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a b s t r a c t 

Tissue inhibitors of metalloproteases (TIMPs) have caught the attention of many scientists due to their role in 
various physiological and pathological processes. TIMP-1, 2, 3, and 4 are known members of the TIMPs family. 
TIMPs exert their biological effects by, but are not limited to, inhibiting the activity of metalloproteases (MMPs). 
The balance between MMPs and TIMPs is critical for maintaining homeostasis of the extracellular matrix (ECM), 
while the imbalance between MMPs and TIMPs can lead to pathological changes, such as cancer. In this re- 
view, we summarized the current knowledge of TIMP-1 in several pulmonary diseases namely, acute lung injury 
(ALI)/acute respiratory distress syndrome (ARDS), pneumonia, asthma, chronic obstructive pulmonary disease 
(COPD), cystic fibrosis, and pulmonary fibrosis. Considering the potential of TIMP-1 serving as a non-invasive di- 
agnostic and/or prognostic biomarker, we also reviewed the circulating TIMP-1 levels in translational and clinical 
studies. 
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Since their discovery in the 1980s, tissue inhibitors of metallopro-
eases (TIMPs) have caught the attention of many scientists due to their
ole in various physiological and pathological reactions. TIMP-1, 2, 3,
nd 4 are known members of the TIMPs family, where TIMPs exert their
iological effects by, but are not limited to, inhibiting the activity of
etalloproteases (MMPs). 1 , 2 Due to its bodily omnipresence, TIMPs ac-

ivity varies depending on the affected tissues, where this activity in-
reases in certain tissues and decreases in others in the pathogenesis of
ertain diseases. TIMPs are involved in inhibiting metastases and angio-
enesis in cancer and supporting neuronal regulation and certain cellu-
ar functions. 3 , 4 The balance between MMPs and TIMPs is critical for
aintaining homeostasis of the extracellular matrix (ECM), while the

mbalance between MMPs and TIMPs can lead to pathological changes,
uch as cancer. 2 , 5 Among the four members of the TIMPs family, TIMP-
 uniquely exhibits certain effects through ways other than only binding
o different forms of MMPs. 2 , 6 , 7 TIMP-1 can be detected in body fluids
nd most tissues/organs and promotes cell growth. 8 , 9 These pathways
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re activated by TIMP-1 via activating p38, mitogen-activated protein
inase (MAPK), and c-Jun N-terminal kinase (JNK). 10 Growth factors,
uch as transforming growth factor 𝛽1 (TGF- 𝛽1), fibroblast growth fac-
or (FGF), and epidermal growth factor (EGF), along with phorbol ester
nd some cytokines such as interleukin-1 (IL-1) and interleukin-6 (IL-
), are known inducers of TIMP-1 expression. 11 Despite the numerous
rotective and favorable activities of TIMP-1, its dysregulation has been
bserved in various disease conditions. For instance, a study reported
hat TIMP-1 is highly expressed in glioblastoma and is associated with
oor prognosis. 12 Moreover, the absence of TIMP-1 in immunostaining
ests showed a more positive impact on certain types of breast cancer. 13 

hese facts expand our understanding of TIMPs as it clarifies the role of
hese enzymes by going against the previous concept of the positive im-
act of TIMPs in tumor prevention. 14 Therefore, TIMPs exerted prefer-
ble effects on some but not all pathological conditions, where their
ctivities should be investigated independently. 

TIMP-1 shows a high expression in the lung [ Fig. 1 A]. The expres-
ion of TIMP-1 is markedly altered in pulmonary diseases due to the
emodeling or destruction of the ECM. Elevated levels of TIMP-1 than
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Fig. 1. TIMP-1 expression profiles. (A) RNA-sequencing tissue data generated by the GTEx project are reported as nTPM, corresponding to mean values of the 
different individual samples from each tissue. TIMP-1 mRNA expression profile was accessed on 02/28/2023. (B) The lung single-cell RNA-sequencing data generated 
by LungGENS database show the relative TIMP-1 mRNA expression in various human lung cells (accessed on 02/28/2023). GTEx: Genotype-Tissue Expression; 
LungGENS: Lung Gene Expression iN Single-cell; mRNA: Messenger RNA; nTPM: Normalized protein-coding transcripts per million; RNA: Ribonucleic acid; TIMP: 
Tissue inhibitors of metalloprotease. 

M  

t  

t  

c  

w  

i  

p  

i  

t  

p  

t  

f  

r  

i

E

 

p  

g  

i  

d  

h  

l  

r  

g  

[  

T  

F  

i  

s  

a  

t  

r  

o  

l  

(  

d  

t  

s
 

T  

d  

l  

T  

fi  

c
G  

i  

m  

b  

a  

i  

e

T

 

t  

a  

t  

e
a  

p  

s  

b
 

c  

u  

a  

r
 

a  

i  

9  

l  

h  

p  

w
I  

s  

9  

m  

b  

s  

t  
MPs may contribute to lung fibrosis whereas lower levels of TIMP-1
han MMPs may enhance the degradation of collagen in the intersti-
ial space causing lung injury. In other lung diseases, several factors in-
luding etiology, severity, and duration largely alter TIMP-1 regulation
ithin each disease. Thus, emphasizing the significance of this protein

n lung diseases might increase the potential of developing novel thera-
eutic agents or biomarkers. Therefore, we review the roles of TIMP-1
n pulmonary diseases namely, acute lung injury (ALI) or acute respira-
ory distress syndrome (ARDS), pneumonia, asthma, chronic obstructive
ulmonary disease (COPD), cystic fibrosis, and pulmonary fibrosis. Due
o the possibility of TIMP-1 serving as a non-invasive blood marker, we
ocused on circulating TIMP-1 in clinical studies. Additionally, we also
eviewed both in vitro and in vivo studies to provide a better understand-
ng of its function and regulation in lung diseases. 

xpression and regulation of TIMP-1 

Gene regulation ensures that cells express the necessary genes to
roliferate, differentiate, and maintain their proper function by turning
ene transcription on and off. Understanding the regulation of TIMP-1
s critical for the investigation of its involvement in various pulmonary
iseases. Single-cell RNA sequencing analysis revealed that fibroblasts
ave the highest transcriptional level among lung cells, while endothe-
ial cells and myeloid cells have moderate TIMP-1 levels [ Fig. 1 B]. 15 The
egulation of TIMP-1 by chemicals, inhibitors, cytokines, chemokines,
rowth factors, etc. has attracted the attention of researchers for decades
 Table 1 ]. Most studies have shown that fibrosis stimulus can trigger
IMP-1 expression in lung fibroblasts, macrophages, and epithelial cells.
or instance, TIMP-1 expressions were most prominent in mononuclear
nflammatory cells within the regions of tissue damage upon bleomycin
timulation, and TIMP-1 messenger RNA (mRNA) was identified close to
reas of inflammatory cell accumulation. 16 Consistently, immunoreac-
ive TIMP-l was expressed in alveolar macrophages in both bleomycin-
esistant and bleomycin-prone mice. 17 Following paraquat and hyper-
xia exposure, TIMP-1 was also localized in alveolar macrophages in the
ungs of fibrosis rats. 18 Similarly, with multi-walled carbon nanotube
MWCNT) model, Mac2 + macrophages were the source of TIMP-1 pro-
uction, inside the fibrotic foci of the lungs. 19 These studies emphasized
hat the mononuclear inflammatory cells particularly macrophages as a
ource of TIMP-1. 

Fibroblasts from the other side appeared to be prominent cells for
IMP-1 expression and production. Hsp47 + fibroblasts were the pre-
ominant source of TIMP-1 production inside the fibrotic foci of the
68 
ungs in response to MWCNT-induced lung fibrosis. 19 Consistently,
IMP-1 mRNA was upregulated in pulmonary fibroblasts derived from
brosis-sensitive C57BL/6 mice after the stimulation with active TGF- 𝛽1
ompared to fibroblasts obtained from fibrosis-resistant BALB/c mice. 20 

iven that Smad-3 is recognized as a major mediator of TGF- 𝛽 signaling
n progressive fibrosis, 21 one study has assessed Smad-3 knockout (KO)
ice after fibrosis stimulus. These results highlight the importance of fi-

roblasts as TIMP-1 producers in fibrotic conditions and suggest TIMP-1
s a potential therapy target for pulmonary fibrosis. Other cells includ-
ng bronchiolar and alveolar epithelial cells were reported to slightly
xpress TIMP-1 in murine fibrotic models. 17 , 18 

IMP-1 in ALI/ARDS 

ALI and ARDS are life-threatening diseases in critically ill pa-
ients. 57-59 The early stage of ALI and ARDS is identified by exudative
lveolar flooding due to a disruption in the air-blood barrier and by ex-
ensive alveolar collapse due to surfactant abnormalities. 60 , 61 The het-
rogeneity in causes of ARDS has resulted in a critical underdiagnosis, 62 

nd to date, no specific pharmacological therapies have shown an im-
rovement in the severe form of lung injury. 63 , 64 Thus, one of the ob-
tacles in ARDS is the identification of a promising biomarker that can
e targeted later to enhance drug therapy. 65 

MMPs and their tissue inhibitors are thought to participate in leuko-
yte influx and vascular permeability at sites of lung injury. 66 , 67 Partic-
larly, TIMP-1, as a critical protein in ECM turnover, 68 has been studied
s a biomarker or treatment strategy in lung diseases. Nevertheless, the
egulation and function of TIMP-1 in ALI/ARDS are largely unknown. 

In a large prospective study of mechanically ventilated patients with
cute respiratory failure (ARF), TIMP-1 levels were significantly higher
n non-survivors than survivors and were independently associated with
0-day mortality. 69 Among different groups of ARF patients, TIMP-1
evels were significantly higher in ARDS subjects than in the entire co-
ort. 69 The high levels of TIMP-1 were associated with the severity of
artial pressure of oxygen/fraction of inspired oxygen ratio (PaO 2 /FiO 2 )
hile improving this ratio was associated with reduced TIMP-1 levels. 69 

n a prospective study of critically ill patients admitted to the inten-
ive care unit (ICU), higher plasma of TIMP-1 concentrations and MMP-
/TIMP-1 ratios were significantly associated with ARDS and 30-day
ortality risk. 70 Moreover, there was a significant negative correlation

etween plasma TIMP-1 and MMP-9 levels. 70 Recently, our group mea-
ured the plasma TIMP-1 level in ARDS patients enrolled in Albuterol
o Treat Acute Lung Injury (ALTA) trial. 71 Higher plasma TIMP-1 lev-
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Table 1 

TIMP-1 regulation in lung cells. 

Cell type Treatment Change of 
TIMP-1 

Fibroblasts TGF- 𝛽1 22–27 ; CSE 28 ; IL-13 27 ; IL-33 29 ; PI3K inhibitor (LY294002) 24 , 27 ; Oncostatin M 

24 ; WSE 30 ; media of 
M. tb infected monocytes 31 

↑ 

IL-1 𝛽32 , 33 ; TNF- 𝛼33 ; p38 inhibitor (SB203580) 24 , 31 ; ERK1/2 inhibitor (PD9805) 24 ; Rho/Rock signaling 
inhibitor (Y-27632) and TGF- 𝛽/Smad signaling inhibitor (staurosporine) 25 ; MEK1 inhibitors (U0126 and 
PD98059) 26 

↓

TGF- 𝛽1 34 ; CSE 35 ; HRV 36 →

Monocytes/macrophages IL-1 𝛽37 , 38 ; LPS 37–41 ; nickel nanoparticles 42 ; p38 inhibitor (SB20358) 43 ; CSE 37 ↑ 

CSE or BCG 44 ; p38 inhibitor (SB203580) and MEK inhibitor (PD98059) 45 ; M. tb 43 , 46 ; ERK inhibitor 
(PD9805) 43 

→

Epithelial cells TGF- 𝛽1 47 ; TNF- 𝛼 or IL-1 𝛽48 ; Xanthohumol 49 ; Sinomenine 50 ↑ 

TNF- 𝛼51 ; M. tb 52 ; ERK1/2 inhibitor (PD9805) 52 ; BSE 53 ↓

TNF- 𝛼54 ; LPS 51 ; IL-1 𝛽51 , 54 ; HRV 55 ; M. tb 56 →

↑ Upregulation; ↓ Downregulation; → Unchanged; BCG: Bacille Calmette-Guérin; BSE: Biomass smoke extract; CSE: Cigarette smoke extract; ERK: Extracellular 
signal-regulated kinase; HRV: Human rhinovirus; IL: Interleukin; LPS: Lipopolysaccharide; MEK: Mitogen-activated protein kinase kinase; M. tb : Mycobacterium 

tuberculosis; p38: Mitogen-activated protein kinase 14; PI3K: Phosphoinositide 3-kinase; Rho: Rhodopsin; Rock: Rho associated coiled-coil containing protein; SMAD: 
Suppressor of Mothers against Decapentaplegic; TGF- 𝛽: Transforming growth factor-beta; TIMP: Tissue inhibitors of metalloprotease; TNF- 𝛼: Tumor necrosis factor- 
alpha; WSE: Wood smoke extract. 

Table 2 

Correlation between circulating TIMP-1 levels and clinical severity of ALI/ARDS. 

Conclusions P value Reference 

TIMP-1 levels: non-survivors > survivors < 0 .001 69 

TIMP-1 was independently associated with 90-day mortality 0 .004 
The mortality was significantly higher in patients with TIMP-1 levels exceeding 458.6 ng/mL than in patients with levels below the cutoff < 0 .001 
TIMP-1 levels were associated with the severity of hypoxemia < 0 .05 
MMP-8/TIMP-1 ratio was not correlated with 90-day mortality > 0 .05 
TIMP-1 correlated with MMP-8 ( r = 0.247), CRP ( r = 0.409), SOFA score (r = 0.323), and SAPS II score (r = 0.162) at 24 h from ICU admission < 0 .001 
TIMP-1 negatively correlated with PaO 2 /FiO 2 ratio ( r = − 0.260) < 0 .001 
TIMP-1 levels were associated with ARDS 0 .01 70 

TIMP-1 levels were associated with 30-day mortality 0 .02 
MMP-9/TIMP-1 ratios were associated with the increased risk of ARDS 0 .02 
MMP-9/TIMP-1 ratios were associated with the increased risk of 30-day mortality < 0 .01 
TIMP-1 and MMP-9 show a negative correlation ( r = − 0.32) < 0 .01 
TIMP-1 and MMP-3 show a positive correlation ( r = 0.38) < 0 .01 
TIMP-1 levels: ARDS patients > normal subjects < 0 .001 71 

TIMP-1 levels: No difference between female and male ARDS patients 0 .481 
TIMP-1 levels: non-survivors > survivors in female patients < 0 .001 
TIMP-1 levels: no difference between non-survivors and survivors in male patients 0 .649 
The 90-day mortality was significantly higher in female patients with TIMP-1 levels exceeding 159.7 ng/mL than in patients with levels below the cutoff < 0 .001 

ALI: Acute lung injury; ARDS: Acute respiratory distress syndrome; CRP: C-reactive protein; ICU: Intensive Care Unit; MMP: Metalloprotease; PaO 2 /FiO 2 : Partial 
pressure of oxygen/fraction of inspired oxygen ratio; SAPS: Simplified Acute Physiology Score; SOFA: Sequential Organ Failure Assessment; TIMP: Tissue inhibitors 
of metalloprotease. 
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ls were observed in ARDS patients than in normal control subjects. 71 

nterestingly, circulating TIMP-1 shows an excellent discriminating abil-
ty for the prediction of mortality among female ARDS patients. 71 These
ndings highly suggest the potential of circulating TIMP-1 as a prognos-
ic biomarker for ALI/ARDS [ Table 2 ]. Nevertheless, more studies are
equired from the ARDS biomarker discovery to clinical application, es-
ecially as a sex-specific biomarker. 

The pre-clinical studies on lung injury have focused on various as-
ects of TIMP-1 by using both wild-type (WT) and Timp-1 deficient
ice. These aspects were mainly TIMP-1 expression, MMP-9/TIMP-1 ra-

io, weight loss, immune cell infiltrations, and lung hemorrhage. Allen
t al. 67 have shown that influenza infection caused a substantial induc-
ion of TIMP-1 in WT mice. Consistently, TIMP-1 expression and MMP-
/TIMP-1 ratio were significantly higher in the ALI group compared
ith the control group after lipopolysaccharide (LPS) instillation in mice
nd rats, respectively. 72 , 73 In the latter study, the MMP-9/TIMP-1 ratio
as positively associated with the lung wet/dry ratio and the pulmonary
ermeability index. 73 Functionally, Timp-1 deficient mice showed sig-
ificantly less body weight loss than WT mice after Pseudomonas aerug-

nosa ( P . aeruginosa ) 74 or influenza infection. 67 In addition, Timp-1 de-
cient mice demonstrated fewer immune cell infiltrates and airway in-
ammation after influenza infection, suggesting that TIMP-1 promotes
69 
ung immune response. 67 In line with these findings, the knockdown of
IMP-1 using small interfering RNA (siRNA) leads to a reduced lung in-
ammatory phenotype during LPS-induced ALI. 75 Collectively, TIMP-1

s induced in response to ALI and promotes immune responses. Loss of
imp-1 exerts protective effects by reducing lung inflammation. 

IMP-1 in pneumonia 

Pneumonia is defined as an infection that occurs in the lung
arenchyma and is described by alveoli filling with inflammatory ex-
dates and ultimately leading to pulmonary tissue solidification. 76 In
ormal physiology, polymorphonuclear neutrophils (PMNs) located in
he vascular bed of the lung serve as a powerful host defense barrier. 77 

n pneumonia, these cells invade the alveolar compartment by secreting
nzymes stored in granules and vesicles like MMPs and TIMP, which
lay crucial roles including ECM turnover, tissue degradation, and re-
air mechanisms. 78 

TIMP-1 has been studied in patients with pneumonia including
ommunity-acquired pneumonia (CAP) and hospital-acquired pneumo-
ia (HAP) to evaluate whether the levels of TIMP-1 are related to clinical
everity of the disease. TIMP-1 concentration was significantly increased
n plasma from CAP patients compared to healthy controls 79 and pa-
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Table 3 

Circulating TIMP-1 levels and clinical severity of asthma. 

Conclusions P value Reference 

Serum TIMP-1 concentrations of asthmatic patients were significantly higher than those of the control subjects < 0 .001 86 

Lower circulating levels of TIMP-1 in patients with asthma than that in controls, but the differences were not statistically significant 0 .27 90 

Neither TIMP-1 concentration nor MMP-9/TIMP-1 ratio was related to asthma severity - 91 

Serum TIMP-1 level was higher in asthma patients than in healthy subjects 0 .01 87 

No difference in the circulating TIMP-1 concentrations between patients with asthma exacerbation or stable asthma > 0 .05 92 

No difference was seen between asthmatic patients and healthy subjects > 0 .05 89 

TIMP: Tissue inhibitors of metalloprotease; MMP: Metalloprotease. 
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ients without lung diseases. 80 , 81 But no significant difference in the
MP-9/TIMP-1 ratio was seen. 79 Based on these results, TIMP-1 had a
ore significant change than MMP-9/TIMP-1 in response to pneumonia.

nterestingly, a significant decrease in the TIMP-1 and MMP-9/TIMP-1
atio was noticed after the CAP patients received antibiotic treatment
ompared with the pre-treatment level. 79 , 82 Furthermore, both TIMP-
 and MMP-9/TIMP-1 ratios were evaluated in relation to inflamma-
ory cells and pneumonia severity scores. Chiang et al. 79 have shown
hat the plasma MMP-9/TIMP-1 ratio was positively correlated with the
umber of white blood cells (WBC) and neutrophils. In the same study,
he plasma TIMP-1 level was also positively correlated with pneumonia
everity scores including Pneumonia Severity Index (PSI), Acute Physi-
logy and Chronic Health Evaluation (APACHE II), and CURB-65 (con-
usion, uremia, respiratory rate, blood pressure, age ≥ 65 years) scores. 79 

ikewise, Bircan et al. 82 have reported that TIMP-1 level was corre-
ated with PSI scores as well as oxygenation indices including PaO 2 and
aO 2 /FiO 2 ratio. These results suggest that circulating TIMP-1 levels
ould reflect the clinical severity of pneumonia. 

IMP-1 in asthma 

Asthma is a complex disease triggered by some genetic, epige-
etic, and environmental factors. It is characterized by lymphocyte and
osinophil infiltrates leading to chronic inflammation, bronchial fibrob-
ast activation, and airway wall remodeling. 83 , 84 ECM production and
ts degradation are involved in this dynamic process. Likewise, MMPs
nd their specific inhibitors have been reported to play crucial roles in
his process. 85 TIMP-1 particularly may contribute to the pathogenesis
f exaggerated submucosal ECM accumulation and lack of matrix degra-
ation in asthma. 

Overall, circulating TIMP-1 has been studied in clinical cohorts that
ncluded asthmatic patients, patients with different stages of asthma,
nd healthy subjects to assess the variability in TIMP-1 levels between
he groups. Although alteration of circulating TIMP-1 levels was seen in
atients with asthma, inconsistency in results was reported [ Table 3 ].
or instance, three independent studies have shown that serum TIMP-1
oncentrations of asthmatic patients were significantly higher than those
f the control subjects. 86-88 However, no difference was seen between
sthmatic patients and healthy subjects in another two independent
tudies. 89 , 90 Furthermore, the TIMP-1 and MMP-9/TIMP-1 ratios were
ot related to asthma severity as assessed with forced expiratory volume
n one second (FEV 1 ). 

91 Likewise, there were no significant differences
n serum TIMP-1, MMP-2/TIMP-1, and MMP-9/TIMP-1 between differ-
nt groups of asthma. 87 , 92 These studies suggest that TIMP-1 in circula-
ion may not be largely altered due to asthma prognosis or severity. 

The most common preclinical model utilized in asthma studies is
valbumin (OVA) sensitization. 93 The regulation of TIMP-1 has been
tudied after OVA challenge, and Lin et al. 94 have shown that mice
ensitized with OVA had significantly higher concentrations of TIMP-
 in bronchoalveolar lavage (BAL) than the control group. Moreover,
ands et al. 95 employed Timp ‐1 KO mice in an OVA ‐induced allergic
sthma model ( Timp ‐1 KO-OVA) to test the hypothesis that the ab-
ence of Timp ‐1 would increase airway hyperactivity, lung inflamma-
ion, and remodeling in asthma. They have shown that Timp ‐1 KO-OVA
70 
ice were deteriorated based on airway activity, methacholine respon-
iveness, dynamic lung compliance, and lung histological data in com-
arison to Timp ‐1 KO mice receiving PBS. In addition, Timp ‐1 KO-OVA
ice showed higher cytokines gene expressions than WT-OVA mice,

uch as interleukin (IL)-5, IL-6, and IL-10. 95 In addition, eosinophil
ount was significantly higher in Timp ‐1 KO-OVA mice than in WT-OVA
ice. 95 Their findings suggested that TIMP ‐1 plays a protective role by
odulating inflammatory responses including cytokines expression and

osinophilic inflammation. 
In a murine model of toluene diisocyanate (TDI)-induced asthma,

IMP-1 was increased at both mRNA and protein levels in the lung tis-
ues after TDI inhalation in a time-dependent manner. 96 Similarly, the
oncentration of TIMP-1 in the BAL was increased in the TDI-exposed
ice at different time points. 96 In the asthmatic mice, positive TIMP-1

taining was seen on inflammatory cells around bronchioles and sig-
ificant correlations between the levels of TIMP-1 and the numbers of
ymphocytes, neutrophils, and eosinophils were found in the BAL. 96 , 97 

IMP-1 in COPD 

COPD is an inflammatory lung disease affecting the airways, lung
arenchyma, and vasculature. It is characterized by slow progressive air-
ow limitation leading to dyspnea, chest pain, frequent respiratory in-

ections, exercise limitation, and respiratory failure. 98 There is a widely
ccepted theory that ECM remodeling is an important causative factor
or COPD, which is mediated by exaggerated inflammation and disrup-
ion of the proteinase/anti-proteinase balance. Moreover, both MMPs
nd TIMPs are believed to play crucial roles in the pathogenesis of
OPD. 99 

Circulating TIMP-1 levels in COPD have been measured in multi-
le clinical cohorts [ Table 4 ]. In a few clinical studies, the concen-
ration of TIMP-1 in serum was higher in COPD patients than in con-
rols. 86 , 100-102 However, Shaker et al. 103 have identified that patients
ith COPD had significantly lower levels of plasma TIMP-1 than smok-

rs and non-smokers control. Similarly, D’Armiento et al. 104 have shown
hat plasma TIMP-1 levels were significantly lower in the emphysema
ohort compared to both the control and smoker groups. In the affir-
ative, current smoking, a major cause of COPD, was associated with

educed TIMP-1 levels in COPD patients. 105 Different factors including
isease severity and duration could explain varying results from previ-
us cohort studies. 

The molar ratio of MMP-9/TIMP-1 has been generally considered
n important parameter in several COPD studies. Gilowska et al. 106 

ound a significant difference in MMP-9/TIMP-1 ratio between control
nd COPD patients toward higher levels in COPD patients. Moreover,
ysal and Uzun 107 found that the circulating MMP-9/TIMP-1 ratio was
igher in patients with emphysema than in patients with other pheno-
ypes of COPD. In contrast, one study has found that the circulating
MP-9/TIMP-1 ratio was significantly lower in COPD than in control

ubjects. 86 The variability in this ratio from previous reports indicates
hat TIMP-1 level could not easily exhibit MMPs activities and the rela-
ionship between these proteins is quite complicated. 

Spirometry parameters including FEV 1 and forced vital capacity
FVC) are well-known clinical parameters to assess lung function de-
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Table 4 

Circulating TIMP-1 levels and COPD. 

Conclusions P value Reference 

TIMP-1 serum levels were higher in COPD patients than in healthy control < 0 .0001 86 

TIMP-1 serum levels negatively correlated with the FEV 1 /FVC < 0 .05 
The circulating MMP-9/TIMP-1 ratio was significantly lower in COPD than in control subjects < 0 .0001 
TIMP-1 increased in COPD compared with that in healthy subjects < 0 .001 100 

No significant difference in TIMP-1 levels between survivors and non-survivors 0 .839 114 

A significant difference in MMP-9/TIMP-1 ratio between survivors and non-survivors < 0 .001 
Patients with COPD had significantly lower levels of plasma TIMP-1 than smokers and non-smokers controls 0 .02 103 

Plasma TIMP-1 levels were significantly lower in the emphysema cohort compared to both non-smoker and smoker groups < 0 .0001 104 

TIMP-1 in plasma did not correlate with disease parameters and was not predictive of subsequent lung function decline among COPD patients > 0 .05 
TIMP-1 did not predict the presence of emphysema in smokers > 0 .05 115 

Circulating MMP-9/TIMP-1 ratio was higher in patients with emphysema than in patients with other phenotypes of COPD < 0 .01 107 

FEV 1 was correlated with MMP-9/TIMP-1 ratio in patients with emphysema < 0 .001 
No significant differences in the serum TIMP-1 levels between the healthy control group and COPD patients > 0 .05 116 

Increasing age and overweight were significantly correlated to TIMP-1 in COPD < 0 .05 105 

Current smoking was associated with reduced TIMP-1 levels in COPD 0 .013 
Increasing MMP-9/TIMP-1 ratio was associated with current smoking, overweight, and decreasing FEV 1 % predicted < 0 .05 
A significant difference in MMP-9/TIMP-1 ratio between non-smoker subjects and COPD patients 0 .04 106 

No significant difference in MMP-9/TIMP-1 ratio between control smokers and COPD patients 0 .9 
TIMP-1 was not correlated with annual changes of % predicted FEV 1 0 .961 108 

A trend of a higher level of TIMP-1 in current smokers than in COPD patients 0 .056 
TIMP-1 concentrations were elevated in COPD than in control subjects < 0 .001 101 

Serum concentrations of TIMP-1 were higher in non-smoking COPD patients as compared with non-smoking control subjects 0 .025 
No significant difference between smokers of COPD and control subjects > 0 .05 

COPD: Chronic obstructive pulmonary disease; FEV 1 : Forced expiratory volume in one second; FVC: Forced vital capacity; MMP: Metalloprotease; TIMP: Tissue 
inhibitors of metalloprotease. 
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line in COPD and asthma patients. Among COPD patients, TIMP-1
erum levels negatively correlated with the FEV 1 /FVC ratio reflecting
irway obstruction. 86 Yet, two studies have stated that TIMP-1 mea-
urements in plasma were not predictive of subsequent functional de-
line as assessed by FEV 1 . 

104 , 108 Furthermore, the molar ratio of MMP-
/TIMP-1 has shown a negative correlation with FEV 1 % predicted in
wo studies. 105 , 107 These studies indicate that circulating TIMP-1 and
MP-9/TIMP-1 may partially reflect lung function decline among COPD

atients as assessed with FEV 1 and FVC. 
Cigarette smoke (CS) has been widely recognized and utilized as

 preclinical model for COPD manifestations. 109 Upon CS exposure,
RNA expression of TIMP-1 was highly increased in mice. 110 , 111 In the

atter study, the increase of TIMP-1 protein level was also seen in CS-
xposed murine lungs. 111 These studies indicate the dysregulation of
IMP-1 in response to CS may involve in the pathogenesis of COPD. In
ddition, the imbalance of TIMP-1 and MMP-9 is believed to be associ-
ted with the development of lung emphysema in Klotho mice, 112 which
xhibit multiple aging-like phenotypes and pulmonary emphysema. 113 

lthough evidence links the alteration of TIMP-1 levels and COPD, the
ole of TIMP-1 in the development of COPD is not well studied using
ain-of-function or loss-of-function strategies. 

IMP-1 in cystic fibrosis 

Cystic fibrosis (CF) is a lethal genetic disease caused by several
utations in the cystic fibrosis transmembrane conductance regulator

CFTR) gene. CFTR dysfunction leads to chloride channel defects result-
ng in mucus accumulation, endobronchial infection, and exaggerated
ulmonary inflammation. 117 One of the hallmarks of CF is the progres-
ive remodeling of tissue and in particular, the accumulation of ECM
nd the lack of matrix degradation. 118 The identification of the medi-
tors involved in CF pathophysiology may provide prognostic markers
ith the potential to predict disease prognosis and assess response to

reatment. Increasing evidence suggests that dysregulated activities of
MPs and their inhibitors lead to scar formation and subsequent tissue
brosis in CF. 118 

Both TIMP-1 and its ratios have been assessed in CF patients in rela-
ion to pulmonary exacerbations and spirometry parameters including
orced expiratory volume and vital capacity. In two independent stud-
71 
es, enhanced TIMP-1 was found in CF patients with pulmonary exacer-
ations compared to healthy controls and patients without pulmonary
xacerbations. 119 , 120 The MMP-9/TIMP-1 ratio was also increased in
atients in comparison to healthy controls. 120 In relation to spirometry
arameters, Rath et al. 119 have identified that the serum expression of
IMP-1 was significantly increased in CF adult patients with a declined
EV 1 and vital capacity. Similarly, Devereux et al. 121 have shown that
he plasma MMP-9/TIMP-1 ratio was negatively correlated with FEV 1 .
igher concentrations of plasma TIMP-1 were associated with increased
ortality. 121 Altogether, TIMP-1 appears to play a crucial role in CF via

ontrolling ECM homeostasis. The circulating TIMP-1 level may serve
s a diagnostic and prognostic blood marker. 

IMP-1 in pulmonary fibrosis 

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fi-
rotic lung disease of unknown etiology characterized by epithelial cell
njury, fibroblast proliferation, and excessive accumulation of ECM in
he alveolar architecture. 122 This disease leads to decreased lung com-
liance, impaired gas exchange, and eventually lung failure and death
espite therapy, with the median survival time being 2–4 years from di-
gnosis. 123 Thus, the identification of host genes that participate in the
evelopment of IPF may help uncover novel drug targets. 

IPF patients have higher circulating TIMP-1 levels than con-
rols. 124-126 Patients with MMP-9 gene polymorphism showed an eleva-
ion of TIMP-1 supporting the importance of MMP-9/TIMP-1 ratio. 126 

oreover, TIMP-1 was positively correlated with MMP-9 in another
tudy. 127 Thus, altered TIMP-1 levels in IPF patients influence the MMP-
/TIMP-1 ratio, which involves interstitial lung diseases (ILDs). 

Pulmonary fibrosis can be induced experimentally using sev-
ral chemicals including bleomycin, LPS, silica, asbestosis, MWCNT,
araquat and hyperoxia, and cytokine overexpression. 128 The most re-
orted method in the literature is bleomycin representing the most ap-
lied preclinical model of lung fibrosis. 129 TIMP-1 mRNA and protein
evels from WT mice were increased after intranasal bleomycin admin-
stration in lung tissue and BAL. 16 , 130 Bleomycin-induced TIMP-1 in
AL has been reported in both fibrosis-resistant (BALB/c) and fibrosis-
ensitive (C57BL/6) mice. 17 However, another study showed that a sin-
le intratracheal injection of bleomycin upregulated TIMP-1 levels in
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he lungs and in the BAL from sensitive C57BL/6 mice but not the
leomycin-resistant BALB/c strain. 131 The dose and route of adminis-
ration could explain the inconsistent findings that were seen in fibrosis-
esistant mice. In paraquat and hyperoxia model, fibrosis rats exhibited a
ignificant increase in TIMP-1 mRNA levels from lung homogenates than
ontrol. 18 In MWCNT-induced fibrosis method, TIMP-1 mRNA lung ex-
ression and protein levels in BALF and serum were markedly increased
ompared with baseline level in a time-and dose-dependent manner. 19 

hese studies emphasize the robust association between TIMP-1 and
ung fibrosis. 

Although preclinical evidence suggests the altered regulation of
IMP-1 in response to bleomycin administration may play a role in pul-
onary fibrosis, 17 there was no difference in lung fibrosis between Timp-

 deficient mice and control mice after bleomycin treatment. 132 , 133 In
nother study, Tang et al. 134 repressed TIMP-1 using antisense com-
lementary DNA (cDNA) retroviral vectors. Interestingly, they demon-
trated that TIMP-1 knockdown can suppress bleomycin-induced pul-
onary fibrosis in the early stages. 134 Thus, more studies are needed to

ddress these controversial findings on the role of TIMP-1 in pulmonary
brosis. 

ummary and conclusions 

In this review, we summarized the current knowledge of TIMP-1 in
ulmonary diseases, including ALI/ARDS, pneumonia, asthma, COPD,
ystic fibrosis, and pulmonary fibrosis. We also reviewed the regulation
f TIMP-1 in response to in vitro stimulus focusing on various lung cells.
hese studies mainly focused on fibroblasts, macrophages, and epithelial
ells. 

TIMP-1 has been reported widely with MMPs denoting the impor-
ance of the TIMP-1/MMPs ratios as they may intimately affect each
ther at tissue and biofluid levels. It is theoretically presumed that TIMP-
 is capable of inhibiting MMPs activities, and this can be simply ex-
lained by an inverse relationship. Yet, circulating TIMP-1 was posi-
ively correlated with MMP-9 and MMP-3 among IPF and ARDS patients,
espectively indicating the complex associations of these proteins. 28 , 71 

enerally, it seems that the TIMP-1 level could not easily exhibit MMPs
ctivities and the relationship between these proteins is quite compli-
ated. 

Different pathogens or stimulations like P. aeruginosa , influenza, My-

obacterium tuberculosis ( M. tb ), LPS or bleomycin were applied to induce
r suppress TIMP-1 expression in experimental studies. TIMP-1 responds
ifferently to pathogens, which could be caused by several factors in-
luding the intensity of each pathogen, the etiology, the molecular path-
ays, and infectious versus sterile injury. Nevertheless, in most previous

eports, Timp-1 KO mice showed less injury in response to ALI, such as
1N1 influenza infection 67 and P. aeruginosa . 74 These studies not only

uggest that the loss of Timp-1 could protect mice from lung infection
nd injury, but also indicate the potential role of TIMP-1 as an immune
odulator. 

Fibroblasts appeared to be the most important cells in driving TIMP-
 dysregulation when compared to other cells based on the findings from
he current review. For instance, bleomycin administration elicited an
ncrease in the protein levels of TIMP-1 in the BAL and the transcript
evels in lung tissue extracts of mice treated with or without anti-PMN
ntibodies. 135 This indicates that polymorphonuclear leukocytes includ-
ng neutrophils were not enough to be targeted in diminishing TIMP-1
ecretion. Similarly, epithelial overexpression of TIMP-1 did not alter
ung fibrosis in mice. 131 In the study of Smad-3 KO mice, significantly
ncreased expression of TIMP-1 was seen in WT fibroblasts but not in
mad-3 deficient fibroblasts after treatment with recombinant TGF- 𝛽1
n vitro . Consistent findings were also seen after TGF- 𝛽1 administration
n vivo in the same study. 136 In another study, the inhibition of TIMP-1
y its neutralizing antibodies in vitro effectively reduced the prolifera-
ive effect on fibroblasts. 19 Furthermore, TIMP-1 protein secretion was
educed in MRC5 fibroblast cells in response to M. tb infection, 31 but was
72 
ot affected by macrophage infection with the same pathogen. 43 Like-
ise, M. tb infection did not affect TIMP-1 protein secretion in human
ronchial epithelial cells (HBECs). 56 Overall, these findings indicate that
broblasts are the most important cells in driving TIMP-1 dysregulation.
hus, further investigation of TIMP-1 in fibroblasts may unveil potential
reatment strategies for lung fibrosis. 

In clinical cohorts, circulating TIMP-1 has been measured mainly as
 diagnostic marker providing a possibility to differentiate between dif-
erent groups of patients and to reflect the disease severity. The poten-
ial of TIMP-1 to serve as a prognostic marker after receiving therapies
as not received much attention in the literature so far. In pneumo-
ia, a significant decrease in the MMP-9/TIMP-1 ratio was noticed after
he CAP patients received antibiotic treatment in comparison with the
re-treatment level in two independent studies. 79 , 82 Consistently, TIMP-
 levels decreased significantly after glucocorticoid therapy compared
ith the pre-treatment levels in the IPF patients. 126 Thus, TIMP-1 could
e investigated as a non-invasive blood marker to evaluate the effective-
ess of drug therapies in pulmonary diseases, particularly lung fibrosis.

Different mechanisms and pathways have been studied in the reg-
lation of TIMP-1. So far, TGF/Smad pathways are confirmed as up-
tream modulators of TIMP-1 [ Fig. 2 ]. MWCNTs activated the extra-
ellular regulated protein kinases (ERK) pathway in murine fibroblast
ells in a TIMP-1-dependent manner. 19 However, inhibition of the ERK
athway using PD980590 had no effect on TIMP-1 secretion on MRC5
ells and normal adult human lung fibroblasts after infection with M.

b . 31 Furthermore, inhibition of p38 MAPK pathway using SB203580
eversed infection-induced inhibition of TIMP-1 secretion in the later
tudy. 31 Similarly, p38 MAPK inhibitor (SB203580) increased TIMP-1
ecretion in a dose-dependent manner after macrophages were infected
ith M. tb . 43 This effect was also seen in normal human bronchial ep-

thelial cells after infection with M. tb and using p38 pathway inhibitor
SB203580). 52 Moreover, the upregulation of TIMP-1 by TGF- 𝛽1 has
een shown in various types of cells. 22-27 , 47 A significantly increased ex-
ression of TIMP-1 in fibroblasts isolated from WT but not in fibroblasts
f Smad3 KO mice was seen after treatment with recombinant TGF- 𝛽1
n vitro , 136 indicating that the TGF- 𝛽/Smad signaling pathway plays a
ole in the regulation of TIMP-1. 

Several other factors may also affect the expression of TIMP-1, in-
luding age, weight, and smoking based on the current studies. In COPD,
ncreasing age and overweight were significantly related to increas-
ng TIMP-1 in plasma. 105 Moreover, current smoking was associated
ith reduced TIMP-1 levels in the same study. 105 It is well known

hat TIMP-1 is an adipocyte-secreted protein and can be upregulated
y adipokines, which may explain the significant association with over-
eight patients. 137 Similarly, adipokines are well recognized to increase
ith age and this could be due to increased adipose tissue mass. 138 How-

ver, lower levels of TIMP-1 among smokers can be explained by the
ssociation of smoking with lipolysis and body weight loss. 139 

Biological sex has been reported to influence susceptibility to infec-
ion, immune response, disease severity, and response to therapy . 140 , 141 

ex hormones particularly estradiol plays regulatory roles in immune
esponses as described by the induction of pro-inflammatory cytokines
nd macrophage activation . 142 Estradiol was also found to upregulate
 helper 17 (Th17)-related inflammation and worsen pneumonia in
ice. 143 TIMP-1 has a genomic location on the X chromosome . 144 , 145 

ost genes from the inactivated X-chromosome are silenced, while
IMP-1 may escape X-inactivation. Anderson and Brown 146 showed that
uman TIMP-1 is prone to reactivation and also variable in its inacti-
ation. Under inflammatory conditions, estradiol significantly induced
IMP-1 expression in goat oviductal epithelial cells 147 and also in hu-
an aortic endothelial cells . 148 Thus, there is a possibility that TIMP-1

ould be largely regulated by estradiol and may be affected more in
emales. Our recent clinical study of ALI/ARDS showed that circulat-
ng TIMP-1 level was a promising predictor of mortality, ventilator-free
ays, and ICU-free days among females . 71 Nevertheless, no study con-
idered the female sex as a factor that could significantly affect TIMP-1
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Fig. 2. A schematic representation of TIMP-1 
regulation in lung cells. Inflammatory media- 
tors IL-1 𝛽, TNF- 𝛼, and TGF- 𝛽 promote TIMP- 
1 expression via signaling pathways, such as 
mitogen-activated protein kinases pathways 
(p38 and ERK) and TGF/SMAD pathway. TIMP- 
1 may involve in the pathogenesis of pul- 
monary diseases through the modulation of 
the immune response and ECM homeostasis. 
ECM: Extracellular matrix; ERK: Extracellular 
signal-regulated kinase; IL-1 𝛽: Interleukin-1- 
beta; p38: Mitogen-activated protein kinase 14; 
SMAD: Suppressor of mothers against decapen- 
taplegic; TGF- 𝛽: Transforming growth factor- 
beta; TIMP: Tissue inhibitors of metallopro- 
tease; TNF- 𝛼: Tumor necrosis factor-alpha. 

Fig. 3. A diagram illustrating the regulation and function of TIMP-1 in pulmonary diseases. ALI: Acute lung injury; ARDS: Acute respiratory distress syndrome; CF: 
Cystic fibrosis; COPD: Chronic obstructive pulmonary disease; ECM: Extracellular matrix; IPF: Idiopathic pulmonary fibrosis; KO: Knockout; MMP: Metalloproteases; 
OVA: Ovalbumin; TIMP: Tissue inhibitors of metalloprotease. 
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xpression under normal and pathological conditions yet. Most previ-
us studies investigating the role of TIMP-1 in lung injury or fibrosis
mployed male rodents only. 16 , 19 , 67 , 73 , 74 , 135 , 149 , 150 In addition, some
tudies only used female rodents 20 , 75 , 131 and others did not specify the
ex of study subjects . 72 , 130 , 136 , 151 Therefore, the female sex needs to be
onsidered as a key factor that may critically influence TIMP-1 expres-
ion under physiological and pathological conditions. 

In summary, this review has focused on the dysregulation of TIMP-1
n pulmonary diseases by summarizing the findings in both preclini-
al and clinical studies [ Fig. 3 ]. It also discussed the heterogeneity and
onsistency in previous studies. Current findings indicate that TIMP-1
ay reflect the pathogenesis of pulmonary diseases, and could serve as
 promising targeted therapy for pulmonary fibrosis. In this scenario,
eutralizing TIMP-1 using a monoclonal antibody can provide a strat-
gy for inhibiting the abnormally increased TIMP-1 in disease condi-
73 
ions. 152 However, preclinical studies are urgently needed to evaluate
he therapeutic efficacy and mechanism before its clinical use in treating
ulmonary diseases, especially lung fibrosis. 
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