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Decreased TLR7 expression was associated 
with airway eosinophilic inflammation and lung 
function in asthma: evidence from machine 
learning approaches and experimental 
validation
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Abstract 

Background  Asthma is a global public health concern. The underlying pathogenetic mechanisms of asthma were 
poorly understood. This study aims to explore potential biomarkers associated with asthma and analyze the patho-
logical role of immune cell infiltration in the disease.

Methods  The gene expression profiles of induced sputum were obtained from Gene Expression Omnibus datasets 
(GSE76262 and GSE137268) and were combined for analysis. Toll-like receptor 7 (TLR7) was identified as the core gene 
by the intersection of two different machine learning algorithms, namely, least absolute shrinkage and selector opera-
tion (LASSO) regression and support vector machine-recursive feature elimination (SVM-RFE), and the top 10 core 
networks based on Cytohubba. CIBERSORT algorithm was used to analyze the difference of immune cell infiltration 
between asthma and healthy control groups. Finally, the expression level of TLR7 was validated in induced sputum 
samples of patients with asthma.

Results  A total of 320 differential expression genes between the asthma and healthy control groups were screened, 
including 184 upregulated genes and 136 downregulated genes. TLR7 was identified as the core gene after com-
bining the results of LASSO regression, SVM-RFE algorithm, and top 10 hub genes. Significant differences were 
observed in the distribution of 13 out of 22 infiltrating immune cells in asthma. TLR7 was found to be closely related 
to the level of several infiltrating immune cells. TLR7 mRNA levels were downregulated in asthmatic patients com-
pared with healthy controls (p = 0.0049). The area under the curve of TLR7 for the diagnosis of asthma was 0.7674 (95% 
CI 0.631–0.904, p = 0.006). Moreover, TLR7 mRNA levels were negatively correlated with exhaled nitric oxide fraction 
(r = − 0.3268, p = 0.0347) and the percentage of peripheral blood eosinophils (%) (r = − 0.3472, p = 0.041), and positively 
correlated with forced expiratory volume in the first second (FEV1) (% predicted) (r = 0.3960, p = 0.0071) and FEV1/
forced vital capacity (r = 0.3213, p = 0.0314) in asthmatic patients.

Conclusions  Decreased TLR7 in the induced sputum of eosinophilic asthmatic patients was involved in immune cell 
infiltration and airway inflammation, which may serve as a new biomarker for the diagnosis of eosinophilic asthma.
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Background
Asthma is a common chronic disease in which airways 
become inflamed and narrow, causing airflow obstruc-
tion [1–3]. Asthma is a heterogeneous clinical syndrome 
that affects more than 300 million people worldwide [4]. 
The common symptoms of asthma in the acute phase 
include wheezing, coughing, chest tightness, and short-
ness of breath [1, 2]. Asthma is a complex and heterog-
enous respiratory diseases. The underlying pathogenetic 
mechanisms of asthma were poorly understood [5].

Induced sputum has several desirable characteristics 
as a noninvasive marker of airway inflammation [6]. In 
patients with asthma, sputum induction is generally a 
well-tolerated and safe method, and sputum can be used 
to measure various soluble mediators, including eosin-
ophilic-derived proteins, cytokines, and remodeling-
related proteins [6–11]. Induced sputum may be used 
to discover inflammatory cell profiles in patients with 
asthma and other airway diseases, and these profiles may 
be related to the patient’s response to treatment [12]. The 
gene expression profile of induced sputum cells is altered 
in patients with asthma [13].

Microarray technology and integrated bioinformatics 
analysis have been used in recent years to identify novel 
genes associated with various diseases that may serve as 
biomarkers for diagnosis and prognosis [14, 15]. Bioin-
formatics analysis has also been performed to identify 
the underlying mechanisms and hub genes of asthma [16, 
17]. Studies have also shown that immune cell infiltration 
plays an increasingly important role in the occurrence 
and development of various diseases [18–21]. Previ-
ous studies demonstrated that the Th1/Th2-mediated 
immune imbalance is the main mechanism of asthmatic 
airway inflammatory response, and various immune cells 
are involved in the pathogenesis of asthma [22].

CIBERSORT, a method for characterizing cell compo-
sition of complex tissues from their gene expression pro-
files, has been widely used to evaluate the relative content 
of 22 kinds of immune cells [23]. CIBERSORT method 
has also been applied to study the immune cell infiltra-
tion and candidate diagnostic markers in asthma. It has 
been reported by Yang et al. that autophagy-related genes 
are involved in the progression and prognosis of asthma 
and regulate the immune microenvironment [24]. Least 
absolute shrinkage and selector operation (LASSO) 
regression and support vector machine-recursive fea-
ture elimination (SVM-RFE) are two machine learning 
algorithms. LASSO is a dimension-reduction algorithm 
that can analyze high-dimensional data compared with 

regression analysis [25]. SVM-RFE is a machine learn-
ing algorithm used to identify the best variables through 
classification method [26]. The combination of LASSO 
and SVM-RFE has been applied in previous research to 
identify diagnostic markers [20, 27, 28].

In the present study, bioinformatics analysis and exper-
imental validation were performed to investigate the 
change of immune cell infiltration in asthma, and screen 
the biomarker for the diagnosis and treatment of asthma. 
Two datasets from Gene Expression Omnibus (GEO) 
database were combined, and differential expression gene 
(DEG) analysis, machine learning algorithms and CIB-
ERSORT were performed. Toll-like receptor 7 (TLR7), 
a candidate gene that was found to be closely associated 
with immune infiltration in asthma, was also validated 
in another GEO dataset and induced sputum samples of 
asthmatic patients.

Material and methods
Subjects
We recruited 12 healthy controls and 36 newly diag-
nosed asthma patients with untreated asthma. The asth-
matic patients included in this study and the control 
group were non-smokers, and the asthmatic patients 
were newly diagnosed and untreated. The asthmatic 
patients were from outpatients and were diagnosed with 
asthma by specialists. The characteristics of the subjects 
are summarized in Table  1. No significant differences 
were observed in terms of age, sex, and body mass index 
between the two groups. All subjects provided written 
informed consent. The study was approved by the Ethics 

Keywords  Asthma, TLR7, Induced sputum, Machine learning, Immune cell infiltration

Table 1  Characteristics of subjects

Values are presented as mean ± SD or median (interquartile spacing)

FeNO fraction of exhaled nitric oxide, FEV1 forced expiratory volume in the first 
second, FVC forced vital capacity

Healthy controls Asthma p value

Number 12 36

 Sex, F:M (%F) 8/4 (66.67) 13/23 (36.11) 0.0951

 Age, yr 35.75 ± 15.58 44.056 ± 16.81 0.1331

 BMI, kg/m2 23.278 ± 3.8964 23.098 ± 3.38 0.8611

Lung function

 FEV1, % pre-
dicted

93.5 (90–108) 88.89 (61.65–
101.69)

0.1739

 FEV1/FVC% 87 (81.4–90.91) 74 (59.93–78.44)  < 0.0001

 FeNO, ppb 11 (9–14) 38 (31–66)  < 0.0001

 Blood-eosinophil, 
%

1.95 (1.125–3.35) 4.6 (2.3–7.6) 0.0236
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Committee of the First Affiliated Hospital of Sun Yat-sen 
University (2021071).

Dataset acquisition and processing
The study design is shown in Additional file 1: Fig S1. The 
datasets GSE76262 and GSE137268 were downloaded 
from the GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo). GSE76262 dataset, which is based on GPL13158 
platform, included induced sputum samples from 118 
asthmatic patients and 21 healthy controls. GSE137268 
dataset, which is based on GPL6104 platform, included 
induced sputum samples from 54 asthmatic patients 
and 15 healthy controls. The series matrix files were 
annotated to the official gene symbols, and the two gene 
expression files were merged. The batch normalization 
was then conducted using combat method in “sva” R 
package. Finally, a merged file with 15,043 genes was pre-
pared for the subsequent analysis.

Identification of DEGs and enrichment analysis
The “limma” R package was used to identify DEGs, and 
the |log2FC|> 0.5 and adjusted p value < 0.05 were fil-
tered as statistically significant. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were then performed using “clusterProfiler” 
R package. Gene Set Enrichment Analysis (GSEA) was 
conducted to analyze the associated biological functions 
and pathways in asthma. Disease Ontology (DO) was also 
conducted using “DOSE” R package.

Identification of the core gene
First, two distinct machine learning algorithms, namely, 
least absolute shrinkage and selector operation (LASSO) 
regression and support vector machine-recursive feature 
elimination (SVM-RFE), were utilized in DEGs to screen 
the gene signatures. The LASSO is a regression analysis 
algorithm that uses regularization to improve the pre-
diction accuracy. The LASSO analysis was undertaken 
using “glmnet” R package; the response type was set as 
binomial, and the alpha was set as 1. SVM is a supervised 
machine-learning technique widely utilized for both clas-
sification and regression. To avoid overfitting, an RFE 
algorithm was employed to select the optimal genes from 
the meta-data cohort. Therefore, to identify the set of 
genes with the highest discriminative power, SVM-RFE 
was applied to select the appropriate features. The SVM-
RFE was performed using “e1071” and “caret” R package. 
Second, STRING database was used to construct the 
protein–protein interaction (PPI) network, and a core 
network was obtained through Cytoscape software and 
CytoHubba plugin. The top 10 hub genes were screened 
according to Degree algorithm. Finally, the results of 
LASSO regression, SVM-RFE algorithm, and hub genes 

were incorporated, and the overlapping gene (TLR7) was 
identified as the core gene.

Analysis of immune cell infiltration
The CIBERSORT algorithm was used to evaluate the 
percentage of 22 immune cell types in each sample. The 
fraction of 22 immune cells was compared between 
the asthma and healthy control groups, and the violin 
plot was drawn by “vioplot” R package. The correlation 
coefficient between immune cells was calculated using 
“corrplot” R package. Spearman correlation analysis was 
also performed to investigate the correlation of TLR7 and 
infiltrating immune cells.

Validation of TLR7 in a GEO dataset
The expression level of TLR7 in the merge dataset was 
visualized, and receiver operating characteristic (ROC) 
curve was applied to evaluate the diagnostic value 
of TLR7 for asthma. Furthermore, the GEO dataset 
GSE147878 with endobronchial biopsy samples from 60 
asthmatic patients and 13 healthy controls was used to 
validate the expression level and diagnostic effectiveness 
of TLR7 in asthma.

Collection of induced sputum from subjects
A total of 48 subjects from First Affiliated Hospital of 
Sun Yat-sen University (Guangzhou, Guangdong, China) 
were enrolled in this study, including 12 healthy controls 
and 36 asthmatic patients. Patients with asthma met the 
diagnostic criteria for Global Asthma Initiative (GINA) 
guidelines [29] and were free of other respiratory dis-
eases. People with normal lung function test results and 
no history of pulmonary disease, allergic disease, and 
autoimmune disease were included in the healthy control 
group. Sputum samples were collected from the partici-
pants. Participants were induced to cough by hypertonic 
saline. The above steps are completed by ultrasonic 
atomizer (Yuyue, Jiangsu, China). Sputum cell pellet was 
selected, weighed, and dissolved by adding 0.1% dithi-
othreitol (DTT) that is 4 times the weight. The pellet was 
then filtered through cell sieving [30–32]. After centrif-
ugation, sputum cells were added with 1  ml TRIzol for 
subsequent RNA extraction. Additional clinical informa-
tion was collected for each subject, including lung func-
tion, exhaled nitric oxide fraction (FeNO), and peripheral 
blood eosinophil percentage.

Quantitative real‐time polymerase chain reaction 
(qRT‑PCR)
Total RNA was extracted from induced sputum cells 
using TRIzol reagent following the manufacturer’s 
instructions. Evo M-MLV RT Premix kit (AG, Hunan, 
China) was used for reverse transcription. The reaction 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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conditions were 37 ℃ for 15 min and 85 ℃ for 5 s. Can-
didate gene expression was quantified using Biosystems 
Light Cycler 480 (Applied Biosystems, Massachusetts, 
USA) as standard procedure. The primers used were 
TLR7: forward, 5′- TCC​TTG​GGG​CTA​GAT​GGT​TTC-
3′, reverse, 5′- TCC​ACG​ATC​ACA​TGG​TTC​TTTG-3′ 
and GAPDH: forward, 5ʹ-ACC​CAG​AAG​ACT​GTG​GAT​
GG-3ʹ, reverse, 5ʹ-TTC​TAG​ACG​GCA​GGT​CAG​GT-3ʹ.

Statistical analysis
All data in this study were analyzed through GraphPad 
Prism 8. 0 (GraphPad, San Diego, California, USA). Nor-
mally distributed data were obtained through unpaired 
t-test and expressed as mean ± standard deviation. For 
non-normally distributed data, the results were obtained 
via a nonparametric test (i.e., Kruskal–Wallis test) and 
expressed as median (interquartile spacing). Fisher’s 
exact test was used to analyze classified data, and Spear-
man rank correlation was used for correlation analysis. 
ROC was generated to determine the diagnostic value of 
TLR7. P < 0.05 was considered statistically significant.

Results
Identification of DEGs and enrichment analysis
The inclusion criteria of the DEGs were |log2FC|> 0.5 
and adjusted p value < 0.05. A total of 320 DEGs 
between the asthma and healthy control groups were 

screened, including 184 upregulated genes and 136 
downregulated genes. The expressions of the DEGs 
in each sample are shown in the heatmap (Additional 
file  1: Fig S2A), and the distribution of the DEGs is 
illustrated through a volcano plot (Additional file 1: Fig 
S2B).

GO, KEGG, GSEA, and DO analyses were performed 
to further investigate the DEGs’ functions. GO enrich-
ment analysis was conducted to analyze the gene func-
tion in terms of biological processes (BP), cellular 
component (CC), and molecular function (MF). The 
GO analysis results showed that BP is mainly enriched 
in the regulation of immune effector process, CC is 
mainly enriched in tertiary granule, and MF is mainly 
enriched in immune receptor activity (Additional file 1: 
Fig S3A). The KEGG pathway enrichment analysis 
demonstrated that the DEGs were mainly involved in 
cytokine–cytokine receptor interaction, tumor necro-
sis factor (TNF) signaling pathway, and nuclear fac-
tor (NF)-kappa B signaling pathway (Additional file  1: 
Fig S3B). As shown in Fig. 1A, GSEA also showed that 
the significantly enriched hallmark terms associated 
with asthma included chemokine signaling pathway, 
cytokine–cytokine receptor interaction, Janus kinase/
signal transducer and activator of transcription (JAK/
STAT) signaling pathway, mitogen-activated protein 
kinase (MAPK) signaling pathway, and neuroactive 

Fig. 1  GSEA and DO enrichment analyses. A Illustration of several important enrichment hallmark terms in asthma obtained through GSEA. B Top 
20 terms in the DO enrichment analysis
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ligand receptor interaction. Furthermore, DO analysis 
revealed that the DEGs were mainly related to lung dis-
ease and obstructive lung disease (Fig. 1B).

Identification of TLR7 as the core gene
To explore the biomarkers of asthma, two distinct 
machine learning algorithms, namely, the LASSO regres-
sion and SVM-RFE, were performed. The LASSO regres-
sion analysis identified 46 DEGs as signature genes in 
asthma (Fig.  2A). The SVM-RFE algorithm screened 28 
DEGs as characteristic genes in asthma (Fig. 2B). In addi-
tion, a PPI network of DEGs was constructed using the 
STRING database. A core network was then obtained 
through Degree algorithm in the Cytohubba plugin, and 
10 hub genes were identified (Fig. 2C). After combining 
the results of LASSO regression, SVM-RFE algorithm, 
and hub genes by Venn diagram, only an intersection 

gene was identified, i.e., TLR7 (Fig. 2D). TLR7 was thus 
identified as the core gene for the subsequent research.

Immune infiltration analyses
CIBERSORT algorithm was used to analyze the differ-
ence of immune cell infiltration between the asthma and 
healthy control groups in 22 subpopulations of immune 
cells. The total value of all immune cells in each sample 
was set at 100%, and the proportion of each immune cell 
in these samples is presented in Fig. 3A. The interaction 
between the immune cells was also analyzed. Average 
linkage clustering revealed that M1 macrophages and 
activated memory CD4 T cells have a significant positive 
correlation, whereas neutrophils and M0 macrophages 
are significantly negatively correlated (Fig. 3B). The vio-
lin plot showed marked differences in the distribution 
of 13 out of 22 immune cells (Fig. 3C). The fractions of 

Fig. 2  Two machine learning algorithms and PPI network were performed for core gene selection. A LASSO regression analysis. B SVM-RFE 
algorithm. C Hub genes based on the Degree algorithm in the Cytohubba plugin. D Venn diagram showing the overlapping gene of LASSO 
regression, SVM-RFE algorithm, and hub genes
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naive CD4 T cells (p = 0.027), resting dendritic cells 
(p = 0.018), activated dendritic cells (p < 0.001), and 
eosinophils (p = 0.006) in the asthma group were remark-
ably higher compared with those of the healthy con-
trols, while the fractions of memory B cells (p = 0.018), 
CD8 T cells (p = 0.015), activated memory CD4 T cells 
(p = 0.043), follicular helper T cells (p < 0.001), gamma 
delta T cells (p = 0.018), monocytes (p = 0.021), M0 mac-
rophages (p = 0.006), M1 macrophages (p = 0.029), and 
M2 macrophages (p < 0.001) were lower in asthma. Taken 
together, these results suggest that the heterogeneity of 
infiltrating immune cells in asthma is evident and may 
play a role in the pathogenesis of asthma.

To further investigate the correlation of TLR7 and 
infiltrating immune cells, Spearman correlation was per-
formed (Table 2) and plotted in a lollipop chart (Fig. 3D) 
and several scatter charts (Additional file 1: Fig S4). The 
results demonstrated that TLR7 was positively corre-
lated with M2 macrophages (r = 0.59, p < 0.001), folli-
cular helper T cells (r = 0.46, p < 0.001), memory B cells 

(r = 0.36, p < 0.001), CD8 T cells (r = 0.32, p < 0.001), M0 
macrophages (r = 0.32, p < 0.001), M1 macrophages 
(r = 0.28, p < 0.001), resting memory CD4 T cells (r = 0.24, 
p < 0.001), and monocytes (r = 0.21, p < 0.01). Meanwhile, 
TLR7 was negatively correlated with activated dendritic 
cells (r = − 0.52, p < 0.001), naive CD4 T cells (r = − 0.40, 
p < 0.001), plasma cells (r = − 0.25, p < 0.001), eosinophils 
(r = −  0.22, p < 0.01), resting dendritic cells (r = −  0.20, 
p < 0.01), activated mast cells (r = −  0.19, p < 0.01), acti-
vated memory CD4 T cells (r = − 0.18, p < 0.05), and rest-
ing NK cells (r = −  0.17, p < 0.05). These results indicate 
that the core gene TLR7 is closely related to the level of 
immune cell infiltration and plays a crucial role in the 
immune microenvironment of asthma.

Validation of TLR7 in a GEO dataset and the diagnostic 
value of TLR7 for asthma
In the merged dataset, the expression level of TLR7 in the 
asthma group significantly decreased compared with that 
of the healthy control group (p < 0.001, Fig.  4A). ROC 

Fig. 3  Landscape of immune infiltration between the asthma and healthy control groups. A The box plot diagram indicates the relative percentage 
of different types of immune cells in each sample. B The heatmap shows the correlation of infiltrating immune cells. C The violin plot shows 
the differences of immune infiltration between the asthma (red) and healthy control (blue) groups. D The lollipop chart presents the correlation 
of TLR7 and infiltrating immune cells on the basis of Spearman correlation analysis results. (p value < 0.05 indicated statistical significance)
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curve analysis was conducted to evaluate the sensitiv-
ity and specificity of TLR7 for the diagnosis of asthma. 
As shown in Fig. 4B, the area under curve (AUC) value 
of TLR7 was 0.799 (95% CI 0.719–0.874). Moreover, the 
GSE147878 dataset was used to validate the expression 

and diagnostic effectiveness of TLR7 in asthma. Con-
sistently, the TLR7 expression level in the asthma group 
of the GSE147878 dataset also significantly decreased 
(p < 0.01, Fig. 5A), and the AUC value of TLR7 was 0.783 
(95% CI 0.645–0.897, Fig. 5B).

Validation of TLR7 mRNA expression in induced sputum 
cells of asthmatic patients
Detection of TLR7 mRNA levels via qRT-PCR showed 
that TLR7 mRNA levels were significantly downregu-
lated in asthmatic patients compared with those in 
healthy controls (p = 0.0049, Fig. 6A). The AUC value was 
0.7674 (95% CI 0.631–0.904, p = 0.006) (Fig. 6B). Our test 
results are thus consistent with those of the GEO dataset, 
and TLR7 has a satisfactory diagnostic ability for asthma.

TLR7 mRNA expression is associated with airway 
eosinophilic inflammation and lung function
We investigated the correlation between TLR7 mRNA 
expression and clinical indicators such as FeNO, per-
centage of peripheral blood eosinophils (%), and lung 
function. The results showed that TLR7 mRNA expres-
sion was significantly negatively correlated with FeNO 
(r = −  0.3268, p = 0.0347) (Fig.  7A) and percentage of 
peripheral blood eosinophils (%) (r = − 0.3472, p = 0.041) 
(Fig.  7B), and positively correlated with forced expira-
tory volume in the first second (FEV1) (% predicted) 
(r = 0.3960, p = 0.0071) (Fig.  7C) and FEV1/forced vital 
capacity (FVC) (r = 0.3213, p = 0.0314) (Fig.  7D). These 
data suggest that TLR7 is involved in the pathogenesis of 
eosinophilic inflammation and bronchoconstriction in 
asthmatic patients.

Table 2  Correlation of TLR7 and infiltrating immune cells

Infiltrating immune cells r p value

Macrophages M2 0.59  < 0.001

T cells follicular helper 0.46  < 0.001

T cells follicular helper 0.46  < 0.001

B cells memory 0.36  < 0.001

T cells CD8 0.32  < 0.001

Macrophages M0 0.32  < 0.001

Macrophages M1 0.28  < 0.001

T cells CD4 memory resting 0.24  < 0.001

Monocytes 0.21 0.002

NK cells activated 0.10 0.162

Mast cells resting 0.08 0.255

B cells naive − 0.04 0.578

T cells regulatory (Tregs) − 0.11 0.120

T cells gamma delta − 0.11 0.104

Neutrophils − 0.12 0.072

NK cells resting − 0.17 0.015

T cells CD4 memory activated − 0.18 0.010

Mast cells activated − 0.19 0.006

Dendritic cells resting − 0.20 0.004

Eosinophils − 0.22 0.002

Plasma cells − 0.25  < 0.001

T cells CD4 naive − 0.40  < 0.001

Dendritic cells activated − 0.52  < 0.001

Fig. 4  TLR7 expression level and its diagnostic value in asthma. A The expression level of TLR7 in the asthma (red) and healthy control (blue) groups 
in the merged dataset. (p value < 0.05 indicated statistical significance). B ROC curve analysis of TLR7 in the merged dataset
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Discussion
Asthma is a common chronic disease [2]. Induced spu-
tum may have some characteristics as a noninvasive 
marker of airway inflammation [12]. The gene expres-
sion profile of induced sputum cells is altered in patients 
with asthma [13]. In the current study, two datasets (i.e., 
GSE76262 and GSE137268), including induced sputum 
samples of 172 asthmatic patients and 36 healthy con-
trols, were combined for analysis. The combat algorithm 
in “sva” R package was used to eliminate batch effect [33]. 
TLR7 was identified as the core gene through the inter-
section of two different machine learning algorithms (i.e., 

LASSO regression and SVM-RFE) and the top 10 core 
networks based on Cytohubba. The immune infiltration 
analysis results showed that TLR7 is closely related to 
the level of numerous infiltrating immune cells. Finally, 
the decreased TLR7 expression levels were validated in 
induced sputum samples of patients with asthma. The 
diagnostic value of TLR7 for eosinophilic asthma was 
evaluated, and its correlation with related clinical indica-
tors was also analyzed.

In the present study, a total of 320 DEGs between the 
asthma and healthy control groups were obtained. GO 
and KEGG analyses revealed that DEGs between the 

Fig. 5  Validation of the expression and diagnostic value of TLR7 in the GSE147878 dataset. A The expression level of TLR7 in the asthma (red) 
and healthy control (blue) groups in the GSE147878 dataset. (p value < 0.05 indicated statistical significance). B The ROC curve analysis of TLR7 
in the GSE147878 dataset

Fig. 6  Validation of the expression and diagnostic value of TLR7 in asthmatic patients. A TLR7 mRNA expression level in induced sputum cells 
of asthma. B ROC curve of TLR7 in induced sputum cells



Page 9 of 12Yan and Liang ﻿European Journal of Medical Research          (2024) 29:116 	

asthma and healthy controls were primarily enriched in 
cytokine–cytokine receptor interaction and immune-
related functions, such as immune effector process and 
immune receptor activity. GSEA is a threshold-free 
method that analyzes all genes on the basis of their dif-
ferential expression rank, or other score, without prior 
gene filtering [34]. GSEA results coincided with the GO 
and KEGG results. Moreover, these DEGs were proven 
to be related to lung diseases, such as asthma, by DO 
analysis. Furthermore, two machine learning algorithms, 
the LASSO regression and SVM-RFE, were performed 
to identify the biomarkers of asthma. The combination 
of LASSO and SVM-RFE has been applied in previous 
research to identify diagnostic markers [20, 27, 28]. The 
traditional PPI network of DEGs was also constructed 

to identify hub genes. After combining the results of 
LASSO, SVM-RFE, and hub genes, decreased TLR7 was 
finally identified as the core gene of asthma.

Toll-like receptors (TLRs) play crucial roles in the 
recognition of invading pathogens and the immune 
system. The role of TLR signatures in asthma has been 
reported by Wu et  al. that TLR2/TLR3/TLR4 pathway, 
MyD88-dependent/independent TLR pathway, positive 
regulation of TLR4 pathway and TLR binding signatures 
were correlated with asthma [35]. TLR7 is an endoso-
mal receptor that recognizes microbial or self-antigen-
derived single-stranded RNA ligands [36]. Currently, 
TLR7 has been reported to be involved in the pathogen-
esis of various immunological diseases [37–43]. Research 
reports that TLR7 agonists reduce Th2-mediated airway 

Fig. 7  Relationship between TLR7 mRNA expression level and clinical parameters. Relationship between TLR7 mRNA expression level in induced 
sputum cells and A FeNO, B percentage of peripheral blood eosinophils (%), C FEV1 (% predicted), and D FEV1/FVC (%)
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inflammation, airway hyperreactivity, and chronic air-
way remodeling in asthma [44]. Jha A and coworkers also 
achieved similar results [45]. TLR7 agonists can increase 
the expression of interferon and C-C motif chemokine 
ligand 13 (CCL13) in nasal mucosa of patients with 
asthma and allergic rhinitis [46]. Several research find-
ings also revealed that TLR7 regulates RV1b-induced 
type I and type III interferon signaling pathways in 
allergic asthma [47]. TLR7 may confer predisposition 
to asthma and related atopic diseases [48]. A significant 
correlation was found between TLR7 single nucleotide 
polymorphism (SNP) and childhood asthma [49]. Fur-
thermore, the expression of TLR7 in the airway of asth-
matic mice was significantly decreased, and upregulation 
of TLR7 was found to inhibit the activation of NF-κB 
signaling pathway, reduce airway inflammation, inhibit 
the proliferation of airway smooth muscle cells (ASMCS), 
and promote apoptosis in asthmatic mice [50]. Recently, 
TLR7-nanoparticle adjuvants have been reported to 
improve the immune response to viral antigens [51]. 
TLR7 plays a key role in the pathogenesis of rosacea by 
activating the NFκB-mTORC1 axis [52]. Another study 
also showed that TLR7 expression is decreased in the 
lungs of patients with severe asthma [53]. The GSE147878 
dataset confirmed that the TLR7 expression level in 
asthma is also significantly reduced and has good diag-
nostic value. The expression trend of our test result was 
consistent the GEO datasets, that is, TLR mRNA expres-
sion is significantly decreased in the induced sputum of 
asthmatic patients and has satisfactory diagnostic ability. 
TLR7 mRNA expression was significantly negatively cor-
related with FeNO and percentage of peripheral blood 
eosinophils (%) and positively correlated with FEV1 (% 
predicted) and FEV1/FVC. We thus inferred that TLR7 
is involved in the pathogenesis of eosinophilic inflamma-
tion and bronchoconstriction in asthmatic patients.

In addition, immune infiltration analysis in this study 
demonstrated that the changes of infiltrating immune 
cells in asthma are evident. Significant differences were 
observed in the distribution of 13 out of 22 immune cells 
in asthma. The fractions of dendritic cells and eosinophils 
in the asthma group were remarkably higher, whereas 
the fractions of memory B cells, T cells, monocytes, and 
macrophages were lower compared with those of the 
healthy controls. Interestingly, TLR7 was also found to be 
closely related to the level of immune cell infiltration in 
the current study. Therefore, it could be concluded that 
TLR7 may play a critical role in asthma by regulating 
immune cells.

There are also inherent limitations in this study. First, 
the size of induced sputum samples was not sufficiently 
large. Further study should include more samples. Sec-
ond, our sample size was small and we did not compare 

TLR7 protein levels across different asthma subtypes. 
Finally, the mechanism by which TLR7 affects eosino-
philic asthma was not thoroughly studied. Therefore, fur-
ther studies are warranted to confirm this mechanism as 
potential new therapeutic targets of eosinophilic asthma.

Conclusions
In conclusion, this study proved that decreased TLR7 in 
the induced sputum of eosinophilic asthmatic patients 
was involved in immune cell infiltration and airway 
inflammation, which may serve as a new biomarker for 
the diagnosis of eosinophilic asthma.
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