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ABSTRACT

PURPOSE Matching patients to clinical trials is cumbersome and costly. Attempts have
beenmade to automate the matching process; however, most have used a trial-
centric approach, which focuses on a single trial. In this study, we developed a
patient-centric matching tool that matches patient-specific demographic and
clinical information with free-text clinical trial inclusion and exclusion criteria
extracted using natural language processing to return a list of relevant clinical
trials ordered by the patient’s likelihood of eligibility.

MATERIALS
AND METHODS

Records from pediatric leukemia clinical trials were downloaded from
ClinicalTrials.gov. Regular expressions were used to discretize and extract
individual trial criteria. A multilabel support vector machine (SVM) was trained
to classify sentence embeddings of criteria into relevant clinical categories.
Labeled criteria were parsed using regular expressions to extract numbers,
comparators, and relationships. In the validation phase, a patient-trial match
score was generated for each trial and returned in the form of a ranked list for
each patient.

RESULTS In total, 5,251 discretized criteria were extracted from 216 protocols. The most
frequent criterion was previous chemotherapy/biologics (17%). The multilabel
SVM demonstrated a pooled accuracy of 75%. The text processing pipeline was
able to automatically extract 68% of eligibility criteria rules, as compared with
80% in a manual version of the tool. Automated matching was accomplished in
approximately 4 seconds, as compared with several hours using manual
derivation.

CONCLUSION To our knowledge, this project represents the first open-source attempt to
generate a patient-centric clinical trial matching tool. The tool demonstrated
acceptable performance when compared with a manual version, and it has
potential to save time and money when matching patients to trials.

INTRODUCTION

Clinical trials are a critical step in translating scientific
discoveries from bench to bedside. Many drugs that show
promise in preclinical studies are ultimately not brought to
market because of lack of efficacy. Yet, even for effective
drugs, the clinical trials process poses many challenges,
including inadequate enrollment. Roughly 86% of trials do
notmeet their enrollment timeline, and one third of phase III
trials are terminated because of inadequate participation.1-3

As a result, the process of drug development—which is
estimated to take 10-15 years and costs up to $2 billion US
dollars4—often fails. Given that the clinical trial phase of

development is often themost expensive,5 there is a pressing
need to optimize patient recruitment.

Since clinical trial eligibility criteria are nonstandardized
and semantically complex,6 screening patients for eligi-
bility is generally conducted manually. This process is
cumbersome and costly, requiring a significant amount of
time from clinicians or administrative staff who have
domain-specific expertise.5 To streamline this process,
there is significant interest in developing technology to
automate the process of patient-trial matching. However,
the lack of eligibility criteria in readily computable form is a
major bottleneck.
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Previous studies have sought to match patients to clinical
trials by computing a match score between free-text criteria
and free-text notes from the electronic health record (EHR)
although these studies have demonstrated wide-ranging
positive predictive values from 13% to 63%.5,7 Studies have
sought to validate the use of IBMWatson tomatch patients to
lung and breast cancer trials, reporting positive predictive
values as high as 76.5%.8,9 However, these studies’ meth-
odologies are largely opaque because of the technology’s
proprietary nature. Other private companies have emerged
with similar aims, including Deep Lens,10 Deep 6 AI,11 Anti-
dote,12 Mendel.ai,13 and Massive Bio.14 To date, none of these
have published information on their performance outside of
small studies or abstracts with restricted cohorts.9,15

CancerLinQ, which develops structured data sets from a
combinationof automatically andmanually curateddata froma
patient’s record, is developing capabilities to allow sites to
match patients to clinical trials.16 Genomic analysis companies,
includingTempus17 andFoundationMedicine,18 havedeveloped
genomic-based clinical trialsmatchingmechanisms to identify
patients with rare molecular alterations and match them to
clinical trials to increase enrollment for trials studying rare
subtypes. For example, Foundation Medicine has partnered
with the National Cancer Institute to notify physicians when a
patient’s genomic testing includes an alteration thatmaymake
a patient eligible for participation on theMolecular Analysis for
Therapy Choice (MATCH) study, which is assessing efficacy of
targeted therapies.18

Despite progress in clinical trials matching, nearly all efforts
rely on the cumbersome process of manual data extraction
from patient records.19 The dominant methodology used in
previouswork is known as trial-centric cohort identification,5 in
which patients from a large cohort are screened for eligibility
for a specific trial. An alternative approach is patient-centric
trial recommendation, in which physicians enter data re-
garding an individual patient into prespecified fields, after
which a recommendation engine generates probabilistic
matches toavailable trials (Fig 1). This approachgivespatients

more freedom to choose clinical trials that fit their goals and
preferences, even if those trials are not enrolling at a local
center. While some patients’ values and preferences may lead
them to only enroll on clinical trials available at a local center,
others may choose to travel to a larger referral center for
clinical trials participation—something which trial-centric
cohort identification is not well-suited to support.

This study aims to address methodological gaps in patient-
centric clinical trial recommendation via creation of an
open-source, patient-centric trial recommendation tool,
validated for the specific use case of pediatric acute leukemia.

MATERIALS AND METHODS

Protocol Data Set

A total of 216 trial protocolswere used as training data for the
matching pipeline. Selection criteria included all phase I, II,
and III clinical trials listed on ClinicalTrials.gov20 that en-
rolled children and adolescents with leukemia between 1987
and 2018. Both completed and active clinical trials were in-
cluded. Criteria formats (in order of increasing complexity)
observed included the following: inclusion/exclusion criteria
in a bulleted list (14%), inclusion/exclusion criteria in a
bulleted list with nested sub-bullets (16%), category headers
and subheaders (27%, eg, disease characteristics, biologic
therapy) in a bulleted list, and category headers/subheaders in
a bulleted list with nested sub-bullets (43%). Less complex
criteria structures (eg, simple bulleted list) were observed
with increasing frequency in more contemporary trials.

Text Extraction

To assemble a training data set, trial information from 216
protocols was downloaded as extensible markup language
(XML) files. XML files are structured data with syntax that
can readily be consumed by computing platforms (Fig 2).
XML files were parsed to extract a free-text block of eligi-
bility criteria for each trial. Individual criteria were

CONTEXT

Key Objective
To develop a tool for processing free-text clinical trial inclusion and exclusion criteria and matching patients to relevant
clinical trials.

Knowledge Generated
The automated tool for criteria extraction and patient-trial matching demonstrated acceptable performance and signifi-
cantly reduced manual workload. However, the tool failed to identify key criteria extracted by human abstractors.

Relevance
Automated clinical trial inclusion and exclusion criteria extraction can be combined with manual subject matter review to
optimize clinical trials matching performance while reducing human workload.
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discretized from each text block on the basis of recognition
of common criterion separation patterns (eg, bulleted list,
numbered outline) via the application of flexible regular
expressions. Text preprocessing involved lowercasing text
(except for medical abbreviations), removal of special
characters (except semicolons, which are used to specify
genetic mutations), removal of single-letter words, removal
of stop words, and lemmatization (the grouping together of
inflected forms).

Sentence Embedding and Labeling

After processing, individual text criteria were represented
numerically as sentence embeddings using FastText,21 an
open-source algorithm developed by Facebook. Embeddings
wereconstructedusingacontinuousbag-of-wordsmodel22 and
a vector size of 256, with otherwise default hyperparameters.
Word embeddingswere transformed into sentence embeddings
by taking the average of all word embedding vectors of a
sentence (known as mean/average-pooling or centroid
method).23,24 Each criterion was manually assigned a label
corresponding to a clinically relevant category (eg, required
renal function) by a study teammemberwith input fromclinical
subject matter experts. Thirteen label categories (12 labels plus
other category)were derived fromprevious semantic categories
defined in the literature25 and variable categories prominent in
the leukemia data dictionaries of the Pediatric Cancer Data
Commons, the flagship project of Data for the Common
Good.26,27 Remaining criteria were labeled as unclassified.

Training of Multilabel Support Vector
Machine Classifier

The sentence embeddings with labels were used to train a
multilabel support vector machine (SVM). Modeled criteria
were selected on the basis of their frequency (ie, higher
likelihood of being encountered in other trials) and syntactic

regularity (ie, higher likelihood of being matched to patient
characteristics withoutmultiple comparators and deepnested
logic). Criteria represented in <2% of trials were not included
in themodel. A one-versus-all approachwasused to select the
label with the highest probability of match. Platt scaling28,29

was used to transform decision values into probabilities. Grid
search30 with five-fold cross-validation was performed for
the cost (C) hyperparameter, whose values were inversely
weighted to the outcome rate (ie, class frequency) to adjust for
class imbalance. In addition, to flag text data that did not fit a
prespecified category, a variety of confidence thresholds were
tested at which to leave a sentence unclassified.

Patient-Trial Matching

To compute a similarity score for each trial, available
structured fields (ie, age and diagnosis) were extracted from
input XML files and converted into if-then logic to flag a
potentially matched criterion. For machine-classified free
text with a relatively predictable structure in the data set
(eg, required renal function), logic filters were constructed
using flexible regular expressions to extract numbers, com-
parators, and relationships. After extraction, comparison
with an input patient field (eg, creatinine) could bemade by
computing the proportion of matches to potential matches.
Individual criteria match scores were summed and divided
by the total number of potential matches to produce a
normalized composite match score for each trial. A penalty
was added to each composite score on the basis of a trial’s
percentage of unclassified criteria. Composite scores could
then be ranked in order of highest potential likelihood of
eligibility.

Pipeline Validation

For validation, a cohort offive currently enrolling trials being
used in a nonautomated version of this matching tool

Trial-centric matching Patient-centric matching

FIG 1. Comparison of trial-centric and patient-centric matching approaches. Trial-centric matching
attempts to identify one or more patients who are eligible to participate in a clinical trial. By contrast,
patient-centric matching attempts to identify one or more clinical trials a patient may be eligible for.
The directional one-to-many asymmetry in patient-centric matching approaches may lend to greater
patient choice.
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(GEARBOx31) was placed into the extraction, classification,
and scoring pipeline described above. To assess how the
model would perform with input formats other than
XML, three of the five trials were extracted as full pro-
tocols from Microsoft Word documents—a file format
commonly used for protocols that were not represented
in the training data. Text classification performance was
reported as accuracy, precision, and recall. The propor-
tion of automatically extracted information as compared
with that manually extracted by the tool’s current ver-
sion was reported as a percentage. A synthetic cohort of
20 patients was generated using Python by defining all
eligibility criteria used by the trial matching tool and
randomly populating patient characteristics within re-
alistic bounds. The synthetic cohort was used to assess
the tool’s top-3 accuracy in patient matching as com-
pared with the manual tool. The synthetic cohort sample
size was limited to 20 patients to balance the time re-
quired to validate against the nonautomated tool as this
portion of the validation required manual entry of all
patient characteristics. Finally, a time analysis estimate
was conducted to compare manual versus automatic
extraction.

Software and Tools

Text extraction and processing, data analysis, and visuali-
zation were conducted using the Python programming
language32 in the Jupyter Notebook environment.33 Machine
learning and natural language processing (NLP) libraries

used included scikit-learn,30 Natural Language ToolKit,34

and gensim.35

RESULTS

A total of 5,251 discretized criteria were extracted from the
protocols (Fig 3).

Eligibility criteria label types includedprevious chemotherapy/
biologics (17%), patient pregnancy and/or contraception
use (7%), renal function (6%), diagnosis (5%), disease
status (5%, eg, relapsed/refractory to therapy), active
infection (5%), hepatic function (5%), performance
status (4%), cardiovascular function (4%), previous
radiotherapy (3%), age (3%), and central nervous system
involvement (2%). Approximately 35% of criteria did not
fall into a prespecified category and were categorized as
others.

Classifier Performance

The held-out validation data set of five trials comprised a
total of 216 discretized eligibility criteria. The one- versus
all-text classifier demonstrated 75% pooled accuracy,
76% precision, and 75% recall. Individual accuracy as
compared with a human abstractor was highest for renal
function (83%), performance status (83%), and active
infection (73%). Lowest accuracy was observed for stem-
cell donor availability (59%) and concurrent medications
(59%).

<Struct Name = "EligibilityModule">
<Field Name = "EligibilityCriteria">Inclusion Criteria:

Patients must be enrolled on APEC14B1 and consented to Eligibility Screening on the Part A consent form prior to enrollment on AALL1131

White Blood Cell Count (WBC) Criteria

Age 1-9.99 years: WBC &gt; = 50 000/uL
Age 10-30.99 years: Any WBC

Age 1-30.99 years: Any WBC with:

Testicular leukemia
CNS leukemia (CNS3)
Steroid pretreatment
Patients must have newly diagnosed B lymphoblastic leukemia (2008 World Health Organization [WHO] classification) (also termed B-precursor acute lymphoblastic
    leukemia); patients with Down syndrome are also eligible
Organ function requirements for patients with Ph-like ALL and a predicted TKI-sensitive mutation: patients identified as Ph-like with a TKI-sensitive kinase
    mutation must have assessment of organ function performed within 3 days of study entry onto the dasatinib arm of AALL1131

Creatinine clearance or radioisotope glomerular filtration rate (GFR) &gt; 70mL/min/1.73 m^2 or a serum creatinine based on age/gender as follows:

Age: Maximum Serum Creatinine (mg/dL)
1 to &gt; 6 months: 0.4 (male) 0.4 (female)

1 to &gt; 2 years: 0.6 (male) 0.6 (female)
2 &gt; 6 years: 0.8 (male) 0.8 (female)
6 to &gt; 10 years: 1.0 (male) 1.0 (female)
10 to &gt; 13 years: 1.2 (male) 1.2 (female)
13 to &gt; 16 years: 1.5 (male) 1.4 (female)
&gt; 16 years: 1.7 (male) 1.4 (female)
Direct bilirubin = &gt; 3 x upper limit of normal (ULN) for age, and
Serum glutamate pyruvate transaminase (SGPT) (alanine aminotransferase [ALT]) = &gt; 10 x upper limit of normal (ULN) for age

FIG 2. Eligibility criteria excerpt from extensible markup language file from ClinicalTrials.gov identifier: NCT02883049.
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Comparative Performance With a Nonautomated
Patient-Matching Tool

The nonautomated version of this tool represents approx-
imately 20 patient-criteria match fields that were manually
chosen as relevant inclusion criteria, extracted from free text
and hand-coded into if-then logic. The automated prototype
of this studywas able to recognize and extract 12 of 20 (60%)
represented fields automatically and extract eligibility rules
for five additional criteria fields not represented in the
manual version. These additional five fields that were lev-
eraged by the automated tool were not included in the
manual version as they were not deemed to be as relevant as
other criteria when the manual version was generated. This
represents an information extraction of 68% for the auto-
mated version as compared with 80% for the manually
derived tool (Fig 4).

When compared with the manually derived version across a
cohort of 20 synthetically generated patients, the automated
matching tool generated ranked lists with a top-3 trial ac-
curacy of 100%. In other words, the top trial identified by the
manual version was present in the top 3 identified as most
likely from the automated version 100% of the time. The top
1 accuracy was 15%.

The automated matching algorithm took approximately 3-4
seconds to derive eligibility criteria for multiple input trials
and return a ranked list of trials in order of most likely
eligibility for an individual patient. On the other hand,
manual derivation eligibility criteria rules may take hours
to hand-code if-then logic for every new trial. An estimate
provided by the technical team that developed GEARBOx is
that the manual process takes approximately 8 hours to
extract eligibility criteria and code into if-then logic for
each trial.

DISCUSSION

We successfully developed a patient-centric, automated text
extraction and classification pipeline for matching children
with leukemia to clinical trials. The prototype demonstrated
acceptable performance when compared with a manually
derived version of the same tool. The automation process led
to a modest 12% drop in information extraction compared
with manual methods, which can reduce the workload for
human abstractors. Classification of discrete clinical trial
criteria via a multilabel SVM achieved a pooled accuracy of
75%, which is similar in performance to other studies ex-
amining semantically complex biomedical text.36 Further
validation across a larger set of clinical trials and real-world
patients will provide additional insights into performance.
Eligibility criteria categories for which individual accuracy
was the highest were typically those with the most repeated
and predictable syntax, such as organ function laboratory
value requirements. Automated recognition of more variable
text categories, such as contraindicated medications, proved
to be more difficult as pharmaceutical-related text can have
very high degrees of freedom and medications may be re-
ferred to by category (eg, corticosteroid) or drug name.
Composite matching scores generated from the natural
language processing pipeline were able to achieve a 100%
top-3 accuracy in recommending patients from a synthetic
cohort to currently enrolling trials. Furthermore, the pro-
totype was able to achieve these results with a processing
time of approximately 4 seconds, as compared with an es-
timated manual extraction time of 8 hours. This demon-
strates potential to save time via automated classification of
well-recognized trial criteria, leaving only poorly processed
sentences for manual review. Although the most ideal future
state would include authoring of clinical trials in a tool that
includes structured data elements from the start, we envi-
sion an intermediate future state where an automated ma-
chine learning model performs initial extraction and
programming of if-then logic on the basis of inclusion
criteria in an effort to leverage large data sets to identify
pertinent inclusion criteria, which are then reviewed by a
subject matter expert for completeness, accuracy, and rel-
ative importance. This process combines the efficiency of an
automated process that uses a large data set with the
strengths of human abstractors to increase the ease with
which new trials can be added to automated clinical trials
matching tools while also optimizing precision and recall for
clinical trials matching.

Strengths of this work include transparent methods and
assessment of algorithm performance. TrialJectory is a
similar tool that takes a patient-driven approach, encour-
aging patients to answer questions about their diagnosis and
personal preferences and attempts to match patients to
clinical trials on the basis of artificial intelligence–based
extraction of eligibility criteria from ClinicalTrials.gov.37

However, we were unable to compare our performance
with that of TrialJectory as the details of their proprietary

Free-text blocks of eligibility criteria from historical trials
1987-2018 (n = 216)

Individualized criteria, extracted via regular expressions
(n = 5,251)

Text preprocessing
(lowercasing, special character removal, vectorization)

Training of multilabel SVM classifier

Embedded criteria,
labeled into 12 clinical categories (n = 5,251)

FIG 3. Process diagram with descriptive results of text pro-
cessing. SVM, support vector machine.
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Manual Version

(GEARBOx)

Automated

Prototype

(machine

learning)

Time Scale Days-Weeks 3-4 Seconds

Age

Weight

Diagnosis

Presence of refractory disease

Presence of relapsed disease

No. of episodes of refractory disease

No. of episodes of relapsed disease

No. of induction cycles

Sinusoidal obstructive syndrome

Extramedullary non-CNS disease

CNS involvement

CNS disease status

Days since the last cytotoxic agent

Days since the last dose of steroid

Chemotherapy-related cardiotoxicity

Transaminase levels

Direct bilirubin level

Liver function attributable to leukemia

MSLN expression

E-Selectin expression

Performance status (eg, ECOG,
Karnofsky)

Days since the last dose of biologic
therapy

Days since the last dose of growth
factor

Impaired cardiac function

Active infection

Information extracted 80% (20/25) 68% (17/25)

FIG 4. Comparison of feature extraction between automated andmanual tools.
ECOG, Eastern Cooperative Oncology Group.
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method and its performance on the same data set were not
available.

This study has multiple limitations. First, the training data
set used came exclusively via ClinicalTrials.gov. Although
this is a readily available public resource, it may not contain
all eligibility criteria included in a trial’s full protocol (often
buried within a PDF orMicrosoft Word document). However,
typically, the most pertinent information is included in
ClinicalTrials.gov, and given that this tool applies a proba-
bilistic recommendation approach to screen for potential
eligibility, the entirety of the eligibility criteria may not be
necessary. Second, although comparative performance
metrics were reported, the manually derived version of the
tool is not directly comparable with the automated proto-
type. This is because the manual version uses a more de-
terministic approach to trial matching (ie, yes/no) on the
basis of pertinent eligibility criteria deemed most relevant
and extracted by human abstractors, whereas the automated
version assigns a probability on the basis of criteria that were
identified through an automated process. Because of this
difference, trials assigned as a poor match with the manual
version could demonstrate a relatively high composite
probability when using automation. Moreover, at the time of
validation, there was no immediately available cohort of
real-world patients with leukemia for comparison of the
tool’s performance. Although the synthetic cohort was
generated to represent characteristics of realistic patients
with leukemia, these results may not be generalizable to
real-world cohorts as they were randomly generated. The
synthetic cohort therefore may introduce bias. Future vali-
dation work could include applying the algorithm to a dei-
dentified set of real-world patients that includes a larger
sample size than the synthetic cohort and development of
automated methods to enter data into the nonautomated
matching tool for larger-scale validation. Because the
training data set represented pediatric leukemia trials
conducted in the United States, the model may not perform
well with trials conducted on other diseases (which may
focus on different categories of eligibility criteria) or trials
performed outside of the United States, whichmay format or
phrase eligibility criteria differently. The automated tool was
validated against a relatively small number of clinical trials;
validation against a larger set of clinical trials would improve
our understanding of the tool’s performance across a
broader set of clinical trials. As the tool was not tested in a
real-world clinical setting, we were unable to assess the
burden of false-positive matches on the patient and clinical
team.When implemented in real-world practice, the optimal
tradeoff between sensitivity and specificity may need to be
calibrated to optimize the matching process while also
minimizing the burden of false-positive matches. Finally,
one key limitation of the automated model was the ability to
extract named pharmaceutical agents. We expect improve-
ments in model performance by exposing the model to a
larger corpus of drug names (eg, RxNorm).

In conclusion, to our knowledge, this represents the first
open-source and publicly documented attempt to gen-
erate a patient-centric trial matching tool for pediatric
leukemia, in which providers anywhere can enter infor-
mation regarding their patient and find a probabilistic
match to currently enrolling trials. The majority of pre-
vious studies in patient-trial matching do not offer this
capability as cohort-centric matching tools often focus
on a single trial. Moreover, existing clinical trials
matching systems are proprietary and lack transparency
about how trial lists are generated. Nonetheless, the
performance of the systemwe describe could be compared
with that of proprietary systems head-to-head by en-
tering patient information and assessing—through
subject matter expert review—accuracy of top clinical
trials matches, assuming that both systems include the
same clinical trials against which tomatch patients. While
trial-centric approaches are designed to maximize en-
rollment on a particular trial, patient-centric approaches
are designed to maximize patients’ choice for clinical
trials enrollment.

By automating the process for clinical trials matching,
barriers to access for clinical trials enrollment can be low-
ered. Future work will seek to take advantage of more so-
phisticated classification techniques, such as bidirectional
encoder representations from transformers (BERT38), and to
validate probabilistic patient-trial matching scores on real-
world cohorts across multiple disease groups. Although the
approach we describe automates clinical trials eligibility
criteria extraction, the extraction and entry of patient
characteristics remain a manual process. Data standards,
including HL7 Fast Healthcare Interoperability Resources,
have the potential to automate data extraction from the EHR,
bringing us one step closer to the holy grail of end-to-end
automation for clinical trials matching.

Although NLP capabilities have significantly advanced over
the past decade, NLP remains imperfect and manual human
review remains the gold standard for determining patient
eligibility for clinical trials. Researchers, pharmaceutical
companies, research cooperative groups, clinicians, and
patients would all benefit from the use of data standards,
with common data elements to represent clinical trials
eligibility criteria. This ideal state would allow for eli-
gibility criteria to be unambiguously coded in machine-
interpretable form and compared with discrete data
elements within the EHR (eg, laboratory tests, patient
demographics, diagnosis codes). Thus far, a lack of in-
centive alignment has precluded widespread adoption of
such an ideal state, requiring the type of third-party,
downstream tool and platform development as we have
described. As the community increases adoption of trial
authoring platforms that produce structured standard-
ized data, there will be an increase in fidelity and
availability of trial matching tools for clinicians.
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