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Abstract
Background: Single nucleotide polymorphisms in the human leukocyte antigen (HLA) region in both maternal and fetal genomes have been
robustly associated with birthweight (BW) in previous genetic association studies. However, no study to date has partitioned the association
between BW and classical HLA alleles into maternal and fetal components.

Methods: We used structural equation modelling (SEM) to estimate the maternal and fetal effects of classical HLA alleles on BW. Our SEM
leverages the data structure of the UK Biobank (UKB), which includes �270000 participants’ own BW and/or the BW of their firstborn child.

Results: We show via simulation that our model yields asymptotically unbiased estimates of the maternal and fetal allelic effects on BW and
appropriate type I error rates, in contrast to simple regression models. Asymptotic power calculations show that we have sufficient power to
detect moderate-sized maternal or fetal allelic effects of common HLA alleles on BW in the UKB. Applying our SEM to imputed classical HLA
alleles and own and offspring BW from the UKB replicated the previously reported association at the HLA-C locus and revealed strong evidence
for maternal (HLA-A*03:01, B*35:01, B*39:06, P<0.001) and fetal allelic effects (HLA-B*39:06, P<0.001) of non-HLA-C alleles on BW.

Conclusions: Our model yields asymptotically unbiased estimates, appropriate type I error rates and appreciable power to estimate maternal
and fetal effects on BW. These novel allelic associations between BW and classical HLA alleles provide insight into the immunogenetics of fetal
growth in utero.

Keywords: Genetic association, structural equation modelling, human leukocyte antigen, birthweight, UK Biobank

Background

Birthweight (BW) is widely used as a cheap but imperfect
measure of intrauterine growth and development.1,2 Both
high and low BW infants are at increased risk of short- and
long-term morbidities. Low BW infants are at increased risk
of neonatal mortality3 and cardiometabolic diseases in later

life,4 which in the latter’s case, might reflect ‘developmental
programming’ as a consequence of an adverse intrauterine en-
vironment.5 In contrast, high BW infants (fetal macrosomia)
are at increased risk of injury during birth (e.g. delivery
shoulder dystocia, obstructive labour)6 and type 2 diabetes in
later life.7

Key Messages

• We developed a new method to partition genetic effects at classical human leukocyte antigen (HLA) loci into maternal and fetal genetic

components using structural equation modelling (SEM).

• The SEM model leverages the data structure of the UK Biobank (UKB), which includes participants’ own birthweight (BW) and/or the BW

of their firstborn child.

• Our SEM model yields asymptotically unbiased estimates, appropriate type I error rates and appreciable power to estimate maternal and

fetal effects on BW.

• UKB analyses revealed strong evidence for maternal and fetal effects of multiple HLA alleles on BW which provide insight into the

immunogenetics of fetal growth in utero.
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BW is a complex trait influenced by both maternal and
fetal genetics and environmental factors.8 Large-scale ge-
nome-wide association studies (GWAS)8–13 have identified
over 200 loci associated with BW, including single nucleotide
polymorphisms (SNPs) in the human leukocyte antigen [HLA,
also known as major histocompatibility complex(MHC)] re-
gion on the short arm of chromosome 6.8,12 The classical
HLA antigens can be divided into HLA class I (HLA-A, B and
C) and class II (HLA-DP, -DQ and -DR loci).14 This area of
the genome exhibits extensive and complex patterns of link-
age disequilibrium and contains a set of highly polymorphic
genes that encode cell-surface antigens that play a key role in
specific immunity, allograft rejection and the development of
many immune-mediated and autoimmune diseases (reviewed
in15). These results are interesting, given that epidemiological
and immunological studies have suggested that both maternal
and fetal immune systems play important roles in fetal growth
and development.14,16–18

One complication with interpreting the results of genetic
association studies of perinatal traits, is that it is often
unclear whether specific genetic associations reflect an effect
of the fetal genome, an effect of the maternal genome or
some mixture of both.19 Insight into this question can some-
times be obtained by performing conditional genetic associa-
tion analyses (i.e. where the effect of fetal genotype is
conditioned on maternal genotype and vice versa) and/or
haplotype analyses of genotyped mother-offspring pairs.12 A
complication, however, is that worldwide there is a paucity
of cohorts with large numbers of genotyped mother-offspring
pairs, meaning that these sorts of analyses are often under-
powered.20 In order to address this issue, Warrington et al.
(2018) developed a structural equation model that was capa-
ble of partitioning genetic effects on BW into maternal and
fetal components, using the large UK Biobank (UKB) re-
source.21 In the UKB, genotyped participants report their
own BW and the BW of their first child (females only).22 Wu
et al. (2021) further extended this statistical framework to es-
timate parental and fetal genetic effects using summary
results statistics from GWAS conducted on own and off-
spring BW, simultaneously accounting for sample overlap
and one generation of assortative mating.23 However, these
models were derived for bi-allelic variants (mostly SNPs),
whereas classical HLA genes are multi-allelic. Thus, an exten-
sion of the model is required to estimate maternal and fetal
effects at multi-allelic classical HLA genes.

In this manuscript, we develop a novel structural equation
model to estimate the maternal and fetal genetic effects of im-
puted HLA alleles on offspring outcomes. We define mater-
nal genetic effects as the effect of a mother’s genotype on the
phenotype of her offspring, independent of the offspring’s ge-
notype. In other words, maternal genetic effects on the off-
spring phenotype are mediated through the maternal
phenotype (in the case of BW, most likely some aspect of the
intrauterine environment provided by the mother). In con-
trast, we define fetal genetic effects as the effect of the fetus’s
own genotype on their own phenotype, independent of their
mother’s genotype. We conducted a simulation study to as-
sess the bias and the type I error rate of our model, and per-
formed asymptotic power calculations to estimate the power
to detect the allelic effects and partition them into maternal
and fetal allelic effects. We subsequently applied our struc-
tural equation modelling (SEM) to data from the UKB to

estimate the maternal and fetal genetic effects of classical
HLA alleles on BW.

Methods

Structural equation modelling

Structural equation modelling (SEM), with its ability to model
the relationship between latent and observed variables, pro-
vides a natural framework for investigating the association
between maternal and fetal genotypes and perinatal pheno-
types.24 We illustrate the SEM we developed to estimate ma-
ternal and fetal genetic effects on BW at classical HLA alleles
in the form of a path diagram in Figure 1 (see Supplementary
Note 1, available as Supplementary data at IJE online for fur-
ther details). To simplify explication, we assume the locus
contains only four hypothetical alleles (here HLA-X0, HLA-
X1, HLA-X2, HLA-X3; Figure 1) in the fictitious HLA-X
gene (we use ‘HLA-X’ to avoid confusion with real HLA
genes), although the model can be generalized, at least in the-
ory, to an arbitrary number of alleles. We set the most com-
mon allele, here the HLA-X0 allele, as the ‘baseline’, and it is
hence not included in the SEM to avoid collinearity. The
model contains both observed variables (represented by
squares in the path diagram) and latent variables (represented
by circles in the path diagram). The two observed phenotypic
variables are the self-reported BW of the individual (BW) and
the self-reported BW of their first offspring in the case of
women in the UKB (BWO). The three observed genetic varia-
bles are X1M, X2M and X3M, which represent the number of
copies of each of these HLA alleles that each individual carries
(the ‘M’ subscript referring to the mothers in the SEM in
Figure 1). The rest of the variables are modelled as latent vari-
ables. We estimate the maternal and fetal effects of all the
alleles at one locus simultaneously and the covariances across
all the allele counts. However, in a more realistic scenario, not
every individual reports both phenotypes (i.e. they report only
BW or BWO). In order to include the maximum amount of
data to optimize power, we also simultaneously modelled indi-
viduals who failed to report either their own or their offspring’s
BW (Supplementary Figure S1, available as Supplementary
data at IJE online). The details of model identification are de-
scribed in Supplementary Note 2 (Supplementary Figure S6,
available as Supplementary data at IJE online). The model was
written and fitted using the OpenMx package25 (version
2.19.8) in R (version 3.6.3; the R script for conducting analysis
using our model is provided in Supplementary Note 13, avail-
able as Supplementary data at IJE online).

Simulations to assess bias and type I error

We performed simulations to investigate the accuracy of our
SEM to estimate both maternal and fetal effects on BW. For
each scenario, we generated 1000 replicates where we ana-
lysed 80 000 genotyped individuals who had simulated phe-
notypic data for their own BW and the BW of their offspring.
For each replicate, we generated HLA alleles for the three gen-
erations of individuals at a single locus (i.e. even though only
the HLA alleles of the individual in the middle generation
were modelled as an observed variable in the analysis). The
variances of each allele were standardized to unit variance.
The details of the simulation are described in Supplementary
Note 38,26 (Supplementary Table S1, available as
Supplementary data at IJE online).
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Asymptotic power calculations

We also performed asymptotic power calculations using the
OpenMx package (version 2.19.8 in R (version 3.6.3). We
calculated the power assuming individuals with complete data
(N¼ 80 000). In addition, we also calculated power when
individuals only reported their own or their offspring’s BW.
We assumed 100 000 individuals who only reported their
own BW, 80 000 mothers who only reported the BW of their
firstborn and 80 000 individuals who reported both (i.e. simi-
lar numbers of individuals as in the UKB). We fitted an SEM
that included additional structures for individuals who only
reported their own or their offspring’s BW (Supplementary
Figure S1, available as Supplementary data at IJE online).
The details of the power calculations are described in
Supplementary Note 4.20

Application of SEM to BW data in the UK Biobank

The UK Biobank (UKB) Study is a study of over 500 000 vol-
unteers (with 5.45% response rate of those invited27)

recruited from across the UK at age 40–69 years between
2006 and 2010, with a broad range of health-related informa-
tion and genome-wide genetic data.28

After a series of stringent procedures of data cleaning,
105 121 unrelated European individuals who only reported
their own BW, 82 445 mothers who reported only the BW of
their firstborn and 85 757 mothers who reported both were
retained for subsequent analyses (Supplementary Figures S2
and S3, available as Supplementary data at IJE online; see
Supplementary Note 5, available as Supplementary data at
IJE online for the details of data cleaning22,28–31). Z-scores of
individuals’ own BW and the BW of their first child were then
generated and used for subsequent analyses. The top four
principal components were included in the SEM as definition
variables (Supplementary Note 9, available as Supplementary
data at IJE online), which were regressed on both BW meas-
urements and each HLA allele.

We fitted our SEM to UKB self-reported BW, offspring BW
and allelic status at 11 classical imputed HLA loci (HLA-A,

Figure 1. Structural equation model used for the analysis of multi-allelic human leukocyte antigen markers and birthweight (BW). Latent variables are

represented by circles, observed variables by square boxes. Causal paths are indicated by unidirectional arrows, bidirectional arrows represent

covariances. In order to illustrate the model, we use the fictional example of the human leukocyte antigen (HLA)-X gene. We assume there are only four

alleles in the HLA-X gene (here HLA-X0, HLA-X1, HLA-X2, HLA-X3), although the model is generalizable to an arbitrary number of alleles (represented by

the ellipsis ‘. . .’ on the left-hand side of the path model). The HLA-X0 allele is modelled as the ‘baseline’ allele (so all effects are modelled as

displacements from this baseline allele), and hence is not shown in the diagram. The X1, X2 and X3 variables represent the number of copies of each of

these HLA alleles that each individual carries. The ‘G’, ‘M’ and ‘O’ subscripts index alleles in the grandmaternal (latent), maternal (observed) and offspring

(latent) generation respectively. The ‘m’ and ‘f’ subscripts of the path coefficients represent maternal and fetal allelic effects, respectively. The five

observed variables, displayed in squares, in the analysis are: (i) the self-reported birthweight of the individual (BW) in the UKB; (ii) the self-reported BW of

their first offspring (in the case of women only) in the UK Biobank (BWO); and (iii) the number of copies of the HLA-X1 (X1M), HLA-X2 (X2M) and HLA-X3

(X3M) alleles. The latent variables, displayed in circles, in the analysis are: (i) the number of copies of the relevant allele carried by the individual’s mother

(i.e. X1G, X2G and X3G); and (ii) the number of copies of the relevant allele carried by the individual’s offspring (X1O, X2O and X3O). The variance of the

allele counts in the grandmaternal (X1G, X2G, X3G), maternal (X1M, X2M, X3M) and offspring (X1O, X2O, X3O) generations are estimated as UX1, UX2 and

UX3, respectively, and are assumed not to change across generations [i.e. variance (XG)¼U, variance (XM)¼ 0.75U þ 0.25U¼U and variance (XO)¼ 0.75U
þ 0.25U¼U)] The covariances between the different allele counts are also estimated (e.g. covX1-2, covX1-3, covX2-3) and assumed not to vary across

generations [e.g. covariance (X1G, X2G)¼ covX1-2, covariance (X1M, X2M)¼ 0.75 covX1-2 þ 0.25 covX1-2¼ covX1-2, and covariance (X1O, X2O)¼ 0.75 covX1-2
þ 0.25 covX1-2¼ covX1-2]. The bmX1, bfX1, bmX2, bfX2, bmX3 and bfX3 are path coefficients that quantify the maternal and fetal allelic effects of each allele on

BW, respectively. The residual error terms for the BW of the individual and their offspring are represented by E and Eo respectively, and the variance of

both of these terms is estimated in the structural equation model. The estimated covariance between residual genetic and environmental sources of

variation on BW is represented by q
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HLA-B, HLA-C, HLA-DRB1, HLA-DRB3, HLA-DRB4,
HLA-DRB5, HLA-DQB1, HLA-DQA1, HLA-DPB1 and
HLA-DPA1 (Supplementary Table S5, available as
Supplementary data at IJE online) using the OpenMx pack-
age in R (version 3.6.3). For each HLA gene, alleles with a fre-
quency lower than 0.5% across studied participants from UK
Biobank were collapsed together into a single category
(denoted as ‘Other’ allele, e.g. A*Other). In other words, us-
ing this coding, individuals could carry zero, one or two rare
alleles at a given HLA gene.

In addition to one degree of freedom tests where we evalu-
ated the significance of the maternal and fetal components
individually, we also compared the full model with a con-
strained model in which we fixed the maternal and fetal
effects of the allele of interest to zero (i.e. a two degree of free-
dom test; Supplementary Note 6, Supplementary Table S6,
available as Supplementary data at IJE online). We also con-
ducted conditional analyses whereby we augmented our SEM
by including genome-wide significant SNPs in the HLA region
as observed variables in the model (Supplementary Note 7,
Supplementary Figure S4, Supplementary Tables S6 and
S8, available as Supplementary data at IJE online). We
also performed analyses using a weighted linear model to
compare with the results of SEM (Supplementary Note 8,
Supplementary Table S9, available as Supplementary data at
IJE online).

Results

Bias and type I error rate

Figure 2 and Supplementary Table S1 (available as
Supplementary data at IJE online) show the bias in estimating
maternal and fetal allelic effects of the simulated HLA-X gene
using linear regression or the SEM (results are shown for the
HLA-X1 allele only, but other alleles show similar patterns).
Our results suggest the SEM yields asymptotically unbiased
estimates of maternal and fetal effects in contrast to ordinary
least squares regression, which does not explicitly partition al-
lelic effects into maternal and fetal components. Likewise,
whereas the SEM produced well-calibrated type I error rates
(�5%) for tests of the estimated effects when the true effect
size was set to zero, the type I error rates for linear regression
could be inflated, e.g. when the true maternal effect was zero
but fetal effects were present (or vice versa) (Supplementary
Table S2, available as Supplementary data at IJE online).

Asymptotic power calculation

Figure 3 and Supplementary Table S3 (available as
Supplementary data at IJE online) present asymptotic power
to detect the effect of classical HLA alleles (i.e. a two degree
of freedom test) and subsequently partition the allelic effect
into maternal and fetal components (i.e. one degree of free-
dom tests) when the sample size is set to 80 000 mothers who
report their own and their offspring’s phenotype (a ¼ 0.05).

Figure 2. Simulation results showing bias in estimates of the maternal and fetal effect of the human leukocyte antigens X1 allele obtained using structural

equation modelling (upper row) or ordinary least squares linear regression (lower row). The true fetal effect of human leukocyte antigen’s (HLA)-X1 varies

between the six panels (bfX1¼ 0 left panels; bfX1¼ 0.014 middle panels; bfX1¼ 0.02 right panels—the fetal effects of other HLA-X alleles for each panel are

listed in Supplementary Table S1, available as Supplementary data at IJE online). The effect of the maternal alleles (bmX1, bmX2, bmX3) varies across the

x-axis. Across all conditions, the structural equation model returned unbiased estimates of the maternal and fetal effect size for HLA-X1 whereas ordinary

least squares regression resulted in biased effect estimates. Similar patterns of results were observed for HLA-X alleles other than HLA-X1 (results not

shown)

4 International Journal of Epidemiology, 2024, Vol. 53, No. 1

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad142#supplementary-data


We have excellent power (>80%) when the standardized ef-
fect of the allele of interest (HLA-X1; allele frequency¼0.1)
is greater than 0.014 (the variances of all alleles have been
standardized to unit variance). Even with a maternal stan-
dardized effect size as low as 0.01, the model still had >50%
power to detect the partitioned maternal effect. As expected,
the two degree of freedom test had more power (to detect
any allelic effect at the locus) than the one degree of freedom
maternal/fetal tests for all conditions we examined. The
asymptotic power calculation is consistent with the results
of simulation study (Supplementary Table S3, available as
Supplementary data at IJE online). The addition of incom-
plete data (i.e. individuals who report only their own pheno-
type or alternatively their offspring’s phenotype, but not
both) also increased power (Figure 3; Supplementary Table
S4, available as Supplementary data at IJE online).

Empirical analysis in UK biobank

Figure 4 summarizes the results of partitioning the effects at
HLA loci into maternal and fetal components in the UKB
dataset. A total of 19 HLA alleles had nominally significant
maternal and/or fetal effects on BW (P<0.05; Supplementary
Table S7, available as Supplementary data at IJE online); 13
of the 19 alleles had evidence for a maternal effect only, four
alleles primarily had evidence for a fetal effect only and two
alleles had evidence of both. We further set a more stringent

threshold for significance using Bonferroni correction for 50
tests (a¼ 0.05/50¼ 0.001), on the rationale that the locus
with the most coded alleles (HLA-B, 25 alleles) involved 50
statistical tests (i.e. one maternal and one fetal effect for each
coded allele). Three of the alleles exhibited significant evi-
dence for maternal effects, with P-values less than 0.001
(A*03:01, B*35:01, B*39:06, labelled in Figure 4), and the
HLA- B*39:06 allele exhibited a significant fetal effect at
P<0.001 (labelled in Figure 4). The allele that exhibited the
most significant P-value, A*03:01, showed evidence for oppo-
site maternal and fetal effects [i.e. maternal effect¼�0.042
(�0.057, �0.026), Pm¼9.21� 10�8; fetal effect¼ 0.020
(0.006, 0.035), Pf¼ 6.92� 10�3]. The allele with the largest
estimated maternal and fetal effects was B*39:06, which had
a relatively low allele frequency of 0.69% and consequently
wide confidence intervals for the effect sizes [maternal
effect¼�0.111 (�0.151, �0.029), Pm¼ 7.10� 10�4; fetal
effect¼ 0.090 (0.029, 0.151), Pf¼ 3.84� 10�3]. We identified
two nominally significant associations in the HLA-C gene,
which has previously been reported to be associated with BW,
including HLA-C*03:03 [maternal effect¼ 0.035 (0.012,
0.058), Pm¼ 2.62� 10�3] and HLA-C*04:01 [maternal
effect¼�0.028 (�0.048, �0.008), Pm¼ 5.64� 10�3]. The
most significant Class II allele was DRB1*11:04, which in-
volved only a fetal effect [fetal effect¼� 0.071 (� 0.114,
�0.028), Pf¼ 1.34� 10�3]. Supplementary Table S8

Figure 3. Asymptotic power of the structural equation model. Power of the structural equation model to detect (i.e. a two degree of freedom test where

both maternal and fetal components are set to zero) and partition the effects (one degree of freedom tests) of different combinations of underlying

maternal and fetal effects (a¼ 0.05). The styles of the lines represent tests for fetal (dotted line), maternal (dot-dashed line) or both (solid line)

components. Bm, maternal effect; bf, fetal effect. The horizontal dashed line shows the level for 80% power. The three plots on the upper row show

power calculations for 80 000 samples with both own and offspring birthweight (BW). The three plots on the lower row show power calculations for

80 000 samples with both own and offspring BW, 100 000 samples with their own BW only and 80 000 samples with offspring BW only
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(available as Supplementary data at IJE online) presents the
results for all alleles, and Supplementary Figure S5 (available
as Supplementary data at IJE online) presents the results from
the SEM of the BW-associated HLA alleles at each locus.

Discussion

In the current study, we formulated an SEM for estimating
the maternal and fetal effects of classical HLA alleles on peri-
natal phenotypes. Our SEM is appropriate for analysing data
structures where (unrelated) individuals with classical HLA
genotypes are measured on their own phenotype and their off-
spring. Our simulations suggested that estimates of maternal
and fetal allelic effects produced by our SEM were asymptoti-
cally unbiased. This was in contrast to analyses using ordi-
nary least squares linear regression, which does not explicitly
partition allelic effects into maternal and fetal components.

Our SEM can also be used when a subset of the data has
either only the individual’s own phenotype and/or only the
phenotype of their offspring.

Asymptotic power calculations show that our SEM has ap-
preciable power to partition maternal and fetal effects of com-
mon HLA alleles in a sample of at least 80 000 individuals
(i.e. similar to the number of individuals in the UKB with BW
information on themselves and their offspring). These results
are similar to what we have observed previously in our analo-
gous SEM that analyses bi-allelic SNP genotypes.20,21

In empirical analyses in UKB, we identified BW associations
at multiple alleles at MHC class I and II loci, using data from
more than 270 000 independent European individuals. We
then used our SEM to partition the allelic associations into
maternal and/or fetal effects. A total of 19 HLA alleles were
shown to have maternal and/or fetal effects on BW (P<0.05).
Most classical HLA alleles which showed association with

Figure 4. Maternal and fetal effect estimates for classical human leukocyte antigen alleles and birthweight in the UK Biobank. Fetal and maternal effect

sizes estimated using the structural equation model. The shape of each dot represents whether maternal (square) and/or fetal associations (circle) passed

nominal significance (P< 0.05). Triangles indicate alleles where tests for both maternal and fetal effects reached the threshold; solid dots represent alleles

which did not (P< 0.05). Alleles with P< 0.001 are explicitly labelled. The observed negative correlation between maternal and fetal effect estimates is at

least partially a consequence of the negative correlation between these parameters in the structural equation model
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offspring BW, exhibited negative effects relative to the most
common allele at the respective locus. Previous GWAS have
shown that most genome-wide significant SNPs for BW in
non-MHC regions have effects that are mediated primarily
through the fetal genome (or at least the estimated fetal effect
is larger than the estimated maternal effect).8,21 However in
the HLA region, our results suggest that many alleles have
predominantly maternal effects. In addition, our results sug-
gest that the most common maternal alleles (i.e. which were
used as the baseline comparator genotype) are protective
against low BW and fetal growth restriction. It is interesting
to speculate whether this could be a consequence of natural
selection, since HLA alleles that cause low BW might lead to a
low survival rate and consequently decrease their frequencies
in the population.

The classical allele with the lowest P-value was HLA-
A*03:01, which exhibited a predominantly maternal effect
that decreased offspring BW relative to the most common
HLA-A*02:01 allele. The association was still significant
after conditioning on genome-wide associated SNPs in
the HLA region (P2df¼ 2.47� 10�7). HLA-A*03:01 has
never been directly associated with BW previously. However,
it is associated with double the risk of developing multiple
sclerosis.32 Studies have shown associations between multiple
sclerosis and both own and offspring BW.33,34 However, if
A*03:01 is truly associated with both phenotypes, then this
most likely reflects genetic pleiotropy rather than a causal ef-
fect mediated through multiple sclerosis.

In addition to the putative association with the BW, HLA-
A alleles are also in high linkage disequilibrium (LD) with
non-classical HLA-Ib alleles (HLA-E, -F and -G), especially
HLA-G.35 HLA-G genotypes, playing a key role in immune
tolerance throughout pregnancy (Kovats, 1990 #1006) have
been associated with BW, placental weight,36 recurrent mis-
carriage37 and pregnancy-induced hypertension.38 It has been
previously reported that the HLA-A*03 allele is in strong
linkage disequilibrium with HLA-F*01:03:01, the HLA-G
UTR-4 haplotype and the HLA-G*01:01 allele,39,40 which
might reduce the risk of allo-immunization during preg-
nancy.41 However, HLA-A*03:01 shows a negative maternal
effect on BW in our study, which is in contrast to the protec-
tive effect of the HLA-G and HLA-F haplotypes reported by
the previous authors. However, their study only had a small
sample size (N¼ 89) with genotyped maternal, but not fetal,
HLA alleles. Larger studies are required to elucidate the role
of non-classical HLA Ib alleles with fetal growth restriction
and allo-immunization during pregnancy.

The HLA-B*39:06 allele displayed the largest estimated
maternal and fetal effects among all associated alleles. A
previous study has shown that the HLA-B*39:06 allele is
associated higher risk of type 1 diabetes (T1D),42,43 especially
when two specific HLA-DR/DQ haplotypes are present
[DRB1*08:01-DQB1*04:02, odds ratio (OR) ¼ 25.4;
DRB1*01:01-DQB1*05:01, OR¼ 10.3].44 Intriguingly,
DRB1*08:01, DRB1*01:01 and DQB1*05:01 were also
nominally significantly associated with BW in our analysis
(P2df <0.05). High BW has been previously associated with
childhood-onset T1D45 and pregnancies in women with T1D
have also been associated with BW extremes and preterm de-
livery.46,47 These associations could be partly attributable to
HLA-B*39:06, as our results indicate a positive fetal and a
negative maternal effect of this allele on BW.

In the conditional analysis (Supplementary Note 7, avail-
able as Supplementary data at IJE online), all the top associ-
ated classical MHC alleles remained significant in the two
degrees of freedom test (P<0.001), indicating the primary
associations at the HLA alleles rather than the SNPs; and in-
dependent associations on other loci might be novel findings
of genetic contributions to fetal growth.

Fetal HLA-C epitopes have previously been associated with
BW in observational studies,17,18 and GWAS studies have
reported a BW-associated SNP rs9366778 in the HLA-C gene
which exhibits a putative fetal effect.8 We detected four HLA-
C alleles in the two degrees of freedom test which reached
nominal significance (HLA-C*03:03, C*04:01, C*05:01,
C*15:02, P<0.05). A previous study18 has suggested the exis-
tence of an interaction between paternally derived fetal HLA-
C2 epitope (HLA-C molecule has a lysine at position 80;
HLA-C*02/*04/*05/*06/*15),48 and maternal killer-cell im-
munoglobulin-like receptor (KIR) genotypes influences hu-
man BW. Future studies involving genotyped parent-offspring
trios and dyads are warranted.

Although our method introduces a negative correlation be-
tween estimates of maternal and fetal genetic effects
(r¼�0.73), it still produces unbiased estimates of both types
of parameters. Indeed, we observed a similar phenomenon in
our previous SEM involving SNPs,21 as have other authors
employing methodologies similar to ours.23 Such technical
correlations may obscure real maternal and fetal genetic
effects and make the results of partitioning difficult to inter-
pret when sample sizes are small. However, the correlation is
less of a concern when the sample size is large, and the study
is well powered.

There are several limitations to our study, in that our SEM
model does not consider scenarios with: (i) maternal and
fetal interactions or incompatibility17,18; (ii) individual low-
frequency alleles; (iii) non-classical HLA genes in MHC
region: (iv) linkage disequilibrium or potential interactions
between different HLA loci; (v) the possibility of dominance,
epistasis, gene-environment or gene-gene interactions; (vi)
potential non-transmitted paternal genetic effects on offspring
BW; (vii) direct causal path between own (maternal) BW and
offspring BW; and (viii) the influence of HLA-associated in-
fertility.49,50 Furthermore, UKB only has self-reported BW
and does not provide gestational age for adjustment. We
have discussed these limitations in Supplementary Note 12
(available as Supplementary data at IJE online) and further
investigated some important assumptions (Supplementary
Notes 3, 10 and 11; Supplementary Figures S7–8;
Supplementary Table S10, available as Supplementary data at
IJE online). Finally, our findings warrant independent
verification of the involvement of classical HLA alleles in BW
aetiology in the future.

Conclusion

In conclusion, we have developed an SEM that can be used to
partition the genetic association between classical HLA alleles
and perinatal traits into maternal and fetal genetic compo-
nents. Application of our model to individuals in the UKB
revealed interesting novel allelic associations between BW and
classical HLA alleles, which potentially provide insight into
the immunogenetics of intrauterine fetal growth.
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