Table 2.
The results of the logistics regression model.
| Estimate | Std. error | z value | Pr( >|z|) | VIF | |
|---|---|---|---|---|---|
| (Intercept) | − 0.898 | 1.838 | − 0.488 | 0.625 | |
| Stomach cancer | − 1.279 | 0.561 | − 2.278 | 0.023 | 1.225 |
| Esophageal cancer | 0.668 | 0.621 | 1.076 | 0.282 | 1.202 |
| Liver cancer | − 0.275 | 0.486 | − 0.567 | 0.571 | 1.213 |
| Divorce | 2.955 | 1.159 | 2.549 | 0.011 | 1.190 |
| Bereave | 3.087 | 0.827 | 3.733 | 0.000 | 1.346 |
| Unmarried | − 15.980 | 972.400 | − 0.016 | 0.987 | 1.000 |
| Middle income level | 0.821 | 0.385 | 2.133 | 0.033 | 1.714 |
| Higher income level | 0.357 | 0.874 | 0.409 | 0.683 | 1.313 |
| Worker | 0.312 | 0.451 | 0.692 | 0.489 | 1.384 |
| Farming | 0.782 | 0.615 | 1.271 | 0.204 | 1.219 |
| Teacher and staff | − 16.310 | 2400.000 | − 0.007 | 0.995 | 1.000 |
| Government offical | − 0.625 | 0.561 | − 1.113 | 0.266 | 1.207 |
| Residence-rural | 0.344 | 0.390 | 0.882 | 0.378 | 1.584 |
| Residence-town | 0.695 | 0.429 | 1.620 | 0.105 | 1.764 |
| Residence-city | 16.890 | 1037.000 | 0.016 | 0.987 | 1.000 |
| Weight_loss_within_3_months < 1 kg | − 0.187 | 0.845 | − 0.222 | 0.825 | 1.196 |
| Weight_loss_within_3_months 1 ~ 3 kg | 1.427 | 0.390 | 3.659 | 0.000 | 1.600 |
| Weight_loss_within_3_months 3 ~ 5 kg | 1.185 | 0.636 | 1.863 | 0.062 | 1.224 |
| Weight_loss_within_3_months > 5 kg | 0.500 | 0.416 | 1.201 | 0.230 | 1.562 |
| Current NRS pain score_ | 0.753 | 0.143 | 5.265 | 0.000 | 1.535 |
| Serum potassium | − 0.661 | 0.328 | − 2.012 | 0.044 | 1.339 |
| Total protein | − 0.028 | 0.018 | − 1.561 | 0.118 | 1.408 |
| White blood cell | 0.092 | 0.026 | 3.586 | 0.000 | 1.273 |
| Hemoglobin | 0.005 | 0.007 | 0.688 | 0.492 | 1.275 |
| General quality of life within a week | 0.064 | 0.116 | 0.556 | 0.578 | 1.418 |
| Diarrhea | − 0.017 | 0.009 | − 1.828 | 0.068 | 1.351 |