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Abstract

In recent years, a substantial amount of data have supported an active role of gut microbiota in 

mediating mammalian brain function and health. Mining gut microbiota and their metabolites for 
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neuroprotection is enticing but requires that the fundamental biochemical details underlying such 

microbiota–brain crosstalk be deciphered. While a neuronal gut–brain axis (through the vagus 

nerve) is not disputable, accumulating studies also point to a humoral route (via blood/lymphatic 

circulation) by which innumerable microbial molecular cues translocate from local gut epithelia 

to circulation with potentials to further cross the blood–brain barrier and reach the brain. In this 

Perspective, we review a realm of gut microbial molecules to evaluate their fate, function, and 

neuroactivities in vivo as mediated by microbiota. We turn to seminal studies of neurophysiology 

and neurologic disease models for the elucidation of biochemical pathways that link microbiota 

to gut–brain signaling. In addition, we discuss opportunities and challenges for advancing the 

microbiota–brain axis field while calling for high-throughput discovery of microbial molecules 

and studies for resolving the interspecies, interorgan, and interclass interaction among these 

neuroactive microbial molecules.

Graphical Abstract

1. MICROBIOTA, GUT–BRAIN AXIS, AND MOLECULES

The advancement of next-generation sequencing (NGS) technologies over the past decade 

has led to explosive growth in the knowledge of the trillions of microorganisms 

colonizing our gastrointestinal (GI) tract, collectively known as gut microbiota.1 These 

resident microbes have been demonstrated to mediate important physiological processes 

in mammalian host bodies, ranging from energy metabolism,2 vitamin biosynthesis,3 and 
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immune cell development4 to hormonal regulation5 and epithelial homeostasis,6 and are 

appealing in new therapeutic venues such as countermeasure against radiation-induced 

injuries.7 In turn, when perturbed or in an imbalanced state (i.e., dysbiotic), gut microbial 

communities have been linked to a long list of diseases and conditions, including metabolic 

syndrome (e.g., obesity and type II diabetes), autoimmune conditions (e.g., inflammatory 

bowel disease), and cancer (e.g., colon cancer). Notably, emerging studies on neurologic 

pathologies such as autism,8–10 Alzheimer’s disease,11–13 amyotrophic lateral sclerosis 

(ALS),14 and multiple sclerosis15 collectively support the idea that microbiota also actively 

interacts with the mammalian brain. This raises interesting questions about gut microbiota’s 

neuroactivity and the associated effects on the gut–brain axis, i.e., the bidirectional 

communication between the central nervous system (CNS, the “first brain”) and the enteric 

nervous system (ENS, the “second brain”).16

Accumulating research, mostly in vivo model-based, has explored microbiota’s roles in 

the neuronal, immune, and endocrine aspects of the two-way gut–brain crosstalk.17–19 

Sudo and colleagues first reported that commensal microbiota in mice perturbed stress 

responses through the hypothalamic–pituitary–adrenal (HPA) axis.20 Compared with their 

conventional wild-type counterparts, pathophenotypes observed in germ-free (GF) mice such 

as heightened stress responses and low brain-derived neurotrophic factor (BDNF) levels in 

cortex and hippocampus were substantially restored through select microbial reconstitution 

during a critical developmental window. This indicated a causal but conditional role 

of microbiota in stress response regulation. Likewise, mice regularly fed Lactobacillus 
rhamnosus exhibited improved emotional behavior likely owing to altered neurotransmission 

in the central GABAergic system mediated through the vagus nerve.21 In a seminal work 

probing the effects of gut bacteria on autism spectrum disorder (ASD) pathogenesis,8 

maternal immune activation (MIA) during pregnancy successfully induced murine offspring 

ASD-mimicking defects in the GI barrier and behaviors. These defects were dramatically 

restored by inoculating human Bacteroidetes fragilis, suggesting for autism a molecular 

mechanism through effects of gut bacterial products on the host metabolome. More recently, 

fecal microbiota transplantation (FMT) from young mice (3–4 months old) reversed aging-

associated cognitive behavioral deficits (e.g., long-term spatial memory) in aged recipient 

mice (19–20 months old) while offsetting immunological, transcriptome, and metabolome 

differences, providing fundamental evidence for using FMT as a therapeutic approach 

toward healthy aging.22 Conversely, improved neurogenesis and prolongevity signaling 

were observed in FMT on germ-free mouse models, as well (from old to young).23 All 

of these pioneering studies indicate an active role of gut microbiota in brain development 

and function, opening doors of microbiome-based therapies for improved neurologic/mental 

health outcomes.

While the idea of targeting microbes for neuroprotection is enticing, controversies 

regarding how a microbiota–gut–brain axis can be defined and determined for human 

populations remain. Not until recently, however, has the first population-scale evidence 

linking microbiota to mental health been published,24,25 moving beyond the limitations of 

mainstream evidence mostly derived from animal models. By correlating fecal metagenomic 

features with quality of life (QoL) and depression indicators for the large Flemish 

Gut Flora Project (FGFP) cohort, Valles-Colomer and colleagues associated butyrate-
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producing Faecalibacterium and Coprococcus with higher QoL scores while identifying 

considerably lower levels of Dialister and Coprococcus spp. in patients diagnosed with 

depression. Gut–brain module analyses singled out the microbial synthetic potential of 

3,4-dihydroxyphenylacetic acid (DOPAC), a dopamine metabolite, as being positively 

correlated with QoL scores alongside altered γ-aminobutyric acid (GABA) pathways in 

depression. In another cohort study, metagenome-wide association of gut microbial features 

in schizophrenia patients identified microbial short-chain fatty acid (SCFA) synthesis, 

tryptophan metabolism, and synthesis/degradation of neurotransmitters as contributors 

to schizophrenia pathogenesis.26 Further transplantation of schizophrenia fecal-enriched 

Streptococcus vestibularis in mice induced deficits in social behavior and perturbation of 

peripheral neurotransmitter profiles, while microbiota-related metabolite trajectories were 

examined across the perinatal period associated with mental health outcomes, overall 

revealing substantial temporal variation in tryptophan and bile acid metabolism with marked 

interindividual variability.27 Although these human cohort studies are by nature descriptive, 

they strengthen the notion that the gut microbiota harbors neuroactive potentials that can be 

harnessed for improved gut–brain signaling, physiologies, and neural health outcomes.

In the targeting of microbiota for neuroprotection, the biochemical underpinnings linking 

microbiota to the gut–brain axis remain elusive.28,29 While the neuronal pathway (through 

the vagus nerve connecting the CNS to the ENS) is not disputable, a growing body of 

evidence also points to a humoral route (via blood and lymphatic circulation)30 given 

the massive enzymatic activities and high turnover rates of microbiota-driven metabolism, 

especially in neurotransmitter production.19,31 Due to the relatively small sizes and/or ease 

of interorgan transportation, innumerable microbial molecular cues may likely translocate 

from local gut epithelia to the circulating blood and further cross the blood–brain barrier 

(BBB) to reach the brain while harboring potent signaling/regulatory potentials.32,33 A 

growing number of studies showed that gut microbe-related molecules modulate host 

homeostasis,34,35 alter barrier permeability,36 and induce neuroimmune responses,37 with 

multifaceted functional roles, for example, as neurotransmitters,38 as reactive oxygen species 

(ROS) scavengers,39 and/or as ligands for activating immune signal transductions.40

In this Perspective, we conduct a comprehensive and up-to-date review of the reported 

molecules of gut microbial sources, including both metabolites and peptides, to evaluate 

their biochemical fate and functional roles in host–microbe interaction. Importantly, we 

turn to seminal models of neurophysiology, neurologic diseases, and/or mental disorders 

to elucidate specific biochemical pathways of the microbiota–gut–brain axis in health 

and disease. Lastly, we discuss the implications of existing studies, especially the major 

challenges and opportunities for advancing microbiota–brain research for health sciences 

spanning the biomedical, nutrition, and public health arenas.

2. SMALL MOLECULES

2.1. Short-Chain Fatty Acids (SCFAs).

SCFAs are saturated fatty acids consisting of one to six carbon atoms. In mammalian 

colon, acetate, propionate, and butyrate are produced in large quantities through microbial 

fermentation of indigestible dietary fibers, comprising >95% of total SCFAs with a typical 
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molar ratio of 6:2:2.41 The specific biosynthesis, uptake, and distribution details in vivo have 

been summarized recently.42–44 Acetate can be broadly transformed by gut bacteria from 

acetyl-CoA, which is derived from pyruvate, a key intermediate of the glycolysis–citric acid 

cycle.41 More substrate-specific and species-conserved, propionate is synthesized through 

multistep reduction of lactate or succinate or depends on substrates of deoxyhexose sugars 

(e.g., fucose and rhamnose),43 whereas butyrate can be formed either from downstream 

acetyl-CoA products such as butyryl-CoA and butyryl-phosphate, from lactate and acetate 

by certain gut bacterial species (e.g., Eubacterium hallii and Anaerostipes caccae), or from 

protein through the lysine pathway, as indicated by emerging metagenomics data.45 The 

concentration profile of SCFAs varies significantly along the GI tract but typically peaks 

at cecum and proximal colon, followed by a decline toward distal colon.42 Such a luminal 

SCFA decline can be partially explained by the transport of acetate and propionate into the 

circulating blood and local consumption of butyrate by colonocytes.42

SCFAs have been intensely studied as key bacterial metabolites conferring a multitude 

of benefits for host health, with confirmed SCFA producers such as Bacteroides spp., 

Clostridium spp., and Streptococcus spp.42 Because SCFAs act as an important energy 

source with signaling activities, a large proportion of the existing studies targeted SCFAs 

for linking microbiota to metabolic syndromes such as diabetes and obesity. Interestingly, 

although SCFAs manifest metabolic benefits like improved glucose tolerance46 and 

increased thermogenesis,47 fecal SCFA levels in obese patients are higher than in the 

lean controls, which warrants elucidation in the future.48 SCFAs also contribute to gut 

integrity and immune homeostasis; inside gut lumen, SCFAs modulate the pH, balance 

redox equivalent production, and fortify the gut lining.41,43,49 In immune regulation, SCFAs 

activate G protein-coupled receptors (GPRs), inhibit histone deacetylases (HDACs),42 

control regulatory T cell (Tregs) expansion,50 and regulate local synthesis and release of 

key endocrine agents, including glucagon-like peptide 1 (GLP-1)41 and serotonin.51

Mounting studies show profound effects of gut microbial SCFAs on host brain function 

and/or CNS-mediated pathogenesis through, for example, regulating host neurodevelopment 

(e.g., microglial maturation),52 modulating BBB permeability,53 and acting on the ENS for 

appetite control.54 Erny and colleagues reported that eradicating a complex host microbiota, 

either constitutionally (as found in GF mice) or in an induced fashion (e.g., by antibiotics, 

or abx), led to severe defects in the density, morphology, and maturation of microglia, the 

resident macrophages in mammalian brain.52 In turn, a four-week administration of SCFAs 

(cocktail mix of acetate, propionate, and butyrate) markedly rectified the microglial defects 

in GF mice. Interestingly, while the Ffar2−/− mice (i.e., double knockout of genes encoding 

free fatty acid receptor 2) exhibited substantial microglial compromises, the FFAR2 protein 

(also known as GPR43) was not detected in CNS tissues, leaving how SCFAs communicated 

with the CNS incompletely elucidated. In another work employing mouse models of 

Parkinson’s disease (PD), Sampson et al. identified gut microbiota as a causal contributor to 

the hallmark motor and GI dysfunction of PD.55 One mechanism established is postnatal 

gut–brain signaling by microbial SCFAs to mediate neuroinflammatory responses and 

aggregation of α-synuclein (αSyn) protein. In addition, Perry and colleagues identified 

acetate as a microbiome–brain–β-cell axis mediator for promoting metabolic syndromes.56 

Using whole-body turnover rate determination and stable-isotope tracer analysis in vivo, 
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the authors observed in high-fat diet (HFD)-fed rats a marked increase in the rate of 

acetate turnover, for which the gut microbiome was confirmed as arguably the main source. 

Strikingly, such surging acetate levels promoted glucose-stimulated insulin secretion (GSIS) 

via activating the parasympathetic nervous system, resulting in hyperphagia, obesity, and 

related sequelae, all of which were prevented by severing the vagus nerve. In a new work, 

gut bacteria-derived acetate was discovered to also drive microglial maturation and functions 

during neurodegeneration, specifically the microglial phagocytosis of amyloid-β and disease 

progression in a mouse model of AD.13 Beyond these seminal studies, research also showed 

that SCFAs modulate BBB,57 regulate satiety,41 and interact extensively with the ENS, 

where local SCFA receptor GPR41 is strongly expressed.42,58

2.2. Bile Acids (BAs).

BAs are hepatically synthesized steroid acids (de novo, from cholesterol) that are 

subsequently conjugated to taurine, glycine, phenylalanine, tyrosine, and leucine 

(collectively termed primary BAs).59,60 Upon food intake, primary BAs are discharged 

from the gallbladder into the gut lumen, where they emulsify dietary fats and experience 

massive microbial transformation into bioactive products known as secondary BAs.59 With 

amphipathic functional groups, BAs exhibit detergent-like properties that facilitate lipid 

uptake, transport, and metabolism, with the enterohepatic circulatory pool cycle occurring at 

a frequency that depends on dietary patterns. Interestingly, more recent work revealed BAs 

as signaling molecules, as well. For example, BAs activate the nuclear receptor farnesoid 

X receptor (FXR) and Takeda G protein-coupled bile acid receptor (TGR5), both of which, 

although working seemingly independently, have been shown to be potent regulators of BA 

synthesis, energy metabolism, and immune cell homeostasis.61–63

Understanding gut microbiota’s control over BA synthesis and signaling will benefit the 

fundamental design of therapeutic solutions for diseases ranging from diabetes64 and 

nonalcoholic fatty liver disease (NAFLD)65,66 to colon cancer.67 On one hand, BAs curtail 

gut bacterial growth toward a more balanced ecological state that contributes to gut 

epithelial homeostasis. On the other hand, gut bacteria harbor a versatile enzymatic toolkit 

(e.g., glucuronidase and dehydroxylase) that drives biotransformation of primary BAs into 

secondary BAs that typically embrace increased chemical structural diversity and signaling 

potency.68,69 Targeted profiling of BAs in GF-treated, abx-treated, and conventionally raised 

rats showed that the absence of microbes (as found in both GF- and abx-treated mice) 

led to less diverse BA profiles dominated by taurine-conjugated BAs at extrahepatic sites 

of kidney, heart, and blood relative to those in conventional counterparts.70 In addition, 

Sayin et al. identified for conventional wild-type C57BL/6 mice decreased enterohepatic 

levels of muricholic acid (MCA) but not cholic acid (CA) compared with those of 

GF individuals.71 Using Fxr–/– murine strains, the study demonstrated gut microbiota’s 

control over the expression of ileum fibroblast growth factor 15 (FGF15) and hepatic 

7α-cholesterol hydrolase in a farnesoid X receptor (FXR)-dependent manner, specifically 

through reducing tauro-β-muricholic acid (TβMCA), a natural FXR antagonist. Remarkably, 

Quinn and colleagues recently discovered new BA conjugates (in addition to tauro and 

glyco species) with massive chemical impacts from microbiota, improving our fundamental 

understanding of the complex and diverse bile acid chemistry.60 Comparative microbial 
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(16s rRNA amplicon sequencing) and metabolite profiling (molecular networking-based 

annotation) across 29 organs (and/or matrices) of GF versus colonized mice identified a 

unique panoply of contrasting chemical signatures in the GI tract owing to microbiota, later 

structurally revealed as amide BA conjugates, including phenylalanocholate, tyrosocholate, 

and leucocholate, that have never before been reported; with much human health relevance, 

their functional roles related to FXR signaling were further confirmed in vitro and in vivo.

To date, a growing number of studies have been reported linking BAs to the evolving 

definition of the microbiota–gut–brain axis. Liu and colleagues showed that BAs induced 

antidiabetic effects through signaling FGF receptor 1 (FGFR1) in hypothalamic agouti-

related protein (AgRP)-producing neurons.72 In ob/ob obese mice, oral gavage of 

taurocholic acid markedly improved glucose tolerance by upregulating the level of ileum 

expression of FGF15 (murine counterpart of human FGF19), likely through an FXR-specific 

pathway. Other studies suggest that bacterially derived BAs trigger a gut–liver–brain axis 

for satiety control,73 for improved glucose metabolism (as found for bariatric surgery),74,75 

and to remedy alcohol-associated liver injuries even in cases of cirrhosis and alcoholic 

hepatitis.76

BAs are linked to altered brain function and behaviors, as well. One work employing 

rodent ASD models associated decreased abundances of gut bacterial species involved in 

BA metabolism (e.g., Bifidobacterium and Blautia spp.) with increased GI dysfunctional and 

autism-like behavioral scores.77 Another work reported that a gut-based bariatric surgery 

led to larger bile acid pools, an attenuated cocaine-induced increase in dopamine levels in 

nucleus accumbens, and reduced addiction-related behaviors; using knockout mouse models, 

the study further identified TGR5 and bile acid signaling as the key mediator.78 In a recent 

study, a humoral route via which the circulating BAs reach the brain and control the satiety 

was confirmed, where BA administration, either peripheral or central, led to an anorexigenic 

effect in a TGR5-specific manner.79

Large human cohort studies (n > 1400) of Alzheimer’s disease (AD) associated altered 

serum BA profiles with markers of cognitive decline and AD pathophysiology, supporting 

the hypothesis that circulating BAs contribute to AD pathogenesis in which gut microbiota 

plays a role.80,81 Notably, significantly lower levels of circulating CA (a primary BA) 

and higher levels of deoxycholic acid (or DCA, a secondary BA converted from CA 

by bacteria), alongside their glycine and/or taurine conjugates, were observed in AD 

patients compared to their age-matched normal controls. A strong positive association 

was identified and validated among the surging DCA:CA ratios and markers of cognitive 

impairment, indicating gut bacterial 7α-dehydroxylation of CA as one mechanistic route 

of AD pathogenesis. For specific modes of action, questions remain about whether BAs 

act locally on TGR5-expressing ENS to signal the CNS61 or originating from peripheral 

circulation, they cross the BBB (in unconjugated nonpolar forms), reach the CNS, and 

act in situ, as indicated by previous data.82–86 In addition, the functional roles of BAs in 

AD pathogenesis exhibited gender specificity, as revealed in a targeted metabolomics study 

examining 28 BAs in enterohepatic circulation of AD transgenic (PP/PS1 induced) and 

wild-type colonized mice. Compared with conventional controls, female AD transgenic mice 
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had decreased levels of primary BAs (taurine-conjugated) and increased levels of secondary 

BAs in plasma and liver, while their male counterparts exhibited the opposite trend.87

2.3. Tryptophan Catabolites.

L-Tryptophan (Trp) is an essential aromatic amino acid exclusively obtained from the diet 

via eggs, fish, and milk, with a required daily intake of 3.5 mg/kg of body weight.88 

Trp is actively involved in protein biosynthesis and cell growth while serving as a 

substrate in producing metabolites that are crucial for host physiological processes spanning 

immune cell homeostasis, energy balance, and neurotransmission.88 In mammals, Trp is 

transported throughout the body (except across the BBB) in albumin-bound forms by 

large neutral amino acid transporters (LATs).89 Trp catabolism (only in free form) occurs 

mostly inside the GI tract via three distinct pathways, namely, the kynurenine pathway 

(KP), the serotonin pathway, and production of indoles.90 In the human body, >95% of 

Trp is metabolized through KP, generating a realm of kynurenine (Kyn) derivatives with 

wide-ranging neuroactivities, including the end product nicotinamide adenine dinucleotide 

(NAD+), a cofactor essential for cellular energy metabolism.88,91 The Trp–Kyn pathway has 

been detailed from the perspective of both evolution and drug development.88,92 Smaller 

portions of Trp are converted into serotonin (5-HT) and other downstream neurotransmitters 

such as N-acetylserotonin (NAS), melatonin, and 5-hydroxyindole acetate (5-HIAA) that 

are potentially implicated in microbe–brain crosstalk.93,94 In addition, gut microbiota 

transforms Trp into indole and/or indolyl derivatives, among which many have been 

identified as key regulators of inflammation and mucosal homeostasis.95,96

The crucial role of all three Trp catabolic fluxes in orchestrating the gut–brain signaling 

has been increasingly identified, particularly in cases associating gut microbiota and 

neuropathologies.97,98 The notion of a microbiota–brain axis has been recently buttressed 

by the aforementioned FGFP cohort study,25 in which gut–brain module (GBM) analyses 

identified the presence of animal-like GBM (5-HT synthesis I) rather than the plant-like 

GBM (5-HT synthesis II) in roughly 20% of gut-associated genomes from the Integrated 

Microbial Genomes (IMG); microbial genera, including Akkermansia and Alistipes, were 

discovered as potential 5-HT producers. Such findings may open doors for targeting gut 

microbiota-regulated Trp pathways for improved mental health outcomes.

2.3.1. Serotonin.—Perhaps the best known biochemical details of microbiota–Trp 

interaction revolve around serotonin [or 5-hydroxytryptamine (5-HT)], a monoamine 

neurotransmitter that regulates mood control, appetite, and cognitive behaviors in brain as 

well as motility99 and hemostasis100 in the GI tract. Strikingly, >90% of 5-HT is synthesized 

de novo by gut endocrine cells such as enterochromaffin cells (ECs) and myenteric neurons, 

where commensal microbes are actively involved. Novel signaling cascades by which the 

microbiota acts on local 5-HT biosynthesis were recently reported; one is through direct 

signaling of colonic ECs to promote gene expression of tryptophan hydrolase 1 (TPH1).101 

The gut microbiota was also discovered to constantly regulate ENS maturation even until 

adulthood via an enteric 5-HT network.102 Note that reportedly gut-derived 5-HT cannot 

cross the BBB, and 5-HT levels in brain would thus solely depend on its CNS synthesis in 
situ;28 how microbe-mediated 5-HT metabolism in the ENS (and the extended circulatory or 
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peripheral systems) mediates CNS activities and leads to neuro-related changes constitutes a 

critical direction of future research.

2.3.2. Kynurenines.—Kynurenines, including Kyn and the downstream catabolites, 

are increasingly recognized to regulate brain health. In CNS, 40% of the Kyn pool is 

synthesized de novo, whereas the remaining 60% comes from peripheral sites through 

crossing the BBB. For the Trp–Kyn pathway occurring in peripheral tissues where 

enzyme levels are much higher than in brain, the first step is the rate-limiting one. Both 

extrahepatic indoleamine 2,3-dioxygenases (IDOs) and hepatic tryptophan 2,3-dioxygenase 

(TDO) catalyze the conversion from Trp to N-formylkynurenine, the immediate precursor of 

Kyn.103 Kyn metabolism in brain yields disparate metabolite sets with cell-specific effects. 

One is microglial generation of 3-hydroxykynurenine (3-HK) and its immediate derivative, 

quinolinic acid (Quin); 3-HK is linked to oxidative stress and apoptosis inside the CNS, 

while Quin exhibits neuronal excitotoxicity through activating the N-methyl-D-aspartate 

receptor (NMDARs).104–106 The other is kynurenic acid (Kyna), a CNS astrocyte-producing 

Kyn derivative that exerts neuroprotective effects by serving as an antagonist to both 

NMDARs and α7-nicotinic acetylcholine receptors (α7 nAChRs)107 and as an agonist 

for the aryl hydrocarbon receptor (AhR),108 a master immune regulator and an important 

transcription factor in xenobiotic metabolism. Measuring Quin:Kyna ratios in the CNS, 

therefore, will help monitor the status of CNS excitation and neuroinflammation.88,109 

Overall, accumulation of Kyn in the CNS due to peripheral inflammation has been generally 

associated with mental disorders such as depression and schizophrenia;110 it would thus be 

beneficial to dissect the role of gut microbiota in controlling peripheral Kyn availability and 

to systematically identify microbial Trp metabolites that can be transported across the BBB 

alongside the associated transporters and cellular receptors.

2.3.3. Indoles.—Bacterial Trp products, notably indole and its indolyl derivatives, have 

been identified as potent regulators that sustain mucosal homeostasis while eliciting proper 

immune responses.111 One striking example is indole-3-propionic acid (IPA), an indolyl 

metabolite exclusively from Clostridiales family bacteria such as Clostridium sporogenes.34 

IPA plays an active role of the ROS scavenger itself (i.e., an antioxidant), activates the AhR 

receptor to promote the release of anti-inflammatory cytokines [e.g., interleukin-10 (IL-10)], 

and suppresses proinflammatory cytokines such as tumor necrosis factor-α (TNF-α).112 

Likewise, indole-3-acrylic acid (IAcrA), produced by Peptostreptococcus russellii (a mucin 

user), is an AhR agonist leading to suppressed inflammation. Indole-3-acrylic acid (IAcrA) 

also binds to the pregnane X receptor (PXR) to promote gene expression of muc2 that 

encodes mucin 2 to enhance the integrity of the intestinal epithelial barrier (IEB).113

Reported evidence has linked microbial indoles to CNS function and health. One in vivo 
study of multiple sclerosis (MS) demonstrated that bacterially Trp-derived indole, indole 

3-sulfate (I3S), IPA, and indole 3-carboxaldehyde (I3A), can modulate CNS inflammation 

directly by activating the AhR receptor expressed in astrocytes.114 Another study of the 

human cohort correlated indole, indole-3-acetic acid, and skatole levels with quantitative 

readouts of functional and anatomical connectivity for the extended central reward network 

that incorporates amygdala, nucleus accumbens, and anterior insula. Association between 
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these indoles and body mass index (BMI), food addiction, and anxiety symptoms was also 

discovered.115 Note that microbiota-derived indoles can easily enter mammalian circulation 

and reshape host blood metabolomes.30,34,111 Further research should thus be conducted to 

identify and track peripheral indole species that can reach the brain and to examine how they 

mediate CNS-resident immune homeostasis and neurological functions.

2.4. Neurotransmitters.

Neurotransmitters are presynaptic compounds that evoke postsynaptic electrical signaling 

(through binding to receptors in situ) to fulfill neurophysiological functions, typically 

with a fast complete cycle of synthesis, release, and reuptake.116 In the human GI tract, 

multiple neurotransmitters, including GABA, 5-HT, and histamine, are synthesized in large 

quantities by gut bacteria. This has led to an increasing number of inquiries about the 

involvement of neurotransmitters in microbe–brain crosstalk and regulation of local gut 

microbial growth and ecology.19,117,118 Microbial endocrinology theories are continuously 

developing for neurotransmitters that embrace evolutionarily shared synthetic pathways, 

receptor families, and neuroendocrine effects among mammals and microbes.119–121 Such 

interkingdom crosstalk in the language of neurotransmitters was supported by the landmark 

FGFP cohort study.25 The results associated perturbed GABA synthetic pathways, 5-HT 

metabolism, and dopamine derivatives with quality of life (QoL) proxies and depression 

status. Here, we focus on amino acids (e.g., glutamate, GABA, and 5-HT) and biogenic 

amines (e.g., dopamine, norepinephrine, and epinephrine).

2.4.1. Glutamate and γ-Aminobutyric Acid.—L-Glutamate (Glu) and γ-

aminobutyric acid (GABA) are the major excitatory and inhibitory neurotransmitters, 

respectively, in the human CNS, and interestingly, they are biochemically interconvertible 

via the two-way (glutamine)Glu–GABA cycle.116,122 Both glutamatergic and GABAergic 

loops incorporate the fate of Glu/GABA, neurotransmission through activating widespread 

receptors in the host, and inactivation by high-affinity transport systems in glial cells (mainly 

astrocytes), with the machineries detailed elsewhere.123 For Glu–GABA metabolism, it is 

generally agreed that Glu cannot pass the BBB124,125 and, therefore, CNS Glu originates 

from only in situ synthesis, relying on glutamine (Gln) as the precursor or through 

transamination of 2-oxoglutarate from the citric acid cycle.123,126 On the contrary, evidence 

supported the idea that GABA could cross the BBB.127,128 In the CNS, GABA can be 

derived from glycolysis or from Glu as catalyzed by L-glutamic acid decarboxylase (GAD), 

an enzyme almost exclusively present in GABAergic neurons. In parallel, innumerable 

bacterial strains have been discovered to be producers of Glu (e.g., Bifidobacterium spp., 

Lactobacillus spp., and Corynebacterium glutamycum) and GABA (e.g., Lactobacillus spp., 

Escherichia coli, and Pseudomonas spp.) for functional purposes, including interspecies 

interaction.123 Studies revealed that both Glu and GABA serve as energy substrates for 

gut microbes, balance luminal pH, modulate pathogen virulence, regulate gut motility, 

etc.117,123 In this light, the microbe–brain axis through the glutamatergic and/or GABAergic 

system may be a viable pathway to explore.

Studies linking gut bacteria-derived Glu and GABA to neurological health phenotypes are 

emerging. In a landmark study,21 the lactic acid bacterial strain L. rhamnosus has been 
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demonstrated to exert a direct effect on murine CNS GABA receptor expression while 

conferring anxiolytic benefits in mice, as shown in elevated plus maze (EPM) behavioral test 

and stress hormone analyses. Through vagomization trials, the authors further identified the 

vagus nerve as a constitutive pathway of communication between gut-resident microbes 

and brain. More recently, Pokusaeva and colleagues showed in a rat model that oral 

administration of Bifidobacterium breve NCIMB8807 pESHgadB, an engineered GABA-

producing strain with overexpressed GadB genes encoding the GAB protein, led to reduced 

sensitivity to visceral pain compared to wild-type strains.38 In another work, Zheng and 

colleagues combined fecal transplant trials and revealed that gut microbiota of schizophrenia 

patients could modulate the Gln–Glu–GABA cycle and induced schizophrenia-relevant 

behaviors in mice.129

2.4.2. Catecholamines: Dopamine, Norepinephrine, and Epinephrine.—
Catecholamines, including dopamine, norepinephrine, and epinephrine, are biogenic 

amine neurotransmitters that carry crucial roles in a wide range of neurophysiological 

and behavioral processes, spanning CNS homeostasis, attention, emotional control, and 

coordination of body movement.116,130 In mammalian brain, dopamine is produced in the 

cytoplasm of presynaptic terminals through decarboxylation of its immediate precursor, 

L-3,4-dihydroxyphenylala-nine (L-DOPA), that is derived from tyrosine (Tyr) as a rate-

limiting step. In downstream reactions, dopamine serves as a substrate for producing 

norepinephrine and epinephrine.116 Although the three compounds are biochemically 

interconvertible, they carry distinct activities and functions in the CNS. More specifically, 

dopamine, mainly located in corpus striatum (an area for motor control), carries essential 

roles in motivation, reinforcement, reward, and hedonistic regulation.131 Many substances of 

abuse (e.g., cocaine and amphetamine) work by altering dopaminergic synapses in the CNS. 

Moreover, drug design for psychotherapeutic use typically mimics dopamine’s structure to 

fulfill antianxiety, antidepressant, and antipsychotic benefits. Norepinephrine is known to 

regulate attention, sleep/wakefulness, and feeding behavior, whereas epinephrine, at much 

lower CNS levels, may have an impact on memory and learning.116

The microorganisms have long been recognized as catecholamine producers. For example, 

Bacillus, Serratia, and Proteus spp. synthesize dopamine, while Escherichia, Bacillus, and 

Saccharomyces spp. are known to produce norepinephrine.118,119,132 Although how gut 

commensal bacteria contribute to host catecholamine metabolism remains to be revealed, 

accumulating data conferred such insights.133–136 Heijtz et al. discovered contrasting 

neurophenotypes between GF and specific pathogen-free (SPF) conventional mice based 

on behavioral test scores, neurochemical concentration profiles, and patterns of gene 

expression. Increased turnover ratios of dopamine and norepinephrine were found in GF 

mice, suggesting a role of microbiota.134 In addition, Kiraly and colleagues revealed in 

a mouse model that antibiotic knockdown of gut microbiota, without affecting cocaine 

metabolism and behavior-modulating stress hormones, resulted in altered cocaine-mediated 

behaviors, as characterized by heightened sensitivity to cocaine reward in conjunction 

with changes to the dopaminergic system such as increased activity of CNS D1 

dopamine receptor Drd1.135 More recently, human cohort studies associated gut microbial 

compositions and functional genes with altered dopaminergic systems in disease models 
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such as depression and PD.25,137 However, as all three polar catecholamines cannot cross 

the BBB,116 how bacterially mediated catecholamine metabolism interacts with gut–brain 

crosstalk remains elusive and warrants elucidation.

2.4.3. Other Small-Molecule Neurotransmitters.—Aside from 5-HT, glutamate/

GABA, and catecholamines, many other neurotransmitters of confirmed microbial sources 

may also mediate gut–brain signaling and alter paths of associated psychopathologies, 

although the current evidence is only emerging or at best suggestive. These span histamine, 

trace amines (β-phenylethylamine, tyramine, and tryptamine), glycine, acetylcholine 

(ACh), serine, and taurine. For instance, histamine is an organic nitrogenous mediator 

of inflammatory responses and itching; histamine contributes to tissue swelling during 

inflammation by increasing the permeability of capillaries to white blood cells and proteins. 

One study showed the probiotic strain Lactobacillus reuteri (with histidine decarboxylase) 

converts histidine to histamine, which suppresses TNF through modulation of protein 

kinase (PKA) and extracellular signal-regulated kinase (ERK) signaling.138 Likewise, 

trace amines tryptamine and β-phenylethylamine are known to play significant roles in 

appetite control, attention, and emotional processing. A range of lactic acid bacteria have 

been confirmed as their synthesizers, with Lactobacillus bulgaricus and C. sporogenes for 

producing tryptamine and Enterococcus faecalis and Leuconostoc strains for producing both 

β-phenylethylamine and tyramine.139,140 In a recent work, two gut bacteria-derived carnitine 

analogues, 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate, 

were newly identified as mediators of gut–brain communication, specifically through 

inhibition of carnitine-mediated fatty acid oxidation in brain white matter.141 Future studies 

should examine neurotransmitters for which kinetics of microbial synthesis in gut are 

better modeled, the gut microbial proportion to the CNS levels is differentiated, and their 

functional roles in modulating gut–brain signaling are delineated.

3. LARGE MOLECULES

3.1. Microorganism-Associated Molecular Patterns.

On both molecular and ecological levels, microorganisms are in constant flux of biochemical 

signaling for intra- and/or interspecies communication, inhabitant assessment, trigger 

of immune responses, formation of symbiotic biofilm, etc.142,143 At the center are 

the microorganism-associated molecular patterns (MAMPs),144 highly class-specific and 

evolutionally conserved microbial protein or peptide molecular motifs through which 

microbial species identify one another. As evidenced, MAMPs, of which many are 

pathogens to mammals, can translocate from the gut to the remote peripheral blood 

system to induce immune responses, raising the possibility that they are involved in the 

microbiome–gut–brain axis,145 the two most notable examples being lipopolysaccharides 

(LPS) and bacterial peptidoglycans (PNGs).

3.1.1. Lipopolysaccharides.—Lipopolysaccharide (LPS) (or endotoxin) is a major 

component of Gram-negative gut bacteria and can translocate from the gut lumen to the 

systemic circulation through leaky mucosal linings. Once sensed by pattern recognition 

receptors (PRRs) [e.g., Toll-like receptor 4 (TLR4)] of the host innate immune system, 
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cytokines are produced that can either signal directly to the CNS or excite vagal and spinal 

afferent neurons, given that PRRs of LPS (e.g., TLRs) are prevalently expressed in GI 

epithelial cells, ENS neurons, and the rest anatomical makeup of the gut–brain axis.146 

There have been multiple studies linking intestinal microbial LPS to brain health. Wu and 

colleagues observed significantly higher circulating and brain levels of LPS in aged mice 

compared with young controls while associating age with gut dysbiosis and markers of 

neuroinflammation.147 Maes and colleagues reported for patients with both chronic fatigue 

syndrome148 and chronic depression149 increased circulating immunoglobulin levels (e.g., 

IgA and IgM) in response to propagated gut bacterial LPS, suggesting a role for LPS in the 

microbe–brain interplay.

In parallel, administration of LPS, through injection or oral gavage, can lead to exacerbated 

neurological pathophenotypes in mice such as depression-mimicking behaviors150 and 

cognitive impairment.151 These are collectively demonstrated for LPS as potent molecular 

cues of microbiota to influence host brain function and behaviors.

3.1.2. Peptidoglycans.—Peptidoglycans (PGNs) constitute another type of (Gram-

positive) bacterial peptide with effects on brain function. A seminal study by Arentsen 

and colleagues reported for GF mice (compared with normal mice) extremely low or 

below-detection-limit serum PGN levels using ultra-sensitive mass spectrometry platforms, 

suggesting gut microbiota as a major source for peripheral PGNs.152 Microbial PGNs, 

once relocated to circulating blood (including under normal physiological conditions) and 

recognized by cytosolic nucleotide-binding and leucine-rich repeat-containing receptors 

(NLRs) (the major PRRs of PGNs), trigger downstream immune responses and regulate 

CNS function. Recent evidence supports such a link between microbial PGNs and CNS 

health.153 On one hand, the NLRs play an active role in shaping and controlling gut 

microbiota, with notable examples of NLRP6 and NLRP12 demonstrated to regulate 

intestinal inflammation, gut microbial composition, and metabolism.154 Pusceddu and 

colleagues also revealed a novel role of NLRs in gut–brain signaling.155 The authors 

observed for knockout mouse models (NodDKO) deficient in both Nod1 and Nod2 
exacerbated stress-induced behaviors, an impaired cerebral serotonergic system, a decline 

in hippocampal neurogenesis, and increased GI permeability. In turn, administration of 

fluoxetine, a selective 5-HT reuptake inhibitor, corrected these behavioral deficits while 

restoring 5-HT signaling. As for PGNs, the MIA ASD model has been established as 

maternal immune activation itself, through infecting pregnant mice with proinflammatory 

MAMPs (e.g., PGNs), which induces ASD-like behaviors in mouse offspring. Such effects 

of PGNs at the maternal–fetal interface suggest a critical role of maternal microbiota 

in shaping fetal brain health. This was supported by the latest studies examining the 

placental mobility of the PGN–teichoic acid complex (a cell wall component of pathogen 

Streptococcus pneumoniae) in parallel with fetal outcomes of neuro-proliferation and 

cognitive development;156 the details are reviewed elsewhere with critical questions 

proposed.157
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3.2. Peptides of Neurodegenerative Hallmarks: α-Synuclein and β-Amyloid.

Much interest has been stimulated in researching the relationship between gut microbiota 

and pathogenesis of neurodegenerative disorders such as Alzheimer’s disease (AD) and 

Parkinson’s disease (PD). For AD and PD, aggregated CNS levels of β-amyloid (Aβ) 

and α-synuclein (α-syn), respectively, are the two main associated pathological hallmark 

proteins.158,159 A recent work discovered the capability of microbes to produce extracellular 

amyloid-like proteins that in turn exacerbate in aged rats the pathogenic course of α-syn, 

indicating multifaceted effects of microbiota on neurodegeneration.160 Note that α-syn, once 

in the pathologic state, has a prion-like activity to propagate and translocate through the 

vagus nerve of the gut–brain axis and leads to impaired CNS physiology and behavioral 

deficits.161 This hypothesis was supported by a recent report by Sangjune and colleagues.162 

The authors performed gut injection of α-syn fibrils and discovered that murine endogenous 

α-syn was converted to a pathologic species that could spread from the gut to the brain, 

resulting in pathological traits of PD, including degeneration of dopamine neurons and 

motor (and non-motor) deficits. Strikingly, these traits were prevented via truncal vagotomy 

or α-syn deficiency (by knockout of the Snca gene), supporting the vagus nerve as an 

essential conduit for the α-syn pathology of PD. This neuronal route was further supported 

by epidemiological studies (e.g., Danish cohort163 and Swedish cohort164) that aimed to 

dissect the effects of truncal vagotomy procedures on PD risks. Because the mucosal 

microbiota is in the vicinity of the ENS, whether and how the gut microbiota contributes to 

α-syn pathogenesis in PD through the vagus nerve remains to be resolved.165

3.3. Neuropeptides in Appetite Control.

The GI tract, with tubular ENS tissue lining all over, is home to innumerable neuroendocrine 

cells as well as their neuropeptide products spanning neuropeptide tyrosine (NPY), 

calcitonin gene-related peptide (CGRP), peptide YY (PYY), and GLP-1. NPY and CGRP 

are expressed at all levels throughout the gut–brain axis, while PYY and GLP-1 are 

exclusively produced in distal ileum and colon by local enteroendocrine L cells. Due to their 

proximity to the intestinal mucosa where the microbiota resides, a question about whether 

the gut microbiota interacts with these neuropeptides to further modulate gut–brain signaling 

arises. One relevant topic of research is gut microbial regulation of mammalian appetite 

control, focusing on SCFAs as a proof of principle. Through in vivo and in vitro models, one 

study reported that colonic microbial propionate stimulated local release of PYY and GLP-1 

from L cells in wild-type mice, but not in in Ffa2–/– mice deficient in expression of FFA2, 

a receptor for SCFAs. The results suggest that the gut microbiota harbors great potential to 

modulate neuropeptide profiles, associated satiety perception, and food intake behaviors.166

A recent review article underscores the role of the microbiota in appetite control.131 

GABAergic and glutamatergic neurons, both belonging to the hippocampal arcuate nucleus 

(ARC) family and closely related to the Glu/GABA cycle, are key regulators of appetite 

status. GABAergic neurons express the orexigenic NPY and agouti-related protein (AgRP), 

whereas glutamatergic neurons express pro-opiomelanocortin (POMC), a precursor of α-

melanocyte-stimulating hormone (αMSH) and an anorexigenic neuropeptide. Often, the 

NPY, AgRP, and POMC hormone populations are viewed as the “first-order” neurons 

in satiety and hunger pathways. Most interestingly, recent studies together suggest a 
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causal role of gut bacteria in influencing host energy metabolism and feed behaviors, 

with colonic bacterial growth profiles overlapping much with patterns of satiety hormone 

release (e.g., GLP-1 and PYY) and satiety perception, especially during first 20 min 

upon meal induction.131 The author also speculated bacterial metabolites (e.g., quorum-

sensing acylhomoserine lactones), if detected in portal circulation, might act directly on 

hypothalamic neurons.

4. IMPLICATIONS

4.1. Discovering Novel Molecules of the Microbiota.

Complex and dynamic in constant metabolic fluxes, the gut microbiota harbors innumerable 

novel molecules yet to be discovered and mined for neuroactive effects. Identifying those 

through which our commensal microbiota mediates the CNS function thus is a pressing issue 

to resolve. One example involves bacterial quorum-sensing molecules N-acylhomoserine 

lactones (AHLs) for interspecies communication regarding local population growth and 

nutrient use. Previous studies showed an effect of gut-derived AHLs on the function 

of neurons,167 but whether and how they may reach humoral circulation has only been 

recently discussed.168 In addition, the gut microbiota may be a source of steroid hormones; 

one example is gut bacterial strain Clostridium scindens performing such glucocorticoid-to-

androgen conversion.169 Moreover, some bacterially derived molecules, even at low levels, 

might be implicated in a wide range of host neurophysiological processes. One example 

is tetrahydrobiopterin (BH4) that is a cofactor that is essential for normal CNS dopamine 

synthesis and function. A recent work confirmed gut-residing Adler-creutzia equolifaciens 
and Microbacterium schleiferi as BH4 producers, leading to the question of whether they 

contribute to the CNS pool of BH4.170 Another example is vitamin B6, which can be 

bacterially derived in the gut.171 Vitamin B6 is the precursor of pyridoxal phosphate, a 

cofactor essential for GAD enzymatic conversion of glutamate to GABA. The lack of 

vitamin B6 can result in a massive decrease in CNS GABA levels, subsequent loss of 

synaptic inhibition, and seizures.116 Also, amines of confirmed bacterial sources, including 

putrescine, spermidine, spermine, and cadaverine, have been shown to be implicated in 

the responses of the CNS to stress.172 It should be noted that the authors have recently 

published a high-coverage metabolomics study comparing GF and wild-type colonized 

mice, reporting as many as 701 unique differential metabolites owing to the presence 

of the microbiota.30 Presenting a valuable data set for future research probing microbial 

neuroactive potentials, this study points to not only a need to mind tissue/organ specificity 

when studying microbiota’s effects but also the importance of using novel and powerful 

analytical platforms, including high-resolution mass spectrometry (HRMS) and integrated 

cheminformatics, to provide hard chemical evidence when examining the microbiota–brain 

crosstalk. Here, we therefore present a summary of select metabolites of microbiota–brain 

links for tissue/organ specificity and analytical detectability (Table 1).

4.2. Unraveling Interclass Interaction.

The microbiota–gut–brain axis field is currently undergoing a paradigm shift from asking 

(i) what microbes are to (ii) what they do and, eventually, (iii) how we could leverage 

them for health causes. Measures should be taken to go beyond curating gut microbial 
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neurochemicals and dissecting their role (in a reductionist manner) toward gaining an 

integrated perspective of them together. In other words, it is important to identify the 

interaction between seemingly distinct compound classes by structures, sources, and 

biochemical pathways for systems biology-level insights. There is no lack of data supporting 

such cross-class interaction and/or interspecies communication. Notable examples included 

interaction between bacterial SCFAs and tryptophan metabolites; for example, Clostridium 
bacterially derived SCFAs have been shown to modulate microbial 5-HT biosynthesis in gut 

enterochromaffin cells, specifically through promoting gene expression of Tph1.51 Likewise, 

a new study suggested that cortisol regulates portal 5-HT levels.173 Moreover, factors 

associated with altered gut permeability or worsening of the gut–brain axis structure (e.g., 

leaky gut or leaky BBB) may converge as a systemic process, in which many compounds 

spanning disparate chemical pools are likely to be involved.36,112

4.3. Opportunities and Challenges.

With recent data collectively supporting an active microbiota–brain axis, targeting gut 

microbiota and the neuroactive metabolites naturally arises as an appealing approach 

for achieving improved neurophysiological states, cognitive functions, emotional states, 

and behaviors.174–176 In this light, frameworks for drug development are transformed 

to incorporate NGS-driven data mining efforts of the microbiome for novel discovery, 

compound screening, and the design of synthetic biology strategies, with the goal of 

counteracting neurological disorders32,139 or bacterially mediated side effects of drug 

treatment.68,177 In parallel, the nutrition and food industries have started leveraging the 

effects and use of gut microbiota to design novel and healthier diets,178 with applications 

ranging from development of neuroprotective prebiotics and probiotics (together coined 

psychobiotics) for achieving improved psychological states even in healthy normal 

individuals19 to the design of a ketogenic diet for antiseizure benefits;179 in parallel, a 

dynamic mouse peptidome landscape was constructed in response to probiotic modulation 

of the gut–brain axis and could provide value for future probiotics research toward better 

mental health.180 In the public health arena, environmental toxicological research may target 

gut microbiota as one functional entity (or “organ”) in mediating the fate and neurotoxic 

effects of ever-prevailing environmental toxicants, including pesticides,181 bisphenol A,182 

and nanoparticles.183

Challenges will be encountered in advancing the microbiota–gut–brain axis field. To 

date, the molecular underpinnings of such crosstalk remain largely unelucidated and are 

hindered by methodological limitations in the standardization of neuro-phenotyping,24 

development of relevant in vivo models,184 microbiota characterization,185 microbial source 

apportionment (for example, from host or direct food intake),186 confounder adjustment,25 

neurochemistry analysis,187 etc. Given the bidirectional, dynamic, and elastic nature of 

the gut microbiota, it is inherently challenging to define their neuroactive potential in 

quantitative proxies. To resolve this, the 56 gut–brain biochemical modules curated in the 

recent FGFP cohort study25 may be a valuable reference, with each module referring to a 

biochemical step (for production or degradation) of a singular neurochemical. Beyond that, 

sequencing-based approaches, on which most existing microbiome studies heavily relied, 

encounter both experimental and computational challenges to achieve accurate and definitive 
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characterization of the gut microbiome;188 best practices, protocols, and standards were 

proposed.188,189

Importantly, given that current insights are mostly derived from animal studies, result 

extrapolation from animals to the human population can be problematic. Specifically, 

fundamental gaps remain in terms of whether mice are good models for human microbiome 

alongside other emerging animal models190 and to what extent the mouse-to-human 

inference can be made that establishes in humans valid and meaningful cause–effect 

relationships of the microbiota without overextrapolation, which is surprisingly common 

(95%; 36 of 38) as assessed by a recent systematic review article.191 Through systematic 

analysis of existing translational studies using human microbiota-associated rodent models, 

Walters and colleagues identified most critical aspects for advancing interspecies inference 

as (i) insufficient rigor in experimental design and statistics and (ii) a paucity of 

negative results in the scientific community where oftentimes only positive findings are 

published.191 New machine learning models have thus been proposed for advancing 

mouse-to-human inference,192,193 and more large-scale human epidemiological studies are 

needed to test and validate findings based on mouse models, especially those coupled 

with high-throughput omics screening approaches (e.g., metabolomics, metaproteomics, and 

metagenomics).187,194 Even for compounds with well-validated neuroactive effects (e.g., 

SCFAs), caution needs to be taken concerning dose levels and routes of delivery when 

testing in both experimental settings and clinical trials to ensure safety and efficacy. This 

entails knowledge of pharmacokinetic/toxicokinetic modeling, the critical time window 

for dosage, individual disease susceptibility and comorbidity, intra- and interindividual 

variability of gut microbial dynamics, etc. In a nutshell, to advance the microbiota and 

gut–brain axis field, future work needs to be undertaken to examine (i) our fundamental 

understanding and definition of the gut microbiome, gut–brain axis, human health, 

and related neurologic/mental diseases,195 (ii) developing comprehensive, unbiased, and 

definitive approaches in characterizing the gut microbiome and health proxies,188 (iii) 

enhancing rigor in experimental design and statistics while promoting reporting of negative 

results for valid and unbiased animal-to-human inference,191 and (iv) multiomics integration 

across multiple cohorts and experimental models for biomarker discovery and validation.196

5. CONCLUDING REMARKS

Recent studies collectively support an active functional role of the gut microbiota in 

modulating human neurophysiological states, emotions, and behaviors, opening doors of 

targeting microbiota and their neuroactive metabolites for improved neurologic/mental 

health. In this Perspective, we focus on the biochemical aspects of the microbiota–brain 

axis by reviewing microbial molecules spanning small-molecule and larger neuropeptides. 

We summarized for these molecules the biosynthesis, uptake, activities, and functions 

as mediated by the gut microbiota, turned to disease models and cohort studies to 

carefully evaluate their neuroactive roles, and discussed opportunities and challenges toward 

mechanistic elucidation and therapeutic application. Future studies revolving around finding 

novel microbial molecules of gut–brain signaling may entail multiomics mining efforts in 

parallel with hypothesis-driven research on interclass compound interaction.
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