni)
6(Cu) 30 6 [59]

Cell-g-P(AN-co-AA) 153.21 147.2 200 5.5 30 8 Current work

Cell-g-P(AN-co-Sty) 139 134.42 200 5.5 30 8 Current work

Cell-g-P(AN-co-AA) 435.07 375.48 600 5.5 30 8 Current work

Cell-g-P(AN-co-Sty) 379.2 349.68 600 5.5 30 8 Current work

4. Conclusions

New biodegradable Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) graft copolymers
were prepared by KMnO4/citric acid redox initiator and applied to absorb the heavy metal
ions. The maximum GY (%) was investigated at binary monomer mixture ratio of 60:40 of
the total volume of the monomer examined. The adsorption behaviors of cell-g-P(AN-co-
AA) and Cell-g-P(AN-co-Sty) were investigated for the removal of Ni(II) and Cu(II) from
aqueous medium. The maximum adsorption capacities of Ni(II) and Cu(II) metal ions,
recorded at the optimal adsorption efficient conditions of 8 h contact time, pH 5.5, and 30
◦C temperature, were 435.07 mg/g and 379.2 mg/g, respectively for Cell-g-P(AN-co-AA)
and 375.48 mg/g and 349.68 mg/g, respectively for Cell-g-P(AN-co-Sty), which are higher
than those for Cell-g-PAN by five or six times. The adsorption mechanism follows the
Langmuir isothermal model, where metal ions interact chemically with grafted cellulose
in monomer mixtures. In conclusion, Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were
found to have an inexpensive and significant heavy metal adsorption capacity. Remarkably,
the graft copolymerization of cellulose fiber with binary monomer mixtures for heavy metal
wastewater removal promotes both environmental and economic sustainability.

Supplementary Materials: The following supporting information can be downloaded at:
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