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Before and during the COVID-19 pandemic, an individual’s
age and race/ethnicity have been highly predictive of their risk
of infectious diseases and their health consequences. Disparities
were evidenced in COVID-19 incidence rates and in hospitali-
zation, severity and mortality metrics in the USA1 and in other
countries.2,3 Identifying these disparate outcomes associated
with demographic variables is valuable mainly if it prompts in-
vestigation into what mechanisms generate the disparities and
inform how they can be reduced.4 A prominent report from the
UK succinctly outlined that social determinants such as occupa-
tion, household characteristics, surrounding population den-
sity, urbanicity and social deprivation were all associated with
increased risk of COVID-19 infection.3 Others have noted that
social determinants can play a role in all stages of an outbreak,
providing pathways for unequal exposure, transmission, sus-
ceptibility and treatment that produce and escalate disparities
in health outcomes.5

In addition, the use of mathematical and computational in-
fectious disease transmission models expanded during the
COVID-19 pandemic. Researchers and decision makers used
infectious disease models to estimate key outbreak parame-
ters, inform how policy changes could affect the ongoing out-
break and predict what would happen next in various
settings. Although social determinants were considered on
occasion, few infectious disease transmission models were
used to answer questions on the structural role of social
determinants in the proliferation of the COVID-19 out-
break.6 To understand the origin of inequities in future pan-
demics and inform policies to reduce them, it is important to
incorporate these determinants not only in data-gathering
efforts, but also in model structure and analysis, as is appro-
priate for a given research question.

We aim to outline how infectious disease transmission
modelling has been used to identify the mechanisms that cre-
ate health disparities, to describe how mechanisms can
change over the course of an epidemic and to propose policy
recommendations that are informed by epidemiological prin-
ciples. Although this review is not a systematic analysis of all

existing literature, we aim to inform the reader on the current
state of the literature and on what is missing. We describe
examples of infectious disease models that address health eq-
uity questions that fall into three categories: deterministic
compartmental models, agent-based models and extensions
to deterministic models that incorporate mobility data. We
conclude by providing recommendations for how we can
work to address what is missing in the infectious disease
modelling field, so that we can be better prepared moving
forward, for all respiratory diseases and not just COVID-19.

Deterministic compartmental models
Simple, equation-based infectious disease models structure
the population into categories (compartments), most funda-
mentally those of Susceptible–Exposed–Infectious–Recovered
(SEIR). SEIR models that have addressed health equity ques-
tions have considered methods to mechanistically incorporate
social determinants into the structure of their models by pa-
rameterizing contact, susceptibility and other determinants of
transmission separately for different social groups. A study
by Menkir and colleagues is one example. The research team
used income quintile-specific values for disease-related
parameters such as disease transmission rates, case-fatality
rates and vaccine coverage in a susceptible–infectious–recov-
ered (SIR) model to examine the impact of varying vaccina-
tion strategies. By incorporating parameters stratified by
income level, the researchers were able to assess the extent of
differential infectious disease outbreaks spread in distinct
subgroups of the population. Of note, findings indicated that,
for lower-income quintiles, maximum prevalence was
reached earlier than for other income groups. Further, higher
within-quintile transmission translated into higher infection
peaks, and higher vaccination coverage yielded the greatest
benefit to the lowest-income quintiles.7 The effort to con-
struct such models also pointed to limitations in the availabil-
ity of data to estimate stratum-specific transmission and
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severity parameters, highlighting the close dependence of
models on high-quality data stratified by social determinants.

Other studies have addressed other questions of health eq-
uity by structuring transmission models to incorporate spe-
cific determinants. One team incorporated age-structured
models for two social groups with high and low transmission
into their SEIR model and used social contact data to param-
eterize contact rates for different social groups. This study
varied parameters for contact intensity between the two
groups and for susceptibility to infection, and derived predic-
tions on how interventions can impact inequalities. Perhaps
counter-intuitively, introduction of a vaccine with equal cov-
erage in interacting high- and low-risk groups led to a greater
relative inequality in disease incidence between the groups
than in the absence of vaccination; this occurs because a
given level of coverage comes closer to eliminating transmis-
sion in the low-risk group with lower transmission. This the-
oretical study did not specify explicitly the reason for the
high- and low-contact groups, but rather assumed their exis-
tence and derived the consequences. This method could be
extended to include particular social determinants, and still
provides an example of thinking about inequalities in model
production.8 To quantify how social exposure to infection
varies across race and ethnicity, Ma et al. created separate
sets of compartments for a selection of race and ethnicity
groups, and used a social contact matrix estimated from
housing segregation data to account for between-racial-group
mixing. Findings indicated that the herd immunity threshold
was reached after the cumulative incidence disproportion-
ately increased in certain minority groups and that, even if
the same groups continued to have higher contact rates over
time, disparities in incidence could shrink and even reverse
over time as a result of higher immunity in such communi-
ties.9 Such approaches described thus far expand our analytic
capacity and allow researchers to consider mechanisms by
which disparities may exist, how they depend on the phase of
the epidemic and how different interventions, such as vacci-
nations, may ameliorate or inflate existing disparities.
Improving the quality and level of detail of data to parame-
terize these models would enhance their usefulness.

There are also examples of models that have been used to
examine outbreaks of a disease in specific vulnerable popula-
tions, such as those experiencing homelessness, or in specific
settings, such as correctional facilities or nursing homes. To
better understand the role of correctional facilities in the pro-
liferation of disease, one team utilized compartmental model-
ling of infections within and between correctional facilities
and the surrounding community for people who are incarcer-
ated, correctional staff and surrounding community. The
team found that, when an infectious disease outbreak occurs
in a correctional facility, the outbreak gets reflected and mag-
nified back to the surrounding community. Additional analy-
ses were used to inform critical factors in determining the
magnitude of an outbreak, and how movement of staff and
people who are incarcerated can play a role.10 In the UK,
Lewer and colleagues used SEIR models to understand how
homelessness policies, such as hotel accommodations or in-
fection control in homeless settings, affected overall case
counts, deaths and hospital admissions in England. Findings
indicated that lifting preventive measures led to large
increases in cases and deaths for people experiencing home-
lessness.11 Modelling efforts such as these not only help

decision makers to better understand the marked disparities
in infectious disease outbreaks, but also can better represent
infectious disease outbreaks by incorporating setting-specific
transmission parameters. This merits not only separate
modelling efforts, but also an effort to better understand how
outbreaks within a subset of the population that is more vul-
nerable can extend to the larger population.

Agent-based models
Several studies have employed agent-based models to demon-
strate how population structure and transmission dynamics
help explain observed inequities. To better understand the
cause of differences in influenza across census tracts of vary-
ing poverty levels, Kumar and colleagues used an agent-based
model to simulate influenza attack rates across census tracts
and with varying neighbourhood contact rates and income
levels. Census tracts with higher poverty had earlier and
steeper increases in infection rates—a pattern observed in
both real-world data and in model output. Further, the team
estimated that including population structure and population
mixing in simulation modelling accounted for 33% of the ob-
served inequality in infection prevalence between census
tracts of high and low poverty levels.12 To assess the relation-
ship between influenza burden and social deprivation, Hyder
and Leung used a spatially explicit model of Montreal that
incorporated household composition as well as other social
determinants with spatial arrangements of neighbourhoods.
The authors found that heterogeneity of neighbourhood com-
position and spatial arrangement of neighbourhoods contrib-
uted to the observed relationship between influenza burden
and social deprivation.13

There are also examples of agent-based models that are
intended to guide policy recommendations. Focusing on in-
fection control in nursing homes, another team used an
agent-based model of SARS-CoV-2 transmission to highlight
how different non-pharmaceutical interventions would affect
disease incidence. The team found that daily antigen testing,
compared with other interventions such as cohorting or staff-
ing interventions, reduced the cumulative incidence the most,
whereas combining screening testing with resident cohorting
and immunity-based staffing interventions reduced the cumu-
lative incidence even more.14 In another example, Nande
et al. used a network model incorporating within- and
between-household mixing to assess the impact of evictions
on household transmission of COVID-19, accounting for
evictions that led to households moving in with other house-
holds. Findings indicated that evictions would increase
COVID-19 cases across the population and that a simulated
increase in the eviction rate of 1% per month resulted in an
infection level that was �4% higher than baseline. Further,
evictions were predicted in the simulations to increase the
disparity of infection prevalence between low- and high-
socio-economic status (SES) neighbourhoods, where the risk
of infection increased more for the low-SES neighbourhoods.
This study exemplifies how an infectious disease model can
be adapted to consider the impact of a policy change on vul-
nerable populations and inform decision makers with esti-
mates of policy impacts.15 Given sufficient data to constrain
their assumptions, agent-based models and simulation studies
such as these can be powerful tools to consider how policies
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and changing epidemic quantities can affect outbreaks in
specific settings or subpopulations.

Using mobility data in deterministic models
In recent years, the field of infectious disease modelling has
started incorporating mobility data into infectious disease
models to inform parameter estimation and as a proxy for so-
cial characteristics. One team incorporated SafeGraph mobil-
ity data into an underlying SEIR model to estimate the effects
of specific reopening strategies and to predict infection rates
in areas with different demographic compositions. The
authors found that lower-income areas did not have as much
reduced mobility and that larger proportions of individuals
from lower-income areas were infected at specific locations
due to higher contact density; the role of higher contact den-
sity in promoting transmission was a model assumption and
the fact that lower-income individuals had more exposure to
high-density locations thereby offered a hypothesis to explain
the higher incidence of infection among such individuals.16

Another way to incorporate individual contacts into a
model is by using contact survey data. Many other countries
have contact survey data that are derived from
POLYMOD—a paper-diary survey with data for >7000 par-
ticipants in eight European countries.17,18 Because the USA
does not have readily available and nationally representative
contact data, one research team utilized an egocentric expo-
nential random graph model based on POLYMOD data in
combination with an SEIR model to assess inequalities in in-
fluenza transmission in the USA. The researchers proposed
five potential immediate drivers of influenza transmission
inequities: social contact differences, low vaccine uptake,
high susceptibility to infection, low healthcare utilization and
low sickness absenteeism. Findings indicated that, when SES-
specific parameters were used, all five factors were associated
with an increase in burden for the group of people with low
SES.19 Notably, there are contextual reasons for why each of
these factors may be seen more often in people with low SES.
Describing this is beyond the scope of this discussion.

Although mobility data and other data sources from novel
technologies are proving to be powerful in some applications,
they also come with inherent biases that must be recognized.
More research is needed to identify how applicable mobility
data is at larger spatial scales, where there is considerable
within-population heterogeneity in mixing patterns and other
social drivers,20 and how changes in contact patterns may be
proxied by mobility data.

Recommendations for embedding health
equity principles into infectious
disease modelling
Although there is ongoing research and interest in the use of
infectious disease modelling to address health equity con-
cerns,21,22 there is much to be done. First, more studies that
incorporate social determinants into compartmental, net-
work and agent-based models are needed. As discussed, this
can be accomplished by tracking outcomes based on social
determinants and by incorporating social determinants into
model processes (transmission, outcomes of infection, etc.).
Further, improved models for specific settings such as shel-
ters, schools, prisons and jails, healthcare settings and nurs-
ing homes and other congregate settings are needed to better

prepare us for future emerging infectious disease threats.
Researchers can more effectively assess health disparities by
creating models for vulnerable populations that incorporate
the effects of policies on transmission. Our review demon-
strates that there are quality examples of using infectious dis-
ease modelling to better understand health disparities and
that we must continue to prioritize such models as the burden
of infectious disease outbreaks continues to fall on disadvan-
taged groups.
Second, a renewed focus on gathering representative inci-

dence and seroprevalence data in emerging outbreaks is
needed. Public health surveillance in the USA remains less
likely, for several reasons, to include individuals of lower
SES. For example, those of lower SES are less likely to receive
healthcare and therefore be included in local surveillance
efforts. Some people of colour and people with diverse gender
identities are more likely to experience stigma or racism in
healthcare and may be less likely to seek healthcare when
needed.23 There are ongoing activities across the USA public
health landscape to improve upon the existing surveillance
systems to reduce these biases. Even so, accounting for and,
where possible, adjusting for existing surveillance biases in
analytics is critical, as is properly communicating our analytic
findings with the correct caveats to interpretation. To further
address these biases, random sampling of the prevalence and
incidence of infection can provide key data to answer ques-
tions about existing disparities. Without these data, it is diffi-
cult to identify where in the cascade of prevention and care
inequities occur because higher rates of disease are indistin-
guishable from higher rates of infection in vulnerable popula-
tions. The benefit of random sampling can be seen in the
Real-time Assessment of Community Transmission-1
(REACT-1) study, conducted in the UK.24,25

In newly emerging outbreaks, such as in the early days of
COVID-19, gathering detailed data on proximal, mechanistic
social risk factors for infection or a history of infection (sero-
positivity) can directly inform efforts to equitably reduce risk.
Further, re-collecting and reanalysing these data iteratively
over the course of an outbreak are also critical. In particular,
when racial/ethnic minorities and/or those of lower SES are
harder hit, as is often the case, choice of interventions
depends on knowing the contribution of occupational expo-
sure, household crowding, rurality or inability to isolate in
disparities in exposure and the contribution of access to care
or other causes of disparities in outcome. Such data, which
are gathered in routine serologic studies such as the US
National Health and Nutrition Examination Survey and spo-
radically in other studies, are much more helpful than simple
race and ethnicity data in informing solutions.26 Gathering
these proximate risk factors is consistent with the increas-
ingly accepted concept that race is not an exposure variable
and should not be treated as such in modelling. Rather, a
race variable can serve as a proxy for social determinants, as
well as for lived experiences of racism and stigmatization.4,27

Knowing what specific mechanistic risk factors are associated
with the outcome is necessary if the research is to inform sol-
utions, rather than simply document disparities.3 A better un-
derstanding of how social determinants can change over the
course of an outbreak for susceptible, infected and recovered
populations can also be illuminating. If the epidemic is pri-
marily in one subgroup of the population at first, but then is
predominantly in other subgroups as the outbreak continues,
the roles of these subgroups in driving transmission can be
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inferred and serve as a prompt for intervention.28

Conversely, understanding how disparities will evolve over
the course of an epidemic even without interventions can pro-
vide appropriate baselines for assessing how well interven-
tions work to curb disparities.9

Third, we must identify epidemic quantities of interest for
subgroups of populations. A key limitation across many of
the aforementioned studies was that there was little to no
availability of data for key epidemic quantities in specific set-
tings of interest or for specific subsets of the population.
Improving our case data infrastructure so that we have data
for social determinants would allow us to calculate parame-
ters stratified by social determinants.

Towards this end, micro-scale studies of transmission29

and contact patterns18 as a function of household size and
density are needed to provide an empirical basis for the de-
tailed structure and parameterization of these models, e.g. to
decide how transmission differs in large and small house-
holds, or as a function of density in public places. Given the
uptick in interest in ventilation as an intervention to reduce
transmission, better understanding of how transmission rates
vary across settings could have the additional benefit of
informing investments in ventilation to make them more ef-
fective and more equitable.

Lastly, we need country-specific contact surveys that are
stratified, as appropriate for the specific population, by race
and ethnicity and by social determinants. In the USA, al-
though researchers have been able to adapt the POLYMOD
contact study to their needs, investing in a comprehensive
USA-based contact survey with a priority placed on obtaining
data for participants’ social determinants could greatly ex-
pand the possibilities for mathematical modelling there.7 As
noted above, stratifying these data by household sizes and/or
by setting would also be beneficial.

Although the fields of infectious disease modelling and so-
cial epidemiology have expanded greatly in the past several
decades, there is much to be done to formally embed epidemi-
ologic principles into mathematical modelling methods. As
the field of infectious disease mathematical modelling contin-
ues to expand and adapt to new and emerging public health
threats, it is critical that we prioritize the development of
methods to mechanistically account for social determinants
and produce models that inform policies that can address the
root causes of health disparities.
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