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Noncoding variants of presumed regulatory function contribute to the heritability of 

neuropsychiatric disease. 2221 noncoding variants connected to risk for 10 neuropsychiatric 

disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, bipolar 

disorder, borderline personality disorder, major depression, generalized anxiety disorder, panic 

disorder, post-traumatic stress disorder, obsessive-compulsive disorder, and schizophrenia, were 

studied in developing human neural cells. Integrating epigenomic and transcriptomic data 

with massively parallel reporter assays identified differentially-active single-nucleotide variants 

(daSNVs) in specific neural cell types. Expression-gene mapping, network analyses, and 

chromatin looping nominated candidate disease-relevant target genes modulated by these daSNVs. 

Follow up integration of daSNV gene editing with clinical cohort analyses suggested that 

magnesium transport dysfunction may increase neuropsychiatric disease risk and indicated that 

common genetic pathomechanisms may mediate specific symptoms that are shared across multiple 

neuropsychiatric diseases.

Introduction

Genome-wide association studies (GWAS) of neuropsychiatric disorders have identified 

thousands of risk loci, most of which reside in noncoding DNA of possible regulatory 

function in neural cell types1–5. Decoding mechanisms whereby such variants mediate 

disease risk has proved difficult. First, most GWAS-identified single nucleotide 

polymorphisms, or variants (SNVs), are in linkage disequilibrium (LD) with other 

adjacent SNVs6, underscoring the need for single-nucleotide resolution studies of allele-

specific activity. Second, most GWAS variants reside in noncoding DNA regions distal to 

brain-expressed coding genes7, making variant-gene linkage challenging8. Finally, many 

neuropsychiatric disorders may arise, in part, from dysfunctions during brain development9, 

emphasizing the need to assess variants in models of human neural differentiation. A 

single-nucleotide resolution resource of risk variants with altered transcription-directing 

activity in human neural cell types may nominate dysregulated target genes to features of 

neuropsychiatric disease10.

Here, we present a single-nucleotide resolution compendium of functional, differentially-

active SNVs (daSNVs) in regulatory DNA associated with 10 human neuropsychiatric 

diseases along with an analytical framework to assess how these variants dysregulate 

pathways implicated in disease. SNVs were identified from GWAS of autism spectrum 

disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), 

borderline personality disorder (BLPD), major depressive disorder (MDD), generalized 

anxiety disorder (GAD), panic disorder (PD), post-traumatic stress disorder (PTSD), 

obsessive-compulsive disorder (OCD), and schizophrenia (SCZ). Massively parallel 

reported assays (MPRA) compared activity in matched risk versus reference allele 

pairs in embryonic stem (ES) cells and ES cell-derived human neural progenitor cells 

(NPC), differentiating neurons, and glial cells. MPRA identified 892 daSNVs with 

differing transcription-driving function from non-risk counterpart alleles, many with 

neural cell-state specific differential activity. Transcriptomic, chromatin accessibility, 

and looping data from human neural cell types were generated and integrated with 

expression quantitative trait loci (eQTL) data to link daSNVs to dysregulated target genes 
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(eGenes). The resulting 641 putative eGenes contain multiple known and novel drug 

targets within protein interaction networks implicated in neurologic function. Integration 

of daSNV-eGene-pathway connectivity with population-scale genotyping-clinical data 

nominated pathomechanisms for specific neuropsychiatric symptoms. These data provide 

a single-nucleotide resolution resource of functional variants linked to common human 

neuropsychiatric disorders and provide a framework to connect these variants to shared 

pathomechanisms, therapeutics, and clinical features.

Results

Active regulatory variants linked to disease

To identify neuropsychiatric daSNVs that alter transcription-directing activity, MPRA11,12 

was used. 2221 variant pairs were prioritized by first curating neuropsychiatric GWAS-

indexed SNVs and clinically annotated, disease relevant SNVs (n=15,904 initial SNVs), 

expanding them to all SNVs in LD (r2>0.8) then filtering through DNase I hypersensitive 

data from ENCODE in 40 different neural and immune cell types (Fig. 1, Fig. 2A, table 

S1). GTEx eQTL datasets13 were used to annotate potential target genes for these 2221 

variants. On average, 5 SNVs were tested per locus. SNVs tested reflected the genomic 

associations currently available. For instance, neuropsychiatric GWAS datasets are most 

extensive for SCZ, and thus roughly half of the tested variants were associated with this 

disorder. Additionally, roughly 12% of the SNVs tested were associated with more than 

one disease, indicating possible shared genetic signals across multiple neuropsychiatric 

disorders.

SNV function was assayed via MPRA in human H9 ES cells and their differentiated 

anterior and posterior neural stem cell progeny along with Neurogenin2-induced neuronal 

cells undergoing a previously defined maturation time-course14 to mimic features of neural 

development along with human astrocytes, and multiple cell lines, including the HEK293T 

epithelial kidney line used widely for MPRA, medulloblastoma cells lines D283 and D341, 

and neuroblastoma cell lines IMR-32 and SH-SY5Y. Per-replicate concordance in cell-

extracted barcode codes from the resulting 44 independent MPRAs indicated robust data 

quality (Extended Data Fig. 1). 892 daSNVs (FDR < 0.05) with significant allelic activity 

differences in any of the cell types tested were found using a generalized linear model15. 

The validity of the model was confirmed with QQ plotting, which confirmed RNA counts 

followed a negative binomial distribution, whereas plasmid counts approximate a Poisson 

distribution (Extended Data Fig. 1E). Approximately 30% of variants were significant per 

disease; distribution of cell-type significance remained similar across diseases, with ~14.5% 

SNVs significant within each cell type and condition. HEK293Ts displayed a different 

pattern of allele specificity from other neural cell lines and the ES derived neural cells 

(Fig. 2A–E). A likelihood ratio F test model determined that 326 of 892 daSNVs had 

significant interaction terms between cell-type and allelic activity. Of the 187 daSNVs 

with significant cell-specific activity in human neural cells, only 72 overlap with those in 

HEK293T cells (Fig. 2F). GO term analysis of the nearest genes showed that ES-derived 

neural cell types and neural cell lines capture more neural-specific processes, such as 

“postsynapse organization” or “neural projection development”, compared to HEK293Ts. 
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Additionally, neural cell-types displayed strong cell-type-dependent allele-specific activity 

in immunomodulation. Cell-type specific positive correlation was noted between the 

neuropsychiatric MPRA dataset and noncoding sequence-based variant predictive model, 

DeepSea16 (Fig. 2G, table S2). Neuropsychiatric genetic variants have cell-type specific 

activity at a DNA base pair scale not uncovered using conventional HEK293T cells.

RNA and chromatin dynamics in neural differentiation

To place daSNVs in genomic context, matched RNA-seq, chromatin accessibility profiling 

via ATAC-seq17, and enhancer-promoter looping via H3K27ac HiChIP 18 was performed in 

ES cells and at days 2 (N-D2), 10 (N-D10), and 28 (N-D28) of neuronal differentiation, 

as well as anterior (A-NPC) and posterior (P-NPC) neuronal progenitor cells along with 

primary human astrocytes from adult brains (Fig. 1B, Fig. 3, Extended Data Fig. 2). 

Neurodevelopmental markers were observed in a cell type-specific fashion (Fig. 3A). 

Astrocyte markers (GFAP, PDGFRA, S100B) were preferentially expressed in primary 

astrocytes as was a glutamatergic specific marker (SLC1A1) in induced neurons. Anterior 

marker FOXG1 and posterior marker HOXA2 were seen in anterior neural progenitor 

cells (A-NPC) and posterior neural stem cells (P-NPC), respectively. GABAergic markers 

demonstrated lower expression in induced neurons, consistent with a primarily excitatory 

phenotype. Motif scanning of differential ATAC-accessibility profiles found transcription 

factor (TF) motifs clustered in two groups: early neuronal differentiation motifs (FOXB1, 
ZIC1, NEUROD1) and later neuronal differentiation motifs (CUX1, ONECUT1) (Fig. 3B–

C). ATAC footprinting captured TF temporal dynamics (Extended Data Fig. 2). Processed 

H3K27ac HiChIP data extracted unique and shared regulatory DNA loops (Extended 

Data Fig. 2D–E, see Supplemental Methods for more details).The majority of putative 

enhancers were linked to promoters distal to the nearest gene (Extended Data Fig. 2C), 

as previously found19. Comparing these epigenomic datasets to published studies20–22 

found strong overlap in accessibility profiles but less comparability for looping data due 

to differences in experimental methods (table S3 and S4). Additionally, comparative analysis 

between our daSNVs and allele specific open chromatin hits in Zhang, et al 202020 found 

overlapping significant variants (n=206) show moderate degree of positive correlation in 

log-fold changes (r2= 0.48, p-value = 1.7×10−13) (Extended Data Fig. 2G). Transcriptomic 

and epigenomic data provided an integrative view of cis-transcription regulatory modules 

and verified the phenotypes of neural cell populations studied.

The regulatory effects of neuropsychiatric disease variants were next explored. First, 

enrichment of the 892 MPRA-identified daSNVs within differential H3K27ac loops and 

accessible regions was quantified for each cell type (Fig. 3D, table S5). daSNVs for ADHD, 

BPD, PD, GAD, and SCZ were enriched in ES cells as well as in A-NPCs and P-NPCs, 

with no enrichment seen for control variants associated with type 2 diabetes risk. daSNVs 

were also not enriched in astrocyte differential loops and accessible regions, suggesting 

that neuropsychiatric disease pathogenesis may unfold primarily in neuronal cells. Second, 

allele-specific ATAC and H3K27ac HiChIP analysis found that daSNVs were infrequently 

associated with changes in DNA accessibility (2% of daSNVs) or looping (1% of daSNVs), 

suggesting that tested daSNVs do not mediate large changes in chromatin accessibility 

and structure. 268 daSNVs (30.0%) directly altered at least one known TF motif while 
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239 (26.8%) of daSNVs created at least one new TF motif (table S6). Interestingly, motif 

sequences for TFs that influence neuronal or glial differentiation, including AP-1 motifs23, 

SOX1724, and GLI125, were found significantly broken or gained at daSNVs in a disease-

specific manner (Extended Data Fig. 2F, table S6B), suggesting that daSNVs act through 

altering local neural TF action rather than via larger scale impacts on chromatin architecture.

To ensure that the epigenomic and transcriptomic profiles used in these analyses are 

significantly enriched for regions capturing the genetic heritability 26–28 of neuropsychiatric 

disorders, linkage disequilibrium score regression (LDSC)29 was used to generate cell-

specific heritability estimates using 25 neuropsychiatric GWAS. ATAC-seq based cell-

specific annotations were derived using open chromatin profiles for 10 neural cell-types. 

Cell-specific heritability estimates were generated of neuropsychiatric diseases with ATAC-

seq derived cell-specific annotations for 34 non-neural epithelial cells and cancer cell lines, 

as negative controls (Fig. 3E, Data S1). At Bonferroni-corrected p-value < 0.01 with respect 

to multiple hypothesis testing for each of the 44 cell-types, the epigenomic profiles of 

neural progenitor cells and later stage neurons were enriched for regions capturing the 

heritability of numerous neuropsychiatric GWAS, particularly for BPD, SCZ, MDD, and 

Neuroticism, unlike embryonic cells, astrocytes, epithelial and cancer cell lines. RNA-seq 

based cell-specific annotations were derived using gene expression profiles for 10 neural 

cell-types and cell-specific heritability estimates of neuropsychiatric diseases derived with 

RNA-seq derived cell-specific annotations for 16 non-neural epithelial cells and cancer 

cell lines, as negative controls. At Bonferroni-corrected p-value < 0.01 with respect to 

multiple hypothesis testing for each of the 26 cell-types, the transcriptomic profiles of 

embryonic cells, neural progenitor cells and neurons were enriched for regions capturing 

the heritability of numerous neuropsychiatric GWAS, particularly for ADHD, ASD, BPD, 

SCZ, MDD, Worry, and Neuroticism, unlike the astrocytes, epithelial and cancer cell lines. 

For additional negative controls, LDSC generated epigenomic and transcriptomic-based cell-

specific heritability estimates using 19 GWAS for non-neuropsychiatric, complex diseases, 

none of which were significant. These analyses suggest the neural cells and corresponding 

open chromatin epigenomic and transcriptomic data used here are relevant cell-states to 

neuropsychiatric disease heritability.

Linking regulatory variants to genes and cell types

Brain-specific GTEx13 and PsychENCODE2,30 eQTL data were next used to link the 892 

identified daSNVs to genes whose RNA expression varies with the variant’s presence 

(termed eGenes). 480 of the 892 daSNVs (approximately 67% of both the tested and 

significant SNVs) had eQTL-gene linkages where the gene was expressed in the neural 

cell model (TPM >1), with 641 putative eGenes were identified. Overlaying these 641 

genes onto StringDB nominated protein interaction networks for each disease (Data S2). For 

SCZ, 447 genes across all cellular conditions were linked to eQTLs, annotated by protein 

function and disease-relevant automated literature search. A substantial portion of SCZ-

linked candidate eGenes were associated with five main biological processes: ion channel 

activity, general neural processes, immune regulation, cell cycle regulation, and transcription 

regulation (Fig. 4A), providing a resource for hypothesis generation, components of 

which also touch on major proposed SCZ pathomechanisms1,31,32. For example, the 
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immune hypothesis of schizophrenia31 was captured through genes connected to C4A 
and the HLA-C loci. eGenes involved in protocadherin function, Notch signaling33, and 

synaptic action via SV2A34, were also observed. Network analyses also identified potential 

pathomechanisms. For instance, SUFU maintains neuronal identity during corticogenesis35, 

however, its putative role in SCZ has not been defined. Of interest, there was not significant 

linkage between target gene biological processes and cell-type specific daSNV networks. 

BPD was linked to 176 putative eGenes, MDD to 128, ADHD to 67, GAD to 30, OCD to 

27, BLPD to 24, PTSD to 17 (Extended Data Fig. 3). MPRA allele specific activity was 

confirmed via both episomal and lentiviral luciferase assays for selected daSNVs linked to 

target genes of interest (RERE, C4A/HLA-C, GIT1, PNMT) (table S7). <10 eGenes were 

nominated for ASD and PD; small numbers of daSNVs and putative eGenes correlated with 

fewer GWAS studies for these disorders. Putative eGene networks in MDD, GAD, OCD, 

and ADHD, however, consistently captured features of the same 5 biologic processes seen 

in SCZ, suggesting dysregulation of common shared biologic processes underpins multiple 

neuropsychiatric disorders.

Transcriptional dysregulation, which can exert major impacts on neurodevelopment and 

homeostasis36, is one such process notably enriched in MPRA-significant networks versus 

networks extracted from non-significant MPRA hits. Furthermore, cis-target genes of 

daSNV-linked transcription factors may serve as potentiators for further downstream 

pathogenic effects on myelination, brain development, and membrane depolarization, among 

others (Fig. 4B). For example, 4 SCZ/BPD-linked daSNVs looped to the promoter for the 

POU5F1/OCT4 TF, which establishes a pluripotency-neural differentiation axis with SOX2 
and PAX637; each of these daSNVs is a brain-specific eQTL. These daSNVs displayed 

different activities across neuronal differentiation. rs2442722 and rs35735140 showed allele 

specific activity early, in contrast to later differences seen with rs28428768 and rs3134944 

(Extended Data Fig. 4), suggesting POU5F1/OCT4 dysregulation at different points in 

neuronal differentiation may confer differing levels of pathogenic risk. Studying daSNV 

activity dynamics in neuronal differentiation may shed light on stage-specific pathogenic 

mechanisms of transcriptional dysregulation.

To help place the 641 putative eGene targets of neuropsychiatric daSNVs in the human 

brain context, integrative analyses were performed with GTEx and single-cell RNA-seq 

data from the Allen Brain Atlas38. When daSNVs’ colocalization signals were stratified 

by GTEx tissue type, brain tissue types had significantly higher signal than non-brain 

tissue types, indicating daSNVs preferentially modulate transcription within the brain (table 

S8). Next, single-cell RNA-seq of cortical neurons were used to match putative eGenes 

to cell subtypes. PCA analysis across the 127 neuron expression profiles placed genes on 

a spectrum with two main considerations: number of cell types where a given gene was 

expressed and whether the gene was primarily found in GABAergic or glutaminergic cells. 

Putative daSNV eGenes expressed in more subtypes (i.e. CNNM2, ANK3, RTN1) may be 

involved in more global neuronal processes while certain genes were primarily expressed 

in GABAergic cells (CHRNA239) or in glutaminergic cells (PTK2B40) (Fig. 4C, table S9). 

scRNA and GTEx-based analyses map daSNV candidate eGenes to cell types within human 

brain.
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Refining target genes and the CNNM2 magnesium transporter

daSNVs’ impacts on local gene regulation were next studied by integrating eQTL analyses 

with chromatin accessibility and looping data. Focused analyses were necessary because 

an average of 5 daSNVs linked to each putative eGene, at an average distance of ~20kb. 

~50% of GWAS gene annotations - typically annotated to the nearest gene - were discordant 

with eQTL or chromatin linkage (Extended Data Fig. 5), with minimal correlation between 

MPRA and GTEx effect sizes (Data S3), suggesting alternative epigenetic or environmental 

factors affect allele-specific activity. A distilled list of chromatin data-linked genes with 

eQTL support (Table 1, Data S3) was generated to nominate disease-linked putative eGenes. 

For example, the 10q24.32 locus (Fig. 5) containing CNNM2 magnesium transporter and 

AS3MT arsenic transporter genes is of interest because both have been previously associated 

with SCZ41,42. Although 4 daSNVs were annotated as eQTLs for the two genes in 

GTEx, only two daSNVs, rs12264415 and rs1046411, displayed local looping, as detected 

by H3K27ac HiChIP (Fig. 5B) in human neural cells. rs12264415 and rs1046411 both 

looped to the CNNM2 promoter. However, no daSNVs looped to the AS3MT promoter. 

rs12264415, which displays decreased transcription-directing activity with the risk/alternate 

G allele versus the protective/reference T allele, is of particular interest, as MPRA allele 

specific signal was only present in neurons and not in HEK293Ts (Fig. 5E). Transcriptional 

dysregulation by this daSNV was predicted to be due to an AP2A motif in the risk SNV 

(Fig. 5C). CRISPRi of rs12264415 (Fig. 5F), decreased CNNM2 mRNA in SH-SY5Y 

neural cells but not AS3MT or another adjacent gene, ARL3. Gene editing via both Cas12 

and Cas9-based methods generated isogenic SH-SY5Y cells that differ only by a single 

nucleotide at the rs12264415 daSNV. The G disease risk SNV reduced CNNM2 mRNA 

expression to 43.8% of the T SNV by Cas12-based editing. Cas9 editing produced similar 

results, neither significantly impacted AS3MT expression (Fig. 5G). The disease-linked 

rs12264415 daSNV modulates expression of the CNNM2 magnesium transporter but not 

adjacent genes.

In humans, mutations in CNNM2 are strongly linked to hypomagnesemia, leading to 

seizures and impaired brain development.41,43 The association between magnesium and 

neuropsychiatric disease was therefore assessed using a 846,795 person cohort from 

the Department of Veteran’s Affairs. An inverse relationship was observed between the 

prevalence of SCZ, MDD, and BPD and serum magnesium levels. This was not seen 

for other neurologic disorders, such as Alzheimer’s dementia. These trends held, when 

removing patients with alcohol use disorder, a possible confounder of the relationship 

between disease prevalence and magnesium levels. A significant difference was observed 

between relative disease prevalence between the bottom 10th and upper 10th deciles of 

serum magnesium (Extended Data Fig. 6). Integration of laboratory data with clinical 

diagnoses suggests that decreased magnesium correlates with an increased prevalence of 

specific neuropsychiatric disorders.

Noncoding regulatory risk and large effect size variants

To further integrate daSNVs into the architecture of polygenic neuropsychiatric disease 

risk and to nominate pathomechanisms supported by orthogonal lines of evidence, analyses 

with larger effect size protein coding variants were performed. The latter include coding 
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genes whose mutation leads to Mendelian central nervous system (CNS) diseases as 

well as rare coding variants identified in neuropsychiatric disease risk. 60 daSNV 

eGenes were found to be mutated in Mendelian CNS diseases (Fig. 6A–B), a significant 

enrichment consistent with the premise that regulatory variants produce less extreme 

pathologic impacts than coding mutations. For example, in the matrix of overlapping 

daSNV eGenes with Mendelian CNS disorder genes (Fig. 6C) is the RERE gene, whose 

deletion impairs human neurodevelopment via decreased cortical thickness44,45. RERE is 

a putative eGene linked to the rs301806 daSNV in MDD, suggesting a link between 

RERE-dependent neurodevelopmental processes and risk for major depression. In this 

regard, rs301806 disrupted the DNA binding motif for RUNX1, a TF with essential roles in 

neural differentiation46 and also decreased MPRA signal in early neuronal differentiation. 

Episomal ChIP-PCR for RUNX1 demonstrated differential binding of RUNX1 for rs301806 

(Extended Data Fig. 7). This MDD-linked daSNV may thus impact neurodevelopmental 

pathways by altering TF binding and subsequent expression of RERE, supporting the 

rationale for systemic studies of daSNVs’ action as eQTLs for genes whose coding 

mutations produce Mendelian disorders of the CNS.

The overlap between daSNV eGenes and rare coding variants identified by neuropsychiatric 

disease GWAS was next explored. Genes found mutated in large-scale exome sequencing 

from the Schizophrenia Exome Sequencing Meta-analysis (SCHEMA) consortium47 were 

intersected with genes linked to daSNVs via neural cell chromatin architecture (n=7 genes; 

C4A, CACNA1G, DAGLA, MAGI2, STAF1, SV2A, XPO7) (Fig. 6D–G, table S10). For 

example, promoters for protein coding variant genes identified in SCZ exome sequencing, 

including CACNA1G and DAGLA, were in physical contact with rs2428682 and rs174568 

daSNVs, respectively (Fig. 6E–H). Given that SCHEMA-prioritized protein variants of 

CACNA1G contribute to SCZ risk - potentially by dysregulating calcium influx during 

neural action potentials, which in turn may disrupt neurotransmitter release and neural 

circuitry important in disease risk48 - noncoding variants with small effect sizes altering 

CACNA1G expression may exert similar impacts. These findings are consistent with the 

premise that regulatory daSNVs may pathogenically alter expression of the same genes 

whose coding mutations exert large effect size impacts on neuropsychiatric disorders.

Determining shared symptom manifestations of regulatory risk

Neuropsychiatric diseases are diagnosed based on constellations of clinical symptoms. 

Many symptoms are shared among disorders, suggesting they may reflect common genetic 

bases. Consistent with this, 192 of 641 daSNV-linked candidate eGenes (30.0%) were 

shared between at least two disorders. BPD and BPLD had the highest fraction of their 

eGenes shared with at least one other disease, suggesting they arise via dysregulated 

biologic processes impacted in multiple conditions (Fig. 7A). eGenes were associated 

with 806 psychiatric disease symptom codes derived from UK Biobank GWAS summary 

statistics49, clustered into 64 annotated phenotypes based on gene profile, and normalized 

for gene-symptom relationships (Fig. 7B). To avoid over-annotation of individual daSNVs, 

loci containing multiple disease genes were collapsed to show only one gene per locus, 

based on prioritization schema favoring genes with brain-specific expression modulated by, 

chromatin linkage to, and prior literature evidence for, the given daSNV. Anxiety-relevant 
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symptoms such as worry, tenseness, and stress were enriched in inflammatory daSNV 

eGenes around the C4A and HLA-C locus. Interestingly, CYP2D6, a cytochrome P450 

enzyme with a compound metabolizing role in CNS, displayed protective gene-trait effects 

for anxiety-related symptoms, indicating the potential for therapeutic targeting. Further 

supporting this, known therapeutics were linked to putative eGenes via connectivity map 

(CMAP)50 perturbation analysis (Extended Data Fig. 8), highlighting 8 daSNV-linked genes, 

including SV2A, AP3B2, and ARC, as higher priority drug targets (table S11 for full list of 

prioritized drug targets). GNL3 and POC1A genes were linked to another clinical feature, 

psychosis history. Together, these gene-phenotype associations identify potential shared 

molecular bases for individual neuropsychiatric symptoms.

Gene-phenotype associations were further examined for clues to molecular etiology of 

shared pathomechanisms underlying common neuropsychiatric symptoms. Loci maps were 

created at known MPRA daSNV “hotspots” CYP2D6, TOR1A, GNL3, HLA-C, and GIT1 
(Fig. 7C–E), to determine the interplay between daSNVs associated with multiple disorders. 

Three general structures were observed: one where a single GWAS lead SNV was associated 

with multiple disorders (TOR1A), another where multiple disorders shared multiple SNVs 

at a given locus (GIT1), and most commonly, where individual diseases have different 

sets of associated SNVs (CYP2D2, HLA-C, CNNM2, GNL3, RERE) that modulate the 

same set of genes. This pattern was further defined by generating daSNV-gene networks 

surrounding shared clinical features and biological processes, such as psychosis history (Fig. 

7F), synaptic signaling (Fig. 7G), regulation of cytokine production, sleep issues, anhedonia, 

and irritability (Data S4). For psychosis history, pertinent for SCZ and BPD, the latter 

two diseases shared daSNVs at loci surrounding the gene for GNL3, a brain-expressed G 

protein important for stem cell proliferation and differentiation51, and for KCTD10, a brain-

expressed protein mediating tetramerization of voltage-gated potassium channel subunits52. 

Both loci may have putative linkages to psychosis in multiple disorders53,54. SCZ also 

displayed two additional daSNVs relevant for psychoses, namely rs746011 and rs3824756. 

Similar observations were made in synaptic signaling, which was linked to daSNVs in 

4 different diseases. These data suggest that common genetic pathomechanisms mediate 

symptomology shared across multiple neuropsychiatric diseases.

Discussion

We explored the genetic contributions of noncoding SNVs to neuropsychiatric disease by 

integrating MPRA with epigenomic profiling in human neural stem cells, differentiating 

human neurons, neural cell lines, and primary astrocytes and thereby generated a multi-

disorder, single nucleotide compendium of 892 functional daSNVs in regulatory DNA 

linked to risk for 10 neuropsychiatric diseases. Altered transcription-directing activity 

of these daSNVs was not associated with major impacts on chromatin accessibility 

and looping, suggesting action via other mechanisms, such as modifying TF binding, 

as observed for RUNX1 at rs301806. Network analyses linking daSNVs to putative 

eGenes demonstrated that disease-centric gene networks recurrently implicate several 

biologic processes in neuropsychiatric disease: namely ion channel disruption (in 

particularly calcium, potassium, chloride, and magnesium channels), modulation of neuronal 

proliferation (including genes such as NEK4 and GNL3), protocadherin function, Notch 
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signaling, synaptic action via SV2A, and immune activity (particularly MHC and C4 

complement families). Chromatin and expression linkages suggested that neuropsychiatric 

disease pathogenesis unfolds primarily in neuronal cells, highlighted disease-linked eGenes, 

such as POU5F1, CNNM2, and RERE, and mapped putative disease eGenes to native brain 

cortical subpopulations.

CRISPRi and gene editing demonstrated that specific neuropsychiatric risk-linked daSNVs 

modulate expression of the CNNM2 gene. The CNNM2 transporter is important in 

magnesium homeostasis. Consistent with a role for magnesium in neuropsychiatric disorders 

are its known roles in neuronal development, transmission, and survival as are reports of its 

use as an off-label supplement for depression.55 The relative impacts of altered magnesium 

levels and transport in the brain versus total magnesium body stores and the potential impact 

of magnesium supplementation on the prevention and treatment of neuropsychiatric disease 

is of interest for further study.

MPRA during neuronal differentiation helped identify functional daSNVs that may 

contribute to an interplay between neurodevelopmental milestones and neuropsychiatric 

disease risk—as observed here in early neuronal differentiation for the MDD-linked RERE 
eGene. Tissue-specific diseases have cell-type specific pathomechanisms. However, prior 

large-scale MPRA studies of human regulatory variants were conducted in transformed 

cell lines, such as HEK293T and K562 cells, that may not reflect a disease-relevant gene 

regulatory milieu. Consistent with this, HEK293T cells failed to detect the majority of 

functional daSNV alleles in this study. Overlap between SNVs studied here and other 

datasets20–22,56 was low, however, rs214469 was studied by MyInt, et al. 202056 with 

concordant directionality in allelic activity in the neural cell type (SH-SY5Y) and opposing 

directionality in the non-neural cell-type (K562), highlighting the issue of cell-type context 

for MPRA. Cellular diversity in the brain is enormous, however, since ES-derived neurons 

are more fetal-like rather than adult-like, some daSNVs active in mature neurons, such as 

those mediating synaptic transmission, may have been missed in the current study. Future 

work may extend efforts to include functional studies in additional brain cell types as well as 

cells from other tissues that contribute to pathogenesis, notably the immune system.

Accurately assigning target genes to noncoding variants within intact developing human 

tissue remains challenging. Neuropsychiatric diseases can unfold over decades, with 

environmental modulation of the activity of regulatory variants, which may account for 

the lack of a strong correlation between MPRA and eQTL signals. Amalgamating multiple 

orthogonal approaches—not only tissue-specific eQTL-gene mapping13, but also network-

based analyses, literature annotation, cell-type-matched chromatin looping, functional 

assays in relevant cell types, and new predictive models, may help prioritize targets for 

further study. We observed that putative daSNV eGenes were enriched in genes mutated 

in Mendelian CNS diseases and coding variants identified in SCZ exome sequencing, 

indicating that these genes may be altered in multiple ways to promote the pathogenesis 

of neuropsychiatric disease. The link from variant, to gene, and gene function in the 

appropriate tissue to clinical outcomes remains a major goal in polygenic disease.
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Cross-disorder analysis of neuropsychiatric genetic risk may help uncover the genetic basis 

of common psychiatric clinical symptoms and translate variant-gene linkage information 

into useful personalized therapies. The roughly 22% of eGenes identified here, which are 

common between multiple disorders, nominate shared biologic processes, primarily those 

impacting neural development. Gene-disease connections were extended to nominate gene-

symptom linkages, where symptoms are clinical features, such as anxiety or psychoses, 

shared across multiple neuropsychiatric disorders. Such a gene-symptom approach to 

disease classification highlights well-known difficulties in establishing psychiatric diagnoses 

for many persons whose combination of clinical features fail to fit into current diagnostic 

schemas. Extending such gene-symptom linkage may advance efforts towards more precise 

neuropsychiatric disease subtyping and symptom-targeted therapies. Regarding the latter, 

identification of pathogenic risk networks shared across multiple neuropsychiatric disorders 

may help apply pharmacogenomic understanding to commonly impacted biological 

processes. For example, inherited mutations in TOR1A, an eGene implicated above 

in multiple neuropsychiatric diseases, cause dystonia57, a known side effect of some 

antidepressants and antipsychotics. Defining associations between TOR1A daSNVs and 

dystonia-related medication side effect profiles, may assist personalized approaches to 

psychiatric drug treatment in multiple diseases. Enhanced understanding of regulatory risk 

variants may thus have the potential to improve both molecular classification and treatment 

of human neuropsychiatric disorders.

Methods

Statistics and Reproducibility

Sample sizes for each experiment and statistical power calculations are noted in each of the 

analyses sections in the Methods. Sample sizes were chosen to provide sufficient confidence 

to validate methodological conclusions. Specifically for barcode number, power analysis 

for different levels of barcodes at 4 different log2-fold change thresholds was performed 

fig S1D. Sample size of 2221 variants was chosen based on technical feasibilities during 

cloning and library preparation that limited final library size. Replicates are noted with 

respect to each experiment performed. All experiments were performed with two or four 

biological replicates and technical duplicates. MPRA data for H9 Day 28, HMC3 microglia 

and NT2 human embryonal carcinoma cell line were excluded from final analysis due 

to poor replicability and sequencing quality. The experiments were not randomized. The 

Investigators were not blinded to allocation during experiments and outcome assessment.

Statistical analyses were performed with R version 3.6.1 and Python 3.7.4 in Jupyter 

Notebook. Parameters such as number of replicates, the number of independent experiments, 

measures of center, dispersion, and precision (mean ± SD or SEM), statistical test and 

significance, are reported in Figures and Figure Legends. Raw sequencing data was 

processed on Stanford’s Sherlock cluster. All boxplots shown have a maximum whisker 

length of 1.5*IQR. The center line represents the median; the box edges represent the upper 

and lower quartiles, and any points visible are outliers. Data distribution was assumed to 

be normal but this was not formally tested. Wherever possible, nonparametric tests (such as 

U-tests) were used to avoid assumptions of normality.
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Analyses are described in the below Methods subsections are central to generation of the 

Main Figures. Additional information can be found in Supplementary Methods.

Ethics Statement

This research complies with all relevant ethical regulations. The use of human embryonic 

stem cells (H9) was carried out in accordance with Stanford University and its Center 

for Human Embryonic Stem Cell Research and Education. The serum magnesium study 

in the VA cohort project was approved by the Stanford University Institutional Review 

Board under the protocol entitled “Public Health Surveillance in the Department of Veterans 

Affairs”. As the project was considered minimal risk, consent to participate was not 

required. Bitscopic is operating under a 10-year Research and Development agreement with 

the VA signed in 2019.

Materials Availability

Two new plasmids are generated and used, pGreenFire_blastocidin (Addgene, #174103) and 

pD2_miniluc_newP7 (Addgene, #174105). Materials will be available, subject to materials 

transfer agreements (MTAs). All primer sequences are included in the supplementary table 

file. Please contact authors for further information.

MPRA library

MPRA library design and variant selection—Variants for the ten neuropsychiatric 

conditions were selected by collating SNVs listed in GWAS catalog58 (December 

2018) and curated psychiatric GWAS papers for a total of 13,956 index SNVs. 

Additionally, ClinVAR59 SNVs linked to putative psychiatric-linked genes, nominated by 

PsychENCODE2 (http://resource.psychencode.org/ ) and OMIM60 (https://www.omim.org/), 

were added (n=1,948 SNVs). Linked SNVs were determined using by using LD information 

from Haploreg v461, filtering for r2>0.8 for a total of 268,545 SNVs. Additionally, SNVs 

were filtered through ENCODE DHS62 immune and neuron cell narrow peaks as listed 

in Data S5 sheet “DHS tissue filter for MPRA”, as well as associated with eQTLs from 

PsychENCODE2 and GTEx v713 yielding 61,134 SNVs remaining.

Given, constraints of the final MPRA library size, SNVs included in the final MPRA 

library were prioritized based on annotated information. If a GWAS p-value for the SNV 

was available, only SNVs with p-values < 1e-6 were kept. For SCZ, BPD, and ADHD, 

a more stringent p-value threshold of 1e-8 was used. Additionally, SNVs were annotated 

using CADD v1.463. SNVs with predicted motifs and CADD phred-like c-scores > 20 were 

included, if possible. Additionally, we note that we selected signal negative controls that are 

in blacklisted regions by ENCODE hg19 (n=22) to test via MPRA.

We designed a set of DNA fragments by obtaining the genomic sequence corresponding to 

a 145 bp window centered at each variant of interest (hg37). For each variant, a reference 

and alternative sequence was designed, corresponding to each allele. In cases where multiple 

alternate alleles were given for a SNV, all sequence possibilities were included. Sequences 

were filtered to ensure the restriction sites for EcoRI, BamHI, XhoI, and XbaI were 

not present. For XbaI, sequences were additionally filtered such that dam methylation 
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recognition sequences would not be present. This process yielded 2,221 SNV locations to be 

tested.

Each MPRA library oligo included, in order: a MPRA forward primer, the 145 bp genomic 

instance sequence, a XhoI restriction site, a 10bp randomly generated filler sequence, a XbaI 

restriction site, a 20bp barcode, and a MPRA reverse primer . The 20bp barcodes are all a 

minimum Hamming distance of 3 apart. Each unique genomic instance is barcoded 10 times. 

This yields a 44,400–230bp oligo library that was synthesized by the Agilent HiFi synthesis 

process. Library cloning is described in Supplementary Methods.

Cell Culture

Infection and culture of Normal Human Astrocytes (Lonza, CC-2565), HEK293T 

(Takara, cat. no. 632180), SH-SY5Y neuroblastoma cells (ATCC, CRL-2266), IMR-32 

neuroblastoma cells (ATCC, CCL-127), D283 medulloblastoma cells (ATCC, HTB-185), 

and D341 medulloblastoma cells (ATCC, HTB-187) for the MPRA experiments are 

described in Supplementary Methods.

Differentiation of human embryonic stem cells into human anterior (A-NPC) 
and posterior neural stem cells (P-NPC)—We followed the protocol previously 

described64. Human ESC line H9 (WA09 line, NIH registry 0046, University of Wisconsin) 

were plated in clumps in the presence of Y27632 (10mg/ml, 1000x, Axon MedChem). The 

hES colonies were allowed to grow in mTESR (Stem Cell Technologies cat #85850) for 

another day before the media was switch to differentiation media (1X N2, 1X B27, DMEM/

F12: Neurobasal=1:1 (Invitrogen), 0.1mM Ascorbic acid (Sigma)) with small molecules 

[SB431542, LDN193189 and CHIR99021 (Final concentration: 10μM, 100nM and 3μM 

from Stemgent and Tocris)]. To obtain anterior or posterior neural stem cells, SB431542/

LDN194189 and SB431542/LDN193189/CHIR99021 were added respectively. The cells 

were allowed to differentiate in the media for 6 days before they were dissociated with 

Accutase and plated at the density of 1 million cells per well of 6 wells for infection. For 

Ngn2 day 2 post-dox induction cells, TetO-Ngn2-t2a-puro and FUW-rtTA were infected 

at day 0 in differentiation media followed by adding doxycycline and puromycin the next 

day. The cells were selected for two days in puromycin before collection for downstream 

experiments.

Generation of iN cells for Psych MPRA—The inducible Ngn2 human embryonic stem 

cell line (H9) was created by infecting Human ESC line H9 (WA09 line, NIH registry 

0046) with TetO-Ngn2-PGK-puromycinR and FUW-rtTA-IRES-hygromycinR and selecting 

with puromycin and hygromycin for more than one week. The Ngn2 inducible line was 

maintained under the feeder-free conditions in mTeSR (Stem Cell Technologies cat. # 

85850). For neuron generation, the inducible Ngn2 ES cell line were treated with Accutase 

and incubate for ~5 to 10 mins at 37C to obtain single cell suspension; resuspended 2 X 

10^6 cells in 2ml mTseR + Thiazovivin, and infected with 15ul Psych MPRA lentiviruses 

and plated on the Matrigel (BD bioscience). After approximately 16–18 hr of infection, the 

media was changed to N3 medium (DMEM/F12 1:1 cat# 11320–033 (500ml), 5ml N2 (1x) 

5ml cat# 17502–048, NEAA (1x), 1.6 ml insulin (stock 6.25mg/ml, Sigma) 2.5ml P/S) with 
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Dox to induce the TetO genes expression. On day 1, a 48h puromycin selection (2 mg/l, 

Sigma), hygromycin(400ug/ml) and blasticidin (2ug/ml) period was started, and the medium 

containing antibiotic and Dox was changed every day.

MPRA library sequencing and analysis—Both the plasmid library and cDNA libraries 

for replicates of each cell condition were sequenced. The plasmid library was sequenced 

to assess oligo frequencies. Briefly, final libraries concentrations were assessed by Kapa 

Library Quantification Kit (Roche) and sequenced on an Illumina MiSeq instrument using 

30 cycles for read 1 (barcode) and 115 cycles for read 2 (genomic instance). Paired-end 

sequencing was used to assess template switching. To count number of reads per unique 

barcode sequence, we took the read 1 sequence, extracted the 20bp region corresponding 

to the random barcode, and aligned the sequence to the reference MPRA library using 

bowtie265 . Barcodes were allowed a maximum of one mismatch during alignment. The 

barcodes were counted to determine barcode-oligo frequencies in the plasmid library. 

Similar alignment was done with read 2 to align the sequence to the genomic instance 

of the variant to assess for template switching.

cDNA libraries were synthesized from total RNA, as previously described66. Library 

concentrations were determined using a Kapa Library Quantification Kit (Roche) and on 

an Agilent Bioanalyzer. Average molarity was used to equally mix a final cDNA library. 

Libraries were sequenced on an Illumina MiSeq instrument to ensure each sample had 

adequate coverage. Deeper sequencing runs were performed on an Illumina Novaseq 6000 

SP flow cell (Novogene) with 50 read1 cycles, 8 index1 cycles, and 20 index2 cycles. cDNA 

library barcode-oligo counts were determined in the same manner as the DNA plasmid 

library.

ChIP PCR—For episomal ChIPs, ~18 X 106 HEK293T cells were transfected with 15 

ug plasmid encoding 461 bp chromosomal fragments with the reference or alternative 

alleles of rs301806 and rs301807 in central position. Cells were harvested ~20 hrs post 

transfection and crosslinked with 1% formaldehyde. After nuclei isolation, samples were 

sonicated for 35 minutes using 30 seconds ON/OFF cycles in Bioruptor (Diagenode) 

to fragment the plasmids. Samples were then immunoprecipitated with Normal Rabbit 

IgG (Cell Signaling Technology #2729sor rabbit anti-RUNX1 / AML1 antibody (Abcam, 

#ab23980). 5ul RUNX1 antibody (1 ug/ul) and 5 ul Normal Rabbit IgG antibody (1 ug/ul) 

were used for each ChIP reaction. Primer sets used for qPCR are listed in Supplemental 

Tables S15.

CRISPRi—dCas9-BFP-KRAB from pC13N-dCas9-BFP-KRAB, a gift from Martin 

Kampmann (Addgene plasmid #127968) was cloned into pLex-CMV. Guides were designed 

using CRISPick67 and CRISPOR68 to choose 2 guides for each target. Safe targeting 

guides were chosen from random region targeting sequences from Gasperini, et al69. 

CRISPRi guides were cloned into the pLentiGuide plasmid (Addgene 117986) using Gibson 

assembly (NEB). Virus was made for both pLex-dCas9-BFP-KRAB and the guide library 

by transfecting LentiX 293T (Takara Bio) cells with Lipofectamine 3000 (Invitrogen). 

Neuroblastoma cell line SH-SY5Y and 293T cells were infected with concentrated 

pLex-dCas9-BFP-KRAB virus and guide virus. After infection, cells were selected with 
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blasticidin and puromycin for 2–3 days. Cells were then plated into 6 well plates and 6 

replicates were harvested for each guide. RNA was extracted using a Qiagen RNeasy kit. 

cDNA was prepared using iScript cDNA synthesis kit (BioRad) with 500 ng RNA. qPCR 

was performed for genes nearby or implicated by GTEx, eQTLgen or HiChIP using SYBR 

green PCR Master Mix (Thermo Fisher).

HDR Vector Construction—The donor ssAAV vector used as a template for homologous 

directed recombination (HDR), was constructed by cloning of ~1200bp genomic DNA 

sequence flanking the 5’ and 3’ end of the target SNP rs12264415 into the AAV transfer 

plasmid between AAV ITR sequences. For each editing experiments two consecutive 

constructs were generated differed by presence of the reference and alternate allele. During 

genomic amplification, T/G point mutation was engineered representing substitution of 

the reference allele T to the alternate allele G. For genomic DNA amplification, CNNM-

F/R primers (Table S15) contained homology arms to the AAV transfer vector allowing 

In-Fusion assembly into NheI/EoRI digested plasmid. After conformation of the insert 

sequence integrity for both reference and alternate allele containing plasmids, constructs 

were used for AAV virus production at the Stanford Neuroscience Gene Vector and Virus 

Core. AAV-DJ serotyped donor ssAAV virus was produced at genomic titer of 2–3×1013 

TU/mL and used for HDR experiments at MOI 2.5×105.

CRISPR and AAV mediated HDR—The guide sequences targeting reference SNP 

for CRISPR/Cas9 or CRISPR/Cpf1 genome editing was predicted using CHOPCHOP 

web tool70 and were ordered from IDT as sgRNA or crRNAs accordingly (Table S15 

for gRNAs). For CRISPR/Cas9 genome editing 73 pmol of the sgRNA was complexed 

with 61 pmol Recombinant Alt-RspCas9 protein (IDT), while for CRISPR/Cpf1 editing 

150pmol crRNA was complexed with equimolar amount of Alt-RAsCas12a (IDT) in 10 ul 

of Amaxa nucleofection buffer from kit V (Lonza) for 10 minutes and immediately used 

for nucleofection of 8×105 primary SH-SY5Y cells with Amaxa nucleofection apparatus 

(Lonza) using program G-004. After recovery cells were mixed with AAV virus containing 

either reference or alternate allele containing donor template at MOI 2.5×105, split into 2 

wells of a 6-well plate and propagated for 72hrs. After culture reached 60–80% confluence 

cells were grown into 10 cm plates during with genomic DNA was isolated and evaluated for 

the editing efficiency using PCR amplification and sequencing of the bulk cell papulation, as 

well as by cloning of the amplified fragment into pBluescript vector and evaluating editing 

efficiency by individual colony sequencing. The population of cells with at least over 70% 

HDR editing efficiency were used for further experiments.

Epigenomic data generation and processing—Detailed data generation, sequencing 

reads processing methods, and differential analysis for RNA-seq, ATAC-seq, and HiChIP 

are listed in Supplementary Methods. Briefly, RNA-seq data was generated using the 

Illumina protocol (cat# 015.96) for total RNA. RNA-seq reads were aligned to hg19 

reference genome using STAR aligner (version 2.5.4b)71 and transcripts per million (TPM) 

values were calculated using RSEM (version 1.3.0)72. Fast-ATAC sequencing on astrocyte 

biological replicates was performed as previously described73. ATAC-seq read alignment, 

quality filtering, duplicate removal, transposase shifting, peak calling, and signal generation 
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were all performed through the ENCODE ATAC-seq pipeline (https://github.com/ENCODE-

DCC/atac-seq-pipeline). HiChIP data generation protocol was performed for Astrocytes, 

ESC cells, N-D2, N-D4, N-D10, and N-D28 as previously described18. HiChIP paired-

end reads were aligned to the hg19 genome using the HiC-Pro pipeline74 v2.11.1, with 

additional filtering steps using hichipper75 v0.7.0 and FitHiChIP76

ATAC-seq footprinting—ATAC-seq peaks were footprinted using the rgt package77 

(https://github.com/CostaLab/reg-gen), which uses an HMM-based model to identify active 

transcription factor binding sites in open chromatin (aka ATAC peaks). HOCOMOCO v11 

motifs used in this analysis were pre-processed to increase motif quality. Non-informative 

bases (information content (IC) < 0.4) were removed from both ends of the motif. To 

perform the footprinting process, bam files for each cell type were merged and sorted into a 

single file. Similar merging and sorting process is performed for bed files for each cell type. 

“rgt-hint footprinting” was called for each cell type. And then “rgt-motif analysis matching” 

was called to identify HOCOMOCO motif PWMs (https://hocomoco11.autosome.org/) that 

map to the specified footprinted region.

Target Gene Identification—Target genes of daSNV-associated transcription factors 

were determined using chromatin interaction (HiChIP) and accessibility (ATAC-seq) data 

gathered within the H9-derived cell model. First, transcription factors in the HOCOMOCO 

v11 database (https://hocomoco11.autosome.org/) were identified via DNA footprinting. 

A target gene of a daSNV TF is defined as having an ATAC footprint of the TF’s 

corresponding motif within the target gene’s promoter region (defined as 200 bp upstream 

and 50 bp downstream) of the transcription start site. Distally looped target genes (where 

the transcription factor footprint was brought into the proximity of the target gene’s TSS), 

were analyzed but not included in the final analysis. Additionally, both the transcription 

factor and target gene had to be expression TPM>1 in cell type matching the ATAC profile. 

GO enrichment analysis was performed using the clusterProfiler78 3.14.0 R package, and 

visualized using ggplot.

Enrichment calculation—To determine the GO processes enriched in daSNV-associated 

genes versus genes from our initial GWAS database, geneset enrichments were calculated 

using a hypergeometric test using the R package ClusterProfileR78 v3.14.0, and significance 

was reported for FDR-corrected p-value < 0.05. Enrichments were mostly shown as dotplots 

with geneset (i.e. GO biological process, REACTOME pathway, etc.) on one axis and 

cell-type on the other axis. The size of the circle represents the number of genes associated 

with given geneset. The color of the circle represents the multiple-hypothesis corrected 

p-value for the hypergeometric test.

Cell-specific heritability estimates—Stratified LDSC, as previously described26–28, 

can be used to obtain cell-specific disease-heritability estimates using GWAS 

summary statistics. Pre-processed summary statistics from 25 neuropsychiatric GWAS 

and 19 non-neuropsychiatric GWAS were obtained from Broad webpage (https://

alkesgroup.broadinstitute.org/LDSCORE/all_sumstats/). Using the LDSC29,79 software 

provided on Github (https://github.com/bulik/ldsc) and reference data on the Broad webpage 
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(https://alkesgroup.broadinstitute.org/LDSCORE/), annotation and LD score files were 

generated for each cell-type from ATAC-seq and RNA-seq from this paper with a control 

epigenetic set extracted from previously published epithelial data set80. bed files containing 

cell-specific epigenetic and transcriptomic profiles, separately. Using standard parameters, 

the “make_annot.py” and “ldsc.py” (with the “--l2” flag) scripts were first used to generate 

the cell-specific annotation and LD files, then the “ldsc.py” (with the “--h2-cts” flag) script 

was used to generate cell-type specific portioned heritability scores for each GWAS.

eQTL-based gene networks—Gene networks for each disease were generated by 

extracting eQTLs listed in GTEx v8 (for neural tissues) and PsychEncode eQTLs for 

daSNVs of each disease and then plotted in CytoScape v3.7.2. Genes were linked via 

STRING-db81 and color-coded based on annotated protein function. Function clusters were 

curated based on frequently appearing key terms. Putative disease-specific and psychiatric 

genes of interest were annotated based on a PubMed API query for the [psychiatric disease 

terms] AND [gene of interest].

Brainmap SMART-seq cortical data82 was used to annotate eQTL-based genesets and 

heatmaps depicting gene expression across the 128 cortical cell-types is generated via R 

package pheatmap.

Mendelian-polygenic disease association analysis—To generate a database of 

neurogenic Mendelian diseases, we curated neuro-related conditions from Online Mendelian 

Inheritance in Man (OMIM) database60, yielding 68 neuro-relevant Mendelian (or rare) 

diseases and 1132 genes (table S12). Diseases were chosen based on whether a central 

nervous system-related symptom was central to the disease phenotype as the primary 

mechanism of disease. A hypergeometric test was used to assess the significance of the 

genes which overlap between neuro-relevant Mendelian disease genes and daSNV gene 

MPRA hits. A Venn diagram was plotted using the python venn2 function. Geneset 

enrichment analysis was performed on the overlapping genes using EnrichR83 (https://

maayanlab.cloud/Enrichr/). GWAS Catalog 2019 and Human Gene Atlas geneset enrichment 

results were plotted as bar plots.

Protein coding mutation analysis—Protein coding variants for schizophrenia were 

extracted from SCHEMA84 (https://schema.broadinstitute.org/) . Proteins were a SCHEMA 

meta-analysis p-value < 0.05 were shown. The associated proteins are intersected with the 

schizophrenia eQTL gene list and SNVs were visualized in the WashU Epigenome Browser 

to determine whether the daSNVs link to the gene of interest. A list of 7 proteins were 

curated based on existence of protein-truncating variant present and daSNV-gene linkage 

present in chromatin looping data.

UK Biobank analysis—From UK Biobank (http://www.nealelab.is/uk-biobank/), we 

extracted the GWAS results for 806 psych codes (table S14). We used LD-score regression 

software (https://github.com/bulik/ldsc) to determine phenotype heritability (see “Cell-

specific heritability estimates” for implementation details). Additionally, we colocalized the 

UK Biobank SNVs with the daSNV hits from MPRA and filtered for significant SNVs using 

an FDR cutoff of 0.10. Subsequently, we generated a heatmap using pheatmap, showing 
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log-normalized beta values for genes associated with the daSNV of interest and a psychiatric 

clinical phenotype. We collapsed the 806 psych codes by phenotype, based on a similarity of 

their beta-normalized scored across the daSNVs and manually annotated phenotype clusters 

(n=64). The resultant heatmap was further collapsed as only one gene/per SNV was used 

to represent the clinical phenotypic profile shown, based on prioritization schema favoring 

genes with brain-specific expression modulated by, chromatin linkage to, and prior literature 

evidence for the given daSNV.

Predicting chromatin effects on non-coding sequence variants—To observe how 

MPRA-derived allele specific variants compare to existing sequence-based computation 

algorithms for predicting non-coding variant effects, the 2221 MPRA variants were run 

against DeepSea16 (on http://deepsea.princeton.edu/job/analysis/create/) and gkmSVM85 

v0.82.0 as described in the published R package instructions. The distribution of score 

differences between the reference and alternate sequences for daSNVs vs nonSNVs were 

compared used a student T-test for each cell-type.

Data Availability

All raw and processed sequencing data are available in GEO accession #GSE182095. 

For ease of reference, processed TPM values for RNA seq is provided in the data 

supplement (table S13). Tracks for ATAC and HiChIP were visualized on WashU 

Epigenome Browser. Raw and processed RNA, ATAC, and HiChIP D0 and D2 

Ngn2-derived H9 samples are referenced86. All MPRA summary statistics and raw 

counts results are provided (Data S5) and processed data is available at https://arvid-

data.shinyapps.io/neuropsychiatry/ or Data S3. Previously published GWAS study data 

used as a basis for this work is noted in each study published and is annotated in online 

GWAS data resources, including https://www.ebi.ac.uk/gwas/ and http://www.nealelab.is/uk-

biobank/. For LDSC scoring, GWAS data used was available and preprocessed by https://

alkesgroup.broadinstitute.org/LDSCORE/all_sumstats/. For colocalization studies, available 

summary statistics are provided: https://zenodo.org/record/3518299#.XbMgFNF7m90. 

Additional publicly available data sets used include: GTEx v7, Haploreg v4, 

ENCODE hg19, StringDB (https://string-db.org/), OMIM (https://www.omim.org/), The 

Drug Repurposing Hub (http://www.broadinstitute.org/repurposing), PsychENCODE (http://

resource.psychencode.org/), HOCOMOCO v11 (https://hocomoco11.autosome.org/), UCSC 

browser (https://genome.ucsc.edu/), Brainmap SMART-seq cortical data (http://portal.brain-

map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq ), SCHEMA 

(https://schema.broadinstitute.org/), and SNVlocs.Hsapiens.dbSNV142.GRCh37.

VA cohort data has restricted access for privacy concerns.

Code Availability

Analyses were done in custom jupyter notebook or Rmarkdown scripts in Python 

3.7.4 and R 3.6.1, locally or on the Stanford Sherlock computing cluster. Code to 

analyze transcriptomics and epigenomics data is available on GitHub (https://github.com/

mguo123/pan_omics_psych.git)87. MPRA-based analysis scripts are available here (https://

github.com/mguo123/psych_mpra.git)88. Additionally software used includes: LDSC 
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(LD Score) (v1.0.1), MPRAnalyze (v1.4.0), STAR aligner (v2.5.4b), RSEM (v1.3.0), 

ENCODE ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline), 

Bowtie2 (2.3.4.1), EnrichR (https://maayanlab.cloud/Enrichr/). ChIPSeeker (v1.22.0), 

motifBreakR (v2.10.2), rgt (https://github.com/CostaLab/reg-gen), ClusterProfileR 

(v3.14.0), RColorBrewer (v1.1.0) HiC-Pro (v2.11.1), Hichipper (v 0.7.7), FitHiChIP 

(v7.0.0), diffloop(v1.10.0), DESeq2 (v1.26.0), CytoScape v3.7.2 , ABC-Enhancer-

Gene-Prediction (https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction), gatk 

(v4.1.9.0), picard (v2.24.0), MACS2 (v2.1.1), enloc (https://github.com/xqwen/integrative), 

PhenomeXcan (https://github.com/hakyimlab/phenomexcan), gkmSVM (v0.82.0), DeepSea 

(http://deepsea.princeton.edu/job/analysis/create/), pheatmap (v1.0.12), biothings (v0.2.6), 

GenomicRanges (v.1.48.0), Rsubread (v2.0.0).
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Extended Data

Extended Data Fig 1. 
MPRA QC Statistics
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Extended Data Fig 2. 
Epigenetics study of the role of transcription regulation in neuropsychiatric diseases
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Extended Data Fig 3. 
eGene Network Analysis of other diseases
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Extended Data Fig 4. 
POU5F1/OCT4 Vignette
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Extended Data Fig 5. 
Association between serum magnesium levels and relative psychiatric disease incidence in a 

VA cohort
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Extended Data Fig 6. 
RERE Vignette
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Extended Data Fig 7. 
CMAP drug perturbation analysis
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Extended Data Fig 8. 
Gene concordance for variant annotation approaches

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. MPRA, transcriptomic, and epigenomic integrative analyses for neuropsychiatric 
disorders.
(A) Schematic depicting lentiviral MPRA design for uncovering allelic specific activity. 

250bp oligos were designed to assay 2221 neuropsychiatric disease GWAS loci. SNVs were 

selected from GWAS studies then filtered through publicly available epigenomics and eQTL 

datasets. H9 human ES cells, H9-derived neurons on days 2, 4 and 10 of differentiation 

(N-D2, N-D4, N-D10), anterior and posterior neural stem cells (A-NSC and P-NSC, 

respectively), astrocytes (AST), and cell lines (HEK293Ts, D283, D341, IMR-32 cells (+/− 

differentiation), and SH-SY5Y (+/− differentiation) were infected with the lentiviral MPRA 
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library. (B) Schematic indicating the cell types in which RNA-seq, ATAC-seq, and HiChIP 

were performed as well as subsequent assay-specific analysis. Heatmap shows differential 

RNA-seq expression. (C) Analyses that integrate MPRA, transcriptomic, and epigenomic 

data to explore transcription regulatory pathomechanisms.
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Fig. 2. MPRA identifies 892 functional daSNVs across 10 different neuropsychiatric diseases.
(A) Chromosomal map of locations of 2221 SNPs tested and their disease annotations 

(abbreviations: ADHD=attention-deficit hyperactivity disorder, ASD=autism spectrum 

disorder, BLPD=borderline personality disorder, BPD=bipolar disorder, GAD=generalized 

anxiety disorder, MDD=major depressive disorder, OCD=obsessive-compulsive disorder, 

PD=panic disorder; PTSD=post- traumatic stress disorder, SCZ=schizophrenia). (B) Barplot 

(above) indicating the fraction of assayed SNPs that were significant, separated by disease; 

~30% of SNVs tested were deemed significant, with the exception of ASD, barplot (below) 
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shows further distribution of daSNVs across cell types and conditions tested. (C) Volcano 

plot of -log10(p-value) vs log2 fold change indicating significant hits (red dots). (D) 
Heatmap of log2 fold change of alternative over reference allele activity captured by MPRA 

for the 892 significant hits. To the left, a row-based dendrogram of the heatmap shows 

relatedness of cell types and conditions by daSNV profile. To the right, (E) Barplot showing 

counts and fractions of daSNVs by cell-type, the red line shows the average fractions 

of daSNVs significant by cell-type = 0.145. (F) Venn diagram of the daSNVs showing 

significant cell-type dependent allelic activity (FDR<0.05) within neural cell lines, the 

ES-based neural cell system, and HEK293T (325 of the 326 significant variants are shown, 

as glial cells are not shown). (G) Dotplot showing enrichment of DeepSea Scores based on 

MPRA significance, where color is the -log10(p-value) and the size is the t-statistic for a 

two-sided Student T-test between the distribution of the allelic differential for the sequences 

scores classes for daSNVs vs non-daSNVs.
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Fig. 3. Epigenetic profiling of neural cell system shows neuropsychiatric disease relevance.
(A) RNA-seq expression heatmap of key marker genes for each cell type. FOXG1 and 

HOXA2 are expressed in our anterior and posterior neural stem cells, respectively. PDGFRA 
and GFAP are expressed in astrocytes. SLC glutamatergic gene markers are expressed 

at later stages of neuronal differentiation. (B) Heatmap of normalized motif occurrences 

in differential ATAC peaks over the time course of H9-derived neuronal differentiation. 

Motifs known to be more prominent in early neuronal differentiation (NEUROD1, ZIC1) 

are highlighted vs later neuronal differentiation (SOX11, CUX1). (C) GO biological 
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process enrichment dot plot showing Benjamin-Hochberg-corrected p-values from two-sided 

hypergeometric tests for enrichment of genes found nearest to ATAC peaks within H9-

derived cells across the temporal neuronal differentiation axis. (D) (above) a schematic of 

the GWAS tissue and disease-specific enrichment approach used (see Methods for more 

details) to derive a heatmap (below) of enrichment odds ratio of the daSNVs by disease 

over differential loop regions that were filtered by ATAC peaks. Type 2 diabetes mellitus 

(T2DM) was used as a control and indicated no enrichment. Enrichment was concentrated 

to the neuronal stem cells and the embryonic stem cell neuronal lineages (Data S1). (E) cell-

type specific LDSC hereditability estimate negative log10(p-values) heatmaps for RNA-seq 

(above) and ATAC-seq (below) in the ES-derived neural cell system and relevant neural cell 

types.
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Fig. 4. daSNV eGene networks and their transcription regulatory effects.
Protein-protein interaction network of eGenes assigned to (A) SCZ-associated daSNVs by 

GTEx and PsychEncode. Black outlined nodes were genes implicated in neuropsychiatric 

disorder disease risk based on an automated PubMed annotation pipeline; red outlined nodes 

were genes implicated specifically in SCZ. Nodes are color coded by neuropsychiatric-

relevant functional process. (B) A dotplot depicting GO biological processes for target 

genes of TF daSNVs associated with neuropsychiatric diseases, where the color indicates 

FDR-adjusted two-sided p-value from hypergeometric test for enrichment, the size of 
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the dot indicated geneset size, and is accompanied by an expression heatmap (left) 

showing log10(TPM+1) expression values for the TFs in neural relevant tissues assayed. 

(C) Scatter plot of principal component (PC) loadings for PC2 vs PC1, where loadings 

represent expression profiles from 127 cortical subtypes derived from Allen Brain Atlas 

scRNA-seq data, each point is an eGene. PC1 loadings correlate to expression of the gene 

in an increasing number of scRNA cortical subtypes. PC2 denotes the GABAergic vs 

glutaminergic cell type axis with CHRNA2 having a mostly GABAergic signature, while 

PTK2B has a mostly glutaminergic signature.
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Fig. 5. The CNNM2 magnesium transporter gene locus
(A) SNV chromosomal maps for CNNM2 loci. Blue indicates daSNV is found to be 

allele-specific by MPRA, while size of the circle indicates MPRA logFC. Index SNP rsIDs 

are listed. We note that rs7914558 corresponds to the daSNV rs12264415 (B) CNNM2 
(above) and AS3MT (below) H3K27ac HiChIP 4C plots depicting looping to respective 

gene, color coded by cell type. Red dashed lines indicate SNVs that are eQTLs for CNNM2 
in GTEx: I= rs12264415, II= rs1046411, III=rs35525740, IV=rs1141095. Loops are present 

between SNVs I and II to CNNM2 but not to AS3MT. (C) Motif PWM analysis showing 
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putative AP2A motif formation SNV rs12264415. (D) GTEx allele-specific normalized 

expression violin plots for AS3MT and CNNM2 for eQTL rs12264415 in whole blood. 

In the violin plots, center line represents median, box edges represent upper and lower 

quartiles, and distribution is derived from all relevant tissues samples on GTEx Portal. 

(E) Box-and-whisker plot showing normalized MPRA counts ratios for reference (teal) 

to alternate (orange) allele for rs12264415 in HEK293T and N-D2 tissues. Ratios are 

normalized to the median reference allele values, where the center line is the median of 

each MPRA normalized ratio (each point is a genomic instance with at least one count, 

max n=5 and 6, for HEK293T ref or alt respectively; and n=6,7 for N-D4 ref or alt, 

respectively). FDR-corrected p-values were calculated using MPRAAnalyze’s likelihood 

ratio test, show there is a significant allele specific activity in N-D2 (p= 0.013) but not in 

HEK293Ts (p=0.88). (F) CRISPRi box-and-whisker plot showing relative qPCR expression 

of ARL3, AS3MT, CNNM2 at rs12264415 loci in both HEK293s and SHSY5Y cells. 

P-values are calculated from two-sided Student T-tests with * indicating p-value=8.6e-4 

and *** indicating p-value=4.0e-7 for n=6 biological replicates. (G) Box-and-whisker plots 

showing relative Cas12 (left) and Cas9 (right)-based gene editing expression of allele G 

(alternate) vs allele T (reference) at the rs12264415 loci. * indicates two-sided Student t-test 

p= 0.036, *** indicates p=6.9e-4. n=5 biological replicates. All box-and-whisker subplots in 

this figure are shown with a maximum whisker length of 1.5*IQR. The center line represents 

the median; the box edges represent the upper and lower quartiles. All outliers are shown.
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Fig. 6. Altered coding genes in CNS diseases inform risk in psychiatric disorders.
(A) Venn diagram depicting overlap between Mendelian CNS disease genes and the 

neuropsychiatric eGenes linked to daSNVs; p-value=hypergeometric test between the 

two gene sets over a background of all potential disease-associated genes (n=15999 

possible Mendelian genes). (B) Gene set enrichment analysis calculated by EnrichR with 

Benjamin-Hochberg corrected p-value from a two-sided hypergeometric test for the 2019 

GWAS Catalog of the 60 overlapping genes, where the blue bars indicate diseases of 

neuropsychiatric etiology or linkage. (C) Grid chart of genes in the intersection between 
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rare/Mendelian diseases and the neuropsychiatric diseases. (D) Abbreviated table of SCZ 

Coding Variant Genes linked to chromatin data (see also table S1). (E) Tracks for 

CACNA1G, where the peak tracks show the logFC change from cell-type specific MPRA 

for the daSNVs, and the bottom loop track shows the looping data for P-NPC cell type, 

indicating the daSNV rs2428682 loops to the promoter of CACNA1G. Scales are only 

included if there was a peak within the given region shown. (F) Box-and-whisker plot 

showing normalized MPRA counts ratios for reference (green) to alternate (pink) allele 

for rs2428682 in P-NPC, where the center line is the median of each MPRA normalized 

ratio (each point is a genomic barcode instance with at least one count, n=7 for Ref, 

n=10 Alt), box limits are the upper and lower quartiles, whiskers are the 1.5x interquartile 

range, and points shown are outliers. Ratios are normalized to the median reference allele 

values. FDR-corrected p-values were calculated using MPRAnalyze’s likelihood ratio test 

indicate significant allele specific activity (p=3.3e-5). (G) Similar track for coding variant 

gene DAGLA. (H) Box-and-whisker plot showing normalized MPRA ratios for one of the 

daSNVs linked to DAGLA, rs174568, where each point is a barcode (n=8 for Ref, n=9 

for Alt). All boxplots shown have a maximum whisker length of 1.5*IQR. The center line 

represents the median; the box edges represent the upper and lower quartiles. All outliers are 

shown. FDR-corrected p-values were calculated using MPRAnalyze’s likelihood ratio test 

indicate significant allele specific activity (p=0.034)
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Fig. 7. daSNV-eGene-symptom linkage in neuropsychiatric disorders.
(A) eGene (row) by disease binary heatmap where red indicates one of the 173 putative 

daSNV eGenes associated with at least 2 diseases and expressed in the corresponding cell 

type with TPM > 1. Heatmap clusters BPD and SCZ eGenes as being the most similar. 

Below the heatmap, a bar chart displaying fraction of eGenes shared between two or more 

diseases is shown. The red dashed line indicates that 26.8% (173 out of 641 eGenes) 

overall are shared between ≥2 diseases. (B) UK Biobank PheWAS analysis shown as a 

heatmap of mean normalized beta values for UK Biobank neuropsychiatric symptoms across 
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conditions for the different eGenes. eGenes are clustered by chromosomal location. daSNV 

chromosomal maps of example common eGenes: (C) CYP2D6 (D) TOR1A and (E) GNL3 
implicated in multiple diseases with ≥1 index SNVs directed from literature or GWAS. Blue 

indicates daSNV found to be allele-specific by MPRA, while size of the circle indicates the 

absolute value of the MPRA log2 fold change (alternate/reference). (F) daSNV (diamond) 

- gene (ellipses) networks of shared pathomechanisms in neuropsychiatric disease. Network 

of daSNV-eGene candidates implicated in psychosis history were derived from UK Biobank, 

where green ellipses are genes shared between BPD and SCZ, while pink nodes are SCZ 

only. (G) is the network of daSNV-eGene candidates implicated in the GO biological 

process synaptic signaling. Genes are color coded by disease of origin, where the green 

circles represent implicated genes shared between multiple diseases. Genes are linked via 

StringDB v11.
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Table 1.
daSNVs in neuropsychiatric diseases.

Selected daSNVs of the 892 significant hits. rsIDs of daSNVs and linked lead SNVs from GWAS data are 

listed, along with the odds ratio value reported in GWAS Catalog. If no odds ratio is given, a +/− modifier for 

the beta value is listed. Diseases implicated, MPRA cell type significant, daSNV average FDR-corrected p-

value from MPRAnalyze’s likelihood ratio test, average log2 fold change (alternate/reference), HiChIP-

derived genes linked to daSNVs by chromatin looping as well as eQTL-linked genes (eGenes) are shown.

daSNP Lead SNP
OR/
Beta Diseases

MPRA 
Cell Type

daSNP 
avg p-
value

daSNP 
Avg 
Log2FC

HiChIP 
genes eGenes

rs3814546 rs1182 1.06

ADHD|
BPD|
MDD|
SCZ N 1.4E-03 0.57

C9orf78|
TOR1A|
TOR1B|
USP20

rs2276834 rs7618915,rs11717383,rs353547 1.06 BPD|SCZ HEK293T 4.6E-05 1.10

DNAH1|
GLYCTK|
GNL3|
ITIH4|
MUSTN1|
NEK4|
NT5DC2|
PPM1M|
SFMBT1|
TMEM110

rs5996094 rs1023500 1.08 SCZ N 3.6E-04 −0.77

CCDC134|
CYP2D6|
DESI1|
NAGA|
TNFRSF13C

rs139784051 rs8044995 1.08 SCZ N 5.7E-03 0.53

CTRL|
ELMO3|
ENKD1|
GFOD2|
LCAT|
NFATC3|
PLA2G15|
PRMT7|
SLC12A4|
TSNAXIP1

rs1985437 rs8044995 1.08 SCZ

AST|
HEK293T|
N 1.0E-03 1.44

CTRL|
ELMO3|
ENKD1|
GFOD2|
LCAT|
PRMT7|
RANBP10|
SLC12A4|
TSNAXIP1

rs2071507 rs1042779,rs736408,rs4687552,rs2302417 1.1
ADHD|
BPD|SCZ

HEK293T|
N|NCL 2.6E-09 −3.36

AC006254.1|
GLT8D1|
GLYCTK|
GNL3|
ITIH4|
MUSTN1|
NEK4|
NT5DC2|
POC1A|
PPM1M|
SFMBT1|
TMEM110
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daSNP Lead SNP
OR/
Beta Diseases

MPRA 
Cell Type

daSNP 
avg p-
value

daSNP 
Avg 
Log2FC

HiChIP 
genes eGenes

rs72708145 rs140505938 1.1 BPD|SCZ N|NCL 5.6E-03 −0.56
RPRD2|
VPS45

RPRD2|
SV2A|
VPS45

rs1626899 rs2102949,rs2851447 1.1 BPD|SCZ
AST|N|
NCL 6.8E-04 1.27

ABCB9|
CDK2AP1|
MPHOSPH9|
PITPNM2

ABCB9|
AC026362.1|
ARL6IP4|
CCDC62|
CDK2AP1|
MPHOSPH9|
MTRFR|
OGFOD2|
PITPNM2

rs10786713 rs7085104,rs11191424,rs11191419 1.11
BPD|
SCZ}ASD

HEK293T|
N|NCL 2.0E-03 −0.91

ARL3|
AS3MT|
SFXN2

ACTR1A|
ARL3|
AS3MT|
BORCS7|
CALHM2|
CNNM2|
NT5C2|
PFN1P11|
SFXN2|
SUFU|
WBP1L

rs907088 rs2517959 1.13 BPD

AST|
HEK293T|
N 8.5E-04 −1.12

ERBB2|
GSDMB|
ORMDL3|
PGAP3|
PNMT

ERBB2|
FBXL20|
GSDMB|
ORMDL3|
PGAP3|
PNMT

rs174530 rs174576,rs28456,rs174537,rs1535,rs174535,rs4246215 1.13 BPD N 7.4E-04 0.77

FADS1|
FADS2|
TMEM258

FADS1|
FADS2|
FADS3|
TMEM258

rs903503 rs2517959 1.13 BPD AST|N 3.6E-04 −1.08

ERBB2|
GSDMB|
ORMDL3

ERBB2|
FBXL20|
GSDMB|
ORMDL3|
PGAP3|
PNMT

rs9266066 rs2596500 1.18
MDD|
SCZ

HEK293T|
N 1.3E-03 0.75

C4A|
CCHCR1|
FLOT1|
HLA-C|
IER3|
LY6G5B|
MICB|
MSH5|
NOTCH4|
RNF5|
VARS2

C4A|
CCHCR1|
CYP21A1P|
FLOT1|
HCG22|
HLA-C|
IER3|
LY6G5B|
MICB|
MSH5|
NOTCH4|
RNF5|
VARS2

rs174561 rs28456,rs174576 1.18 BPD N|NCL 1.6E-04 −2.37
FADS1|
FADS3

FADS1|
FADS2|
FADS3|
TMEM258

rs762995 rs134882,rs2239612 1.22 BPD|SCZ N 5.7E-04 −0.71

CCDC134|
CYP2D6|
DESI1|
NAGA|
NDUFA6
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daSNP Lead SNP
OR/
Beta Diseases

MPRA 
Cell Type

daSNP 
avg p-
value

daSNP 
Avg 
Log2FC

HiChIP 
genes eGenes

rs35525740 rs7914558 1.22
ADHD|
BPD|SCZ N 2.5E-04 −1.19

ARL3|
AS3MT|
CALHM2|
CNNM2

ARL3|
AS3MT|
CALHM2|
CNNM2

rs12264415 rs7914558 1.22
ADHD|
BPD|SCZ

AST|N|
NCL 5.7E-04 1.19

ACTR1A|
ARL3|
AS3MT|
BORCS7|
CALHM2|
CNNM2

rs200948 rs1765142,rs34706883,rs112509803 1.24
MDD|
SCZ|BPD

HEK293T|
N 7.5E-04 3.07

PRSS16|
ZSCAN23|
ZSCAN9

PGBD1|
PRSS16|
ZKSCAN3|
ZKSCAN8|
ZNF165|
ZSCAN23|
ZSCAN26|
ZSCAN31|
ZSCAN9

rs200483 rs34706883 1.24
MDD|
SCZ N|NCL 1.8E-03 −0.53

PGBD1|
ZSCAN23|
ZSCAN31|
ZSCAN9

PGBD1|
PRSS16|
ZKSCAN3|
ZNF165|
ZSCAN23|
ZSCAN26|
ZSCAN31|
ZSCAN9

rs370155 rs34706883,rs45509595 1.24
MDD|
SCZ|BPD N|NCL 8.5E-04 −1.01

PGBD1|
PRSS16|
ZKSCAN3|
ZNF165|
ZSCAN23|
ZSCAN31

PGBD1|
PRSS16|
ZKSCAN3|
ZNF165|
ZSCAN23|
ZSCAN26|
ZSCAN31|
ZSCAN9

rs2428682 rs1985762 1.68 BLPD
HEK293T|
N|NCL 1.5E-04 −1.09 EME1

rs3134944 rs1800625 3.78 SCZ N 2.9E-04 0.69

AGER|C4A|
CYP21A1P|
FKBPL|
HLA-B|
HLA-C|
HLA-DMA|
HLA-DQB1|
LY6G5B|
MICB|
NEU1|
NOTCH4|
PBX2|
POU5F1|
RNF5|
SKIV2L|
ZBTB12

rs10938176 rs34215985 1.04
MDD|
BPD

AST|
HEK293T 2.5E-03 −1.33 SLC30A9

rs301807 rs301806,rs301805,rs159963

0.03 
unit 
desc MDD

AST|N|
NCL 3.0E-08 −1.38 ENO1|RERE

rs6926869 rs6930781

0.46 
unit 
incr MDD N 7.3E-04 −0.64 WASF1
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daSNP Lead SNP
OR/
Beta Diseases

MPRA 
Cell Type

daSNP 
avg p-
value

daSNP 
Avg 
Log2FC

HiChIP 
genes eGenes

rs798744 rs4818048

0.895 
unit 
incr OCD

HEK293T|
N|NCL 7.6E-04 −1.85

FAM53A|
FGFR3|
TACC3|
TMEM129

FAM53A|
FGFR3|
TACC3|
TMEM129

rs2799077 rs853679

5.30 
unit 
desc MDD N 1.4E-03 −0.72

PGBD1|
ZKSCAN3|
ZKSCAN4|
ZSCAN23|
ZSCAN31

PGBD1|
ZKSCAN3|
ZKSCAN4|
ZKSCAN8|
ZNF165|
ZSCAN23|
ZSCAN26|
ZSCAN31

rs4395073 rs4785741

70.99 
unit 
incr OCD|ASD N 1.9E-03 1.02

CDK10|
GAS8|
SPATA2L

CDK10|
GAS8|
SPATA2L
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