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Abstract
Background: Urinary metabolomics has demonstrated considerable potential to assess kidney function and its metabolic corollaries in health
and disease. However, applications in epidemiology remain sparse due to technical challenges.

Methods: We added 17 metabolites to an open-access urinary nuclear magnetic resonance metabolomics platform, extending the panel to 61
metabolites (n¼994). We also introduced automated quantification for 11 metabolites, extending the panel to 12 metabolites (þcreatinine).
Epidemiological associations between these 12 metabolites and 49 clinical measures were studied in three independent cohorts (up to 5989
participants). Detailed regression analyses with various confounding factors are presented for body mass index (BMI) and smoking.

Results: Sex-specific population reference concentrations and distributions are provided for 61 urinary metabolites (419 men and 575 women),
together with methodological intra-assay metabolite variations as well as the biological intra-individual and epidemiological population variations.
For the 12 metabolites, 362 associations were found. These are mostly novel and reflect potential molecular proxies to estimate kidney func-
tion, as the associations cannot be simply explained by estimated glomerular filtration rate. Unspecific renal excretion results in leakage of
amino acids (and glucose) to urine in all individuals. Seven urinary metabolites associated with smoking, providing questionnaire-independent
proxy measures of smoking status in epidemiological studies. Common confounders did not affect metabolite associations with smoking, but
insulin had a clear effect on most associations with BMI, including strong effects on 2-hydroxyisobutyrate, valine, alanine, trigonelline
and hippurate.

Conclusions: Urinary metabolomics provides new insight on kidney function and related biomarkers on the renal-cardiometabolic system, sup-
porting large-scale applications in epidemiology.
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Introduction

A limited number of urinary biomarkers are widely used as
diagnostic aids in kidney disease (creatinine and albumin)
and diabetes (glucose). The measurement rationale for these
is mainly to pinpoint high values that cross pre-set diagnostic
limits, for example with the standard urinary glucose test
strips with detection limits as high as 5.6mmol/L.1

Quantitative metabolic approaches with large enough num-
bers of individuals for appropriate epidemiological studies,
targeting improved understanding of urinary metabolites in
health and as potential biomarkers of disease risk, are almost
non-existent.2–8 This is at an immense contrast to the situa-
tion with various metabolomics and lipidomics approaches
already in widespread use in genetics and epidemiology for
large-scale quantitative studies of systemic blood bio-
markers.9–15

Nevertheless, the potential of urinary metabolites in epide-
miology and translational medicine has been recognized for
quite some time.2–5,7,16 The molecular content of urine is
physiologically connected to the glomerular filtration and
molecular reabsorption processes in the kidneys, and reflects
multiple key biochemical pathways in relation to cardiometa-
bolic conditions, gut microbial metabolic activities and die-
tary characteristics. Detailed quantitative data on urinary
metabolites may thus provide direct molecular probes to as-
sess kidney function and its corollaries in various metabolic
conditions. Towards this far-reaching aim, we have recently
developed a basis for an open-access methodology for quanti-
tative high-throughput urinary nuclear magnetic resonance
(NMR) metabolomics.1,7,17

The focus of this work is to extend the population-level
quantitative data to 61 urinary metabolites, and to provide
their sex-specific reference concentrations and distributions
in a population sample of 994 individuals. The first coherent
set of automated quantification models for 12 urinary
metabolites (þ creatinine) is also presented, together with
large-scale assessment of these metabolite concentrations in
morning spot urine samples and their associations with wide-
ranging clinical data, in three independent population
cohorts of up to 5989 participants. This work extends the ep-
idemiological scale of urine metabolomics to a new level,
incorporates independent replication and provides a plethora
of novel metabolic findings in relation to kidney function,
with potential translational relevance.

Material and methods

General aspects and data
This work is based on an open-access proton NMR spectros-
copy methodology we have recently introduced.7 A study
outline and a summary of various analyses performed are
shown in a schematic form in Figure 1. The characteristics of
the three independent population cohorts are given in
Table 1. The cohorts are described in more detail in the on-
line Supplementary data together with the detailed list of the
49 clinical and biochemical measures. The sex-specific char-
acteristics for each cohort are given in Supplementary Table
S1, available as Supplementary data at IJE online (Northern
Finland Birth Cohort 1966; NFBC1966, n¼4505),
Supplementary Table S2, available as Supplementary data at
IJE online (Northern Finland Birth Cohort 1986;
NFBC1986, n¼1010)18 and Supplementary Table S3, avail-
able as Supplementary data at IJE online (Cardiovascular
Risk in Young Finns Study; YFS, n¼ 474).
In addition to the novel data on clinical and biochemical

associations, we extend the methodology here from the previ-
ously quantified 43 urinary metabolites (þcreatinine) to 60
metabolites (þcreatinine), and present the methodological
intra-assay metabolite coefficients of variation (CV %s) as
well as 30-day consecutive intra-individual and inter-
individual population variation for the added 17 metabolites
(Table 2). The corresponding previously published informa-
tion7 for the 43 metabolites is given for the convenience of
the readers in Supplementary Table S4, available as
Supplementary data at IJE online (together with the data for
the added 17 metabolites). These analyses were done in a ran-
dom subset of 994 participants in the NFBC1966, and the
distributions for all these metabolites are illustrated
in Figure 2.
In this work we present automated quantification models

for 12 urinary metabolites (þ creatinine) (Supplementary
Figure S1, available as Supplementary data at IJE online).
These models enabled coherent analyses of urinary metabo-
lite concentrations in three independent population cohorts
(up to 5989 participants), and replicated association analyses
with wide-ranging clinical data. A representative set of 49
clinical and biochemical measures, 17 of which are based on
serum NMR metabolomics,7,10,19,20 were chosen for the as-
sociation analyses. For the details of the urine sample prepa-
ration and the NMR spectroscopy experimentation, we refer
to earlier open-access publications.7,17

Key Messages

• This work appears as the first comprehensive quantitative urine metabolomics study at an epidemiological scale, and presents 362

associations (most of them novel) between 12 urinary metabolites and 49 clinical and biochemical measures, with replication in three

independent population cohorts of up to 5989 participants.

• All individuals have amino acids in the urine. Thus, despite the high efficiency of the amino acid transporters, the large volume of plasma

filtered would result in unspecific leakage of amino acids into the urine, similarly to the situation with glucose.

• Seven urinary metabolites associated with smoking, providing questionnaire-independent proxy measures of smoking status in

epidemiological studies. Common confounders did not affect these associations.

• Of the 12 urinary metabolites, only dimethylamine and urea did not associate with body mass index (BMI). Insulin had a clear effect on

most associations with BMI, including strong effects on 2-hydroxyisobutyrate, valine, alanine, trigonelline and hippurate.

• The novel extensive quantitative urinary metabolomics data and the plethora of associations with clinically relevant measures and

outcomes support large-scale epidemiological studies for new insight on kidney function and related disease biomarkers.
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Figure 1. A flowchart illustrating the study design, statistical analyses and key findings. The data from NFBC1966, NFBC1986 and YFS are indicated by

colour-coded arrows: blue, orange and red, respectively. The black arrows represent analyses for all the cohorts. NFBC, Northern Finland Birth Cohort;

YFS, Cardiovascular Risk in Young Finns Study; NMR, nuclear magnetic resonance; 1H-NMR, proton nuclear magnetic resonance; BMI, body mass index;

MAP, mean arterial pressure; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate
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Metabolite quantification and analytical issues
The 61 urinary metabolites (Figure 2) were quantified from
the NMR spectra with a semi-automated methodology using
sophisticated constrained total line shape (CTLS) fitting
analysis.7,21,22 These analyses are tedious and time consum-
ing, and are not feasible in large-scale epidemiology applica-
tions. This is the very reason why we started to develop an
automated regression analysis approach for urine NMR
metabolomics,7 as this approach has proved superior in the

case of quantitative serum NMR metabolomics, with current
data available for a plethora of various epidemiological and
genetic applications and spanning to 1.5 million samples and
counting.10,13,14,23,24

Additional boxplots (Supplementary Figure S2, available as
Supplementary data at IJE online) and histograms
(Supplementary Figures S3 and S4, available as Supplementary
data at IJE online) are available in the online Supplementary
data for the 61 urinary metabolites. Importantly, the

Table 1. Characteristics of the three independent study populationsa

Characteristic NFBC1966 NFBC1986 YFS

Number 4505 1010 474
Age (years) 46.7 (46.2–47.1) 33.7 (33.4–34.1) 50.1 (31.3–68.5)
BMI (kg/m2) 26 (23–29) 25 (23–28) 27 (24–30)
Waist-to-hip ratio 0.91 (0.85–0.97) 0.91 (0.87–0.97)
Body fat (%) 28 (22–35) 26 (20–34)
Visceral fat area (cm2) 99 (76–127) 81 (59–121)
Total body water (L) 39 (34–47) 39 (33–47)
Systolic blood pressure (mmHg) 124 (114–135) 111 (103–120) 128 (117–142)
Diastolic blood pressure (mmHg) 84 (77–92) 74 (68–80) 78 (71–85)
Pulse (beats/min) 69 (62–77) 71 (64–79) 69 (62–77)
Fitness score 74 (69–79) 75 (70–80)
Basal metabolic rate (calories) 1509 (1358–1756) 1520 (1353–1753)
Grip strength average (kg) 32 (26–45) 35 (30–47)
Smoking prevalence (%)b 17.5 14 18.7
Leucine (mmol/L) 0.08 (0.07–0.10) 0.12 (0.10–0.14)
Isoleucine (mmol/L) 0.05 (0.05–0.07) 0.06 (0.05–0.07)
Valine (mmol/L) 0.20 (0.18–0.23) 0.23 (0.21–0.26)
Alanine (mmol/L) 0.45 (0.41–0.5) 0.37 (0.32–0.43)
Glutamine (mmol/L) 0.57 (0.53–0.61) 0.75 (0.70–0.80)
Glycine (mmol/L) 0.29 (0.26–0.33) 0.26 (0.23–0.32)
Phenylalanine (mmol/L) 0.08 (0.07–0.08) 0.06 (0.05–0.07)
Tyrosine (mmol/L) 0.06 (0.05–0.06) 0.06 (0.06–0.07)
Glycated haemoglobin (%) 5.5 (5.2–5.7) 5.2 (5.0–5.4) 5.5 (5.3–5.8)
Fasting insulin (IU/L) 7.9 (5.4–11.7) 9.2 (5.4–13.4)
Fasting glucose (mmol/L) 5.4 (5.1–5.8) 4.9 (4.7–5.2) 5.4 (5.1–5.8)
Lactate (mmol/L) 1.4 (1.2–1.7) 2.0 (1.7–2.4)
Pyruvate (mmol/L) 0.09 (0.08–0.12) 0.06 (0.05–0.08)
Citrate (mmol/L) 0.12 (0.11–0.13) 0.04 (0.04–0.05)
Glycerol (mmol/L) 0.07 (0.06–0.09) 0.12 (0.09–0.15)
Apolipoprotein B (g/L) 1.02 (0.88–1.2) 0.93 (0.79–1.11)
Total triglycerides (mmol/L) 1.03 (0.76–1.47) 0.78 (0.57–1.09) 1.13 (0.85–1.55)
Apolipoprotein A-I (g/L) 1.7 (1.6–1.9) 1.5 (1.4–1.7)
HDL cholesterol (mmol/L) 1.5 (1.3–1.8) 1.4 (1.2–1.7) 1.3 (1.1–1.6)
Acetoacetate (mmol/L) 0.04 (0.03–0.05) 0.02 (0.01–0.04)
Beta-hydroxybutyrate (mmol/L) 0.12 (0.10–0.16) 0.05 (0.02–0.11)
C-reactive protein (mg/L) 0.82 (0.45–1.65) 0.71 (0.36–1.55) 1.03 (0.53–2.37)
GlycA (mmol/L) 1.4 (1.3–1.5) 0.89 (0.81–0.96)
Haemoglobin (g/L) 141 (132–150) 136 (128–146) 144 (137–152)
Leukocytes (� 109 cells/L) 5.4 (4.5–6.4) 6.1 (5.2–7.1)
Platelets (� 109 cells/L) 247 (215–286) 239 (210–274) 254 (219–292)
Erythrocytes (� 1012 cells/L) 4.7 (4.4–4.9) 4.6 (4.3–4.9) 4.8 (4.5–5.1)
Bilirubin (mmol/L) 11 (9–15) 12 (9–16)
Alkaline phosphatase (U/L) 61 (51–73) 55 (45–66)
Alanine aminotransferase (U/L) 25 (18–36) 21 (16–31) 22 (15–31)
Gamma-glutamyl transferase (U/L) 23 (15–38) 15 (11–24) 24 (17–38)
Uric acid (mmol/L) 297 (249–353) 303 (252–356)
Creatinine (mmol/L) 67 (59–75) 65 (58–74) 76 (67–87)
eGFR (mL/min/1.73m2) 104 (95–107) 115 (107–118) 87 (75–100)
FINRISK 0.57 (0.20–1.66) 0.10 (0.04–0.32) 1.19 (0.2–6.62)
CKD Nelson risk 1.4 (1.0–2.4) 0.29 (0.23–0.47) 6.6 (1.2–31.7)
CKD O’Seaghdha risk 0.76 (0.76–1.61) 0.24 (0.23–0.25) 3.65 (0.50–20.89)
CKD Chien risk 6.1 (4.7–8.4) 1.8 (1.4–2.3) 10.2 (2.7–40)

BMI, body mass index; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; FINRISK, a large Finnish population survey of risk factors
for chronic, noncommunicable diseases; GlycA, glycoprotein acetyls; HDL, high-density lipoprotein; NFBC, Northern Finland Birth Cohort; YFS,
Cardiovascular Risk in Young Finns Study.

a Values are median (interquartile range).
b The number of current smokers/the total number of cohort participants.
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concentration and distribution data for the random subset
match very well to the corresponding data in the entire cohort
of 4505 participants (Supplementary Figures S5–S8, available
as Supplementary data at IJE online). The numerical data for
the urinary metabolite concentrations in men and women for
the NFBC1966 subset (60 metabolites þ creatinine) can be
found in Supplementary Table S5 (available as Supplementary
data at IJE online), and for all the three cohorts (12 metabolites
þ creatinine) in Supplementary Table S6 (available as
Supplementary data at IJE online).

Results from only two automated regression models, glucose
and creatinine, have been published previously.1,7 In this work
we add 11 automated quantification models, namely 2-hydrox-
yisobutyrate, valine, alanine, pseudouridine, dimethylamine,
glycine, citrate, urea, formate, trigonelline and hippurate.
Assessments of the automated regression models for these
metabolites are available in Supplementary Figure S1 (available
as Supplementary data at IJE online) together with the popula-
tion distributions for �4500 individuals in NFBC1966.

In this study we also determined the correction coefficients
for each quantified metabolite, to lead to the true absolute
metabolite concentrations (Supplementary Table S7, avail-
able as Supplementary data at IJE online).

Statistical analyses
Urinary metabolite concentrations normalized to urinary cre-
atinine concentration were used in all analyses, but absolute
concentrations are also presented (Figure 2). Referencing to
creatinine has been a long-term standard choice in urine
NMR metabolomics, but we have also recently comprehen-
sively studied the effects of various normalization methods,
also supporting the use of creatinine referencing in epidemio-
logical studies.17

Partial rank correlations (adjusted for sex in all the cohorts
and in addition for age in YFS) were used to illustrate the
associations between the 12 automatically quantified urinary
metabolites and the 49 clinical and biochemical measures.
The results are shown in colour-coded heat maps in Figure 3
for the biggest individual cohort, NFBC1966, with separate
maps for the entire cohort (n¼4505) as well as for men
(n¼ 1950) and women (n¼ 2555). The two-dimensional hi-
erarchical clustering is based on the results for the entire co-
hort, and the resulting ordering is preserved in all the
following heat maps. The chemical taxonomy of the metabo-
lites can be seen in Table 2.17 Replication of the associations
is illustrated in Figure 4. In all, 56 principal components
explained over 99% of variation in the 60 creatinine-
referenced urinary metabolite concentrations and the 49 clin-
ical and biochemical measures in NFBC1966. Therefore, we
used a multiple comparison corrected P-value threshold of
0.0009 to suggest evidence in favour of an association (0.05/
56 via the Bonferroni method; P<0.0009 is denoted in the
figures with an asterisk).
Associations between the urinary metabolites and body

mass index (BMI), as well as smoking history (current smok-
ers vs non-smokers), were analysed via linear regression anal-
yses adjusted for sex in all the cohorts and in addition for age
in YFS. Extreme metabolite levels (metabolites >third quar-
tile þ 8 � interquartile range) were truncated to the values of
the upper bound, and the metabolite concentrations were
log-transformed. The truncation was done as a precaution,
since the extreme values are rare (Supplementary Table S8,
available as Supplementary data at IJE online), represent real
metabolite concentrations (not artefacts) and did not have
strong effects on the associations. All measures were scaled to
standard deviation (SD) units (by subtracting the mean and
dividing by the standard deviation). Association magnitudes
are reported in SD units to ease the comparison across multi-
ple measures with different initial units and scales. All models
were further individually adjusted for mean arterial pressure,
fasting glucose, fasting insulin, smoking history (BMI analy-
sis only), total triglycerides, C-reactive protein (CRP), esti-
mated glomerular filtration rate (eGFR) and BMI (smoking
analysis only). Individual adjustments for the confounders
were performed to understand the relations and potential me-
diation of the urinary metabolite associations with the clini-
cal and biochemical measures and outcomes. All analyses
were done separately in the individual cohorts
(Supplementary Figure S9, available as Supplementary data
at IJE online, for BMI and Supplementary Figure S10, avail-
able as Supplementary data at IJE online, for smoking) and
then meta-analysed (Figure 5A for BMI and Figure 5B
for smoking).
Three regression analyses for each of the three urinary

amino acid concentrations (valine, alanine and glycine) were
also performed (as in our previous work for glucose1),
namely with their corresponding serum concentrations,

Table 2. Intra-assay, intra-individual and inter-individual variation of 17

quantified urine metabolites (introduced in this work)f

Metabolite Intra-assay Intra-individual Inter-individual
CV (%)a,b CV (%)a,c CV (%)a,d

Amino acids
Leucine 6.34 26.48 58.25

Metabolism of amino acids
Betaine 3.23 43.96 176.13
Phenylacetylglutamine 3.12 31.90 54.00
Pyroglutamate 4.40 17.64 27.64

Carbohydrate metabolism
Fumarate —

e 176.23 218.72
Succinate 13.36 32.08 179.91
Mannitol —

e 164.85 222.25
Caffeine metabolism

3-methylxanthine 5.02 174.27 84.08
Microbial metabolism

Methanol 1.91 60.33 114.21
Dietary metabolites

1-methylhistidine 2.04 21.15 31.26
Levoglucosan 1.52 304.04 190.10
Proline-betaine 2.71 132.03 139.93
Quinate 3.51 262.56 81.67
Scyllitol 1.19 22.05 57.91
Trans-ferulate 4.71 31.12 101.66

Miscellaneous
4-deoxyerythronate 1.59 18.15 38.46
4-deoxythreonate 1.67 30.42 38.60

Identical data for 43 metabolites from a previous publication are shown for
the convenience of readers in Supplementary Table S4 (available as
Supplementary data at IJE online).
CV, coefficient of variation.

a Concentrations are scaled to the concentration of creatinine;
CV (%) ¼ (standard deviation/average) � 100%.

b One urine sample prepared and analysed as 10 replicates; reflects the
entire quantitative process, i.e. including all the sample preparation steps,
nuclear magnetic resonance experimentation and mathematical
quantification protocols.

c A 30-day consecutive urine collection, averaged over three
different volunteers.

d In 1003 different individuals from the Northern Finland Birth
Cohort 1966.

e Concentration of the metabolite below the detection limit in this
urine sample.
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Figure 2. Absolute (left) and creatinine-referenced (right) concentrations of 61 quantified urinary metabolites in a random subset (n¼994) of morning

spot urine samples in the Northern Finland Birth Cohort 1966. The metabolites are presented in the descending order of median absolute concentrations.

Several different scales are used for the x-axes to provide a clear visualization for the large concentration ranges. TMAO, trimethylamine N-oxide;

HPHPA, 3-(3-hydroxyphenyl)-3-hydroxypropanoate; 2-PY, N1-methyl-2-pyridone-5-carboxamide; IS-CREA, use the creatinine concentration as the

internal standard
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eGFR and the multiplication of serum concentration and
eGFR. The models were further adjusted for BMI. These data
were available for NFBC1966 and YFS, so the analyses were
first done separately in these two cohorts (Supplementary
Figure S11, available as Supplementary data at IJE online)
and then meta-analysed (Figure 6).

Results

Metabolite distributions, abundance and sex
differences
Figure 2 illustrates the absolute and urine creatinine-
referenced concentrations of 61 quantified urinary metabo-
lites in 994 morning spot urine samples. The set of 61

metabolites presented here represents all the most abundant
signals in the urine NMR spectra. Urea is by far the most
abundant metabolite, with a median absolute concentration
greater than 200mM. Creatinine is also an abundant metab-
olite, with a median absolute concentration greater than
10mM. Hippurate and citrate are present in median absolute
concentrations greater than 1mM. The population variation
of the metabolites is substantial (Figure 2, Table 2 and
Supplementary Table S4, available as Supplementary data at
IJE online) and many of the metabolite distributions are posi-
tively skewed (Supplementary Figures S2–S4, available as
Supplementary data at IJE online). In creatinine-referenced
data, many metabolites are slightly more abundant in women
than in men, but the concentration differences are small

Figure 3. The associations between the 12 automatically quantified urinary metabolites (referenced to urinary creatinine) and 49 customary clinical and

biochemical measures as indicated by Spearman’s rank correlations (adjusted for sex) for the entire Northern Finland Birth Cohort 1966 (n¼4505) as well

as for men (n¼ 1950) and women (n¼ 2555). The two-dimensional hierarchical clustering is based on the results for the entire cohort, and the resulting

ordering is preserved in all the following heat maps. Four three-metabolite clusters were rendered that reflect the clinical and biochemical associations of

the urinary metabolites. P-value <0.0009 is marked with an asterisk in the map to indicate a multiple testing corrected association. ALP, alkaline

phosphatase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease;

HbA1c, glycated haemoglobin; BMI, body mass index; GlycA, glycoprotein acetyls; FINRISK, a large Finnish population survey of risk factors for chronic,

noncommunicable diseases
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(Supplementary Figures S2–S4 and Supplementary Table S5,
available as Supplementary data at IJE online).

The methodological intra-assay metabolite CV%s for the
new 17 metabolites are similar to those for the earlier 43
metabolites, i.e. mostly less than 5%, indicating high consis-
tency and accuracy of urine NMR spectroscopy per se. Also
their 30-day consecutive intra-individual and inter-individual
population variations follow the same overall pattern as
reported earlier,7 with rather large intra-individual and typi-
cally even larger inter-individual variation (Table 2 and
Supplementary Table S4, available as Supplementary data at
IJE online). Figure 2, together with the detailed information

in Supplementary Table S5 (available as Supplementary data
at IJE online), provide valuable reference concentrations for
key urinary metabolites at a population level.

Association clusters
Figure 3 illustrates a colour-coded heat map of associations
between 12 urinary metabolites (referenced to urinary creati-
nine) and 49 customary clinical and biochemical measures
(detailed descriptions are available in online Supplementary
data). The associations depicted are mostly novel, since quan-
titative data on urinary metabolites at an epidemiological
scale are scarce. Even though the associations are overall

Figure 4. Meta-analyses of the associations (Spearman’s rank correlations adjusted for sex) between the 12 automatically quantified urinary metabolites

(referenced to urinary creatinine) and 49 customary clinical and biochemical measures, to illustrate the replication of the findings in all the three

independent population cohorts. The uppermost heat map shows the full meta-analyses for all the available data (n up to 5989). The heat map in the

middle is for the entire NFBC1966 (the same heat map as in Figure 3, to facilitate visual comparison). The lowermost heat map shows the meta-analysis

for NFBC1986 and YFS (n up to 1484). The heat maps are presented in the same order of metabolites and clusters as in Figure 3. The colour key on the

top of the figure represents the availability of clinical and biochemical measures in the three cohorts. There were 20 measures available in all three

cohorts (green), 19 measures available only in NFBC1966 and YFS (pink) and 10 measures available only in NFBC1966 and NFBC1986 (blue). P-value
<0.0009 is marked with an asterisk in the map to indicate a multiple testing corrected association. ALP, alkaline phosphatase; ALT, alanine

aminotransferase; GGT, gamma-glutamyl transferase; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; HbA1c, glycated

haemoglobin; BMI, body mass index; GlycA, glycoprotein acetyls; FINRISK, a large Finnish population survey of risk factors for chronic,

noncommunicable diseases; NFBC, Northern Finland Birth Cohort; YFS, Cardiovascular Risk in Young Finns Study
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rather weak, 362 associations were detected which fulfilled
the statistical multiple comparison corrected P-value threshold
of 0.0009. To facilitate the metabolic interpretation of the
results, a two-dimensional hierarchical clustering of the heat
map was done based on the sex-adjusted associations in the en-
tire NFBC1966 cohort (n¼4505). Four three-metabolite

clusters were rendered which reflect the clinical and biochemi-
cal associations of the 12 urinary metabolites.
The strongest association appears between urinary and se-

rum glycine, and the association between urinary valine and
serum valine is rather strong. The estimated glomerular filtra-
tion rate (eGFR) associates positively with all the urinary

Figure 5. Meta-analyses of the regression models for body mass index (A) and smoking (B) with the 12 automatically quantified urinary metabolites

(referenced to creatinine). The effects of sex (black), sex þMAP (red), sex þ fasting glucose (cyan), sex þ fasting insulin (lila), sex þ smoking (light blue,

applied to the BMI models only), sex þ total triglycerides (blue), sex þ CRP (violet), sex þ eGFR (green) and sex þ BMI (blush, applied to the smoking

models only) were examined; asterisk indicates that age was also adjusted for YFS. The smoking data for the cohorts are: NFBC1966, 750 current and

3544 non-smokers; NFBC1986, 115 current and 706 non-smokers; and YFS, 85 current and 370 non-smokers. MAP, mean arterial pressure; CRP, C-

reactive protein; eGFR, estimated glomerular filtration rate; YFS, Cardiovascular Risk in Young Finns Study; NFBC, Northern Finland Birth Cohort
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metabolite clusters, the strongest associations being with glu-
cose, pseudouridine and valine. These associations are, as
expected, mirrored by negative associations with serum creat-
inine (which is used in the estimation of glomerular filtration
rate). The two uppermost metabolite clusters in Figure 3 (the
first one consisting of 2-hydroxyisobutyrate, valine and ala-
nine and the second one of pseudouridine, glucose and dime-
thylamine) behave generally similarly regarding their
associations. They are overall positive with over 60% of the
clinical and biochemical measures, including eGFR as noted
above, multiple serum amino acids, serum triglycerides, gly-
caemic traits, lactate, pyruvate, inflammation (CRP and
GlycA), liver function markers [alkaline phosphatase (ALP),
alanine aminotransferase (ALT) and gamma-glutamyl trans-
ferase (GGT)], various obesity measures, blood pressure and
the FINRISK cardiovascular disease (CVD) and the Chien
chronic kidney disease (CKD) risk scores.

The associations of the two downmost metabolite clusters
in Figure 3 (the first one consisting of glycine, citrate and
urea and the second one of formate, trigonelline and hippu-
rate) also behave generally similarly in their associations,
though the former of these has the lowest number of associa-
tions with the clinical and biochemical measures. Their
associations are, in general, negative for most of the above-
mentioned positive associations of the two uppermost metab-
olite clusters. However, the associations are somewhat
reversed for serum glycine and glutamine, with weak negative
associations with the two uppermost metabolite clusters and
mixed negative and positive associations with the two down-
most clusters. In addition to serum creatinine, serum citrate,
bilirubin and the CKD Nelson, as well as the O'Seaghdha
risk scores, tend to associate negatively with all the urinary
metabolite clusters and metabolites. Apolipoprotein B associ-
ates positively with the uppermost urinary metabolite cluster
and negatively with the downmost cluster. The associations
for high-density lipoprotein (HDL) cholesterol are opposite
to those of apolipoprotein B. The fitness score associates

negatively with the two uppermost metabolite clusters and
positively with the lowermost cluster.
The associations of the urinary metabolite clusters and of

the individual urinary metabolites with the clinical and bio-
chemical measures are similar for men and women (Figure 3).
In addition, the associations appear coherent between three
independent cohorts, as illustrated in Figure 4. The
NFBC1986 (n¼1010) and YFS (n¼ 474) had fewer urine
samples available than the NFBC1966 (n¼4505), and thus
only the most prominent associations reach the multiple com-
parison corrected P-value threshold of 0.0009. Nevertheless,
the entire association pattern matches excellently with the
one for NFBC1966.

Metabolite associations with BMI
The associations of the 12 urinary metabolites, referenced to
creatinine, with BMI are shown in Figure 5A, meta-analysed
for the three independent cohorts (n up to 5989). The results
for the individual cohorts are shown in Supplementary Figure
S9 (available as Supplementary data at IJE online). Only urea
and dimethylamine did not associate with BMI. Fasting insu-
lin had a strong effect on the associations of several urinary
metabolites with BMI. Apart from the effects of fasting insu-
lin, the other adjustments in the regression models had over-
all very little, if any, effects on the associations. However,
adjusting for fasting glucose had a similar but less pro-
nounced effect on valine and alanine as fasting insulin.
Adjusting for fasting glucose also had (an expected) strong ef-
fect on diluting the association of urinary glucose with BMI.
The association of 2-hydroxyisobutyrate was rather strongly
affected by adjusting for mean arterial pressure, fasting glu-
cose, fasting insulin, total triglycerides and CRP.

Metabolite associations with smoking
The associations of the 12 urinary metabolites referenced to
creatinine with smoking are shown in Figure 5B, meta-
analysed for the three independent cohorts (n up to 5989).
The results for the individual cohorts are shown in

Figure 6 Meta-analyses of the regression models for the three automatically quantified urinary amino acids (valine, alanine and glycine) concentrations

(referenced to creatinine) and their corresponding serum concentrations, eGFR, and the multiplication of the serum concentration and eGFR in Northern

Finland Birth Cohort 1966 (n¼ 4505) and Cardiovascular Risk in Young Finns Study (n¼474). The effects of sex (black circle) and sex þ BMI (red

diamond) were examined; asterisk indicates that age was also adjusted for in YFS. eGFR, estimated glomerular filtration rate; YFS, Cardiovascular Risk in

Young Finns Study
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Supplementary Figure S10 (available as Supplementary data
at IJE online). Seven metabolites associated with smoking at
the multiple testing corrected P-value threshold <0.0009,
namely 2-hydroxyisobutyrate, valine, alanine, pseudouridine,
dimethylamine, citrate and trigonelline. The various adjust-
ments had very little, if any, effect on the urinary metabolite
associations with smoking.

Unspecific renal excretion of amino acids
The 12 quantified urinary metabolites include three amino
acids, valine, alanine and glycine. Figure 6 illustrates how
these urinary amino acid concentrations associate with corre-
sponding serum concentrations and eGFR, and that these
associations are strengthened for the multiplication of the se-
rum concentration and eGFR. The results shown are meta-
analysed for the NFBC1966 and YFS, for which the serum
amino acid data were available. Results for the individual
cohorts are given in Supplementary Figure S11 (available as
Supplementary data at IJE online).

Discussion

Novel quantitative data are presented here for 60 urinary
metabolites (þ creatinine) in a 994-individual subset of the
NFBC1966 cohort. This random subset is representative of
the entire cohort of 4505 participants (Supplementary
Figures S5–S8, available as Supplementary data at IJE online)
and thus the quantitative data provide valuable reference
concentrations for key urinary metabolites at a population
level for men and women (Figure 2, Supplementary Figures
S2–S4 and Supplementary Table S5, available as
Supplementary data at IJE online). The concentration differ-
ences between males and females are small, but the
creatinine-referenced values tend to be slightly higher for
women. On average, women have lower muscle mass, leading
to lower concentrations of circulating creatinine and thus
lower amounts of excreted creatinine into the urine. Whereas
in random urine samples absolute metabolite concentrations
would not be relevant, in the case of morning spot urine sam-
ples, as here and as reflected by Figure 2, the biological vari-
ability is to some extent reduced due to the corresponding
times and conditions in which the urine has been accumulat-
ing in all the participants, i.e. overnight in mostly a fasting
physiological state.25

The first coherent set of automated quantification models
for 12 urinary metabolites (þ creatinine) is also presented in
this work (Supplementary Figure S1, available as
Supplementary data at IJE online). Application of these mod-
els made it feasible to analyse these metabolite concentrations
in urine samples for almost 6000 people in three independent
population cohorts, and to study their associations with a
comprehensive set of 49 clinical and biochemical measures.
Hierarchical clustering of these results revealed four three-
metabolite clusters that comprehensively summarized their
association patterns (Figure 3 and Figure 4). Most of the
detected associations are novel, since no epidemiological
studies have been carried out combining a comprehensive
quantitative metabolomics approach in urine samples with
an extensive set of attached clinical and biochemical data.
Since urinary metabolites overall correlate weakly with sys-
temic metabolic measures,7 urine samples are a potential
source of unique metabolic information. In addition, quanti-
tative data on specific urinary metabolites provide a direct

individual measurement of kidney function and can poten-
tially alleviate generalized approximations in estimated glo-
merular filtration rate, a known marker of ageing and
cardiometabolic diseases.26,27

We noted recently that glucose in the urine is a normal phe-
nomenon (though some renal physiology textbooks still claim
otherwise) and that typical absolute glucose concentrations
in urine are between 0.1 and 0.5mmol/L.1 This phenomenon
is likely a reflection of unspecific renal excretion of glucose
also at low concentration ranges of circulating glucose.1,28

Amino acids—as well as glucose—are indispensable in hu-
man metabolism, and thus basically all amino acids filtered
by the kidneys are also reabsorbed into the circulation (or
used in the kidneys) via a set of specific amino acid transport-
ers.29,30 The population distributions for all the nine quanti-
fied amino acids in the urine samples (Figure 2; and
Supplementary Figures S2–S4 and Supplementary Table S5,
available as Supplementary data at IJE online) are similar
and resemble those of glucose.1 In fact, similarly to glucose,
all individuals have amino acids in the urine. Thus, despite
the high efficiency of the amino acid transporters, the large
volume of plasma filtered would result in some unspecific
leakage of amino acids into the urine.28,29 As in the case of
glucose, the unspecific leakage is suggested for the amino
acids by the rather strong correlations between their serum
and urine concentrations (Figure 3 and Figure 4) as well as by
the additional contribution of the eGFR to the urinary amino
acid concentration (Figure 6). Since quantitative metabolic
studies of urine samples at the population level are scarce, we
know very little about these types of unspecific molecular
processes in the kidneys and their potential role as
population-level biomarkers for kidney function and/or dis-
ease risk.1

The multiple associations between urinary metabolites and
various clinical and biochemical measures suggest that urine
metabolites may well have general value as population-level
health and disease biomarkers. For example, the urinary
branched-chain amino acid (BCAA) valine associates posi-
tively to various obesity markers (e.g. BMI and waist-to-hip
ratio, as well as body and visceral fat), clinical diabetes indi-
cators and risk factors [glycated haemoglobin (HbA1c), fast-
ing glucose, fasting insulin, and serum BCAAs valine, leucine
and isoleucine), systemic inflammation (CRP and GlycA), se-
rum triglycerides, blood pressure, liver function (ALP, ALT
and GGT), and CKD as well as CVD risk (Figure 3). The
direction of association is reversed to overall fitness and
HDL-related measures. These findings are in accordance with
findings related to circulating valine, and in general with se-
rum BCAAs, concentrations. Apart from adding confirma-
tory data to systemic metabolic findings, a key aspiration in
the case of urinary metabolites would be that, if added into
the systemic metabolic risk assessment, they might be able to
bring in additional information, directly reflecting kidney
function. This is supported by our previous findings that
urine and serum metabolites generally correlate weakly.7

Furthermore, in the regression models of smoking with the
urinary metabolite concentrations, adjusting for various key
systemic measures (e.g. CRP, blood pressure, BMI, fasting in-
sulin) had very minor or no effects on the associated metabo-
lites 2-hydroxyisobutyrate, valine, alanine, pseudouridine,
dimethylamine, citrate and trigonelline (Figure 5B; and
Supplementary Figure S10, available as Supplementary data
at IJE online). This conclusion also applies to adjustments
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with eGFR, suggesting that the associations of urinary metab-
olites are typically such that they cannot be simply explained
by a standard clinical estimate of kidney function. A similar
conclusion regarding eGFR is valid for the urinary metabolite
associations with BMI. However, contrary to the overall mi-
nor effects due to the adjustments, insulin had a clear effect
on most of the associations with BMI (Figure 5A). These
findings are in line with recent longitudinal finding on sys-
temic metabolic ageing trends and obesity.31,32

The positive associations of urinary 2-hydroxyisobutyrate
with BMI appear most broadly affected by the adjustments,
including those for mean arterial pressure, fasting glucose,
fasting insulin, total triglycerides and CRP; 2-hydroxyisobu-
tyrate associated positively also with smoking, but none of
the adjustments had a clear effect on the association. In gen-
eral, the associations of 2-hydroxyisobutyrate are very simi-
lar to those of valine (Figure 3 and Figure 4), except that
urinary valine associates negatively to smoking (Figure 5B).
Potentially originating from gut microbial valine degradation,
2-hydroxyisobutyrate is a tertiary alcohol.4,33,34

Epidemiological data on this metabolite are almost
completely lacking,35 except its urinary concentration has
also previously been associated with BMI.4 In addition, a re-
cent study in individuals with type 1 diabetes found urinary
2-hydroxyisobutyrate positively associated with the progres-
sion of diabetic nephropathy.8 All these finding suggest uri-
nary 2-hydroxyisobutyrate concentrations being linked with
insulin resistance.36,37 Some other associations have also
been reported, e.g. 2-hydroxyisobutyrate being part of a
‘peculiar obese urinary metabotype’38 and associating with
various issues of pregnancy.39,40 However, all these studies
have applied orthogonal projections to latent structures dis-
criminant analysis (OPLS-DA) supervised analyses that are
well-known to lead to spurious findings, particularly when a
lot of spectral data points are used as the basis for the classifi-
cations in very small datasets.9,41–46

The results discussed above in relation to 2-hydroxyisobu-
tyrate demonstrate how urinary metabolomics can provide
substantial scientific novelty. First, because comprehensive
quantitative data on urinary metabolites from large-scale epi-
demiological studies are scarce, and second, because urine as
a waste biofluid—tightly connected to the kidney function—
provides a metabolic view that is interdependent with and
complementing systemic metabolism. In addition, quantita-
tive metabolite data are indispensable to avoid the common
limitations of multivariate metabolomics applications (typi-
cally the use of OPLS-DA) that result in spurious findings,
due to overtraining of classification models with high num-
bers of variables (usually spectral data points) with very small
numbers of individuals.9,20,41,45–47 Quantitative metabolite
data (identical to data from standard clinical chemistry analy-
ses) also provide easy means for confounding adjustments as
applied in this work48 and replication of the findings, in this
case done in up to three independent cohorts. These are es-
sential elements allowing triangulation49 and leading to sci-
entific reliability.50

Even though urinary metabolites intrinsically disclose what
we eat and drink, the search for discriminatory molecular sig-
nals for individual nutrients or even dietary patterns has
proved to be futile, 41 though some systemic metabolomics
studies have been able to link multi-metabolic profiles of indi-
viduals with their habitual diets, for example, a preponder-
ance of ‘fruits and vegetables’ or ‘junk food’.51 These types of

questionnaire-independent ways of assessing true food con-
sumption would be valuable in epidemiological studies. This
applies also for explicit gauging of smoking. We showed here
that seven metabolites (Figure 5B; and Supplementary Figure
S10, available as Supplementary data at IJE online) associ-
ated with smoking (current vs non-smokers). These findings
might prove valuable in large epidemiological studies as a
questionnaire-independent assessment of smoking status.

Conclusion

It is fundamental to keep in mind with these observational
epidemiological results that they cannot apprise of any mech-
anisms. In addition, we did not have direct measures of organ
function available, which limits our ability to assess the po-
tential clinical utility of the new metabolites compared with
established biomarkers. However, this work gives one of the
first demonstrations of the rich and diverse association pat-
tern of urinary metabolites, with multiple descriptors of the
renal-cardiometabolic system. Many associations of urinary
metabolites with clinical outcomes appear independent of
key systemic metabolic regulators, thus suggesting that quan-
titative urinary metabolomics may inherently convey rather
specific information on tubular filtration and reabsorption,
as well as on kidney-specific molecular interactions. Keeping
in mind that urine is a waste product, a coherent metabolic
association pattern in three independent population cohorts
is an intriguing result per se. These large-scale results also
point towards a very high analytical reliability of the new
quantitative methodology, as we noted earlier, based on bio-
logically relevant genetic associations with only a few hun-
dred individuals.7 The presented extensive data and results
give a dependable rationale to extend quantitative urinary
metabolomics to large-scale epidemiological studies for new
insight on kidney function and related metabolic disease bio-
markers. All the three population cohorts studied in this
work are from Finland. Hence, replication of the findings in
other ethnicities and geographical locations would be valu-
able and also of high scientific interest, due to potential socie-
tal and environmental effects on urinary metabolite profiles
and their clinical associations.
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The datasets used in the current study are available from the
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Regarding the YFS data, the Ethics Committee has concluded
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