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Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases.
A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range
of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein
O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies. However, the molecular and
cellular mechanisms underlying protein O-mannosylation functions and biosynthesis remain not well understood. This review outlines
recent studies on protein O-mannosylation while focusing on the functions in the nervous system, summarizes the current knowledge
about protein O-mannosylation biosynthesis, and discusses the pathologies associated with protein O-mannosylation defects. The
evolutionary perspective revealed by studies in the Drosophila model system are also highlighted. Finally, the review touches upon
important knowledge gaps in the field and discusses critical questions for future research on the molecular and cellular mechanisms
associated with protein O-mannosylation functions.
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Introduction

Protein O-mannosylation (POM) is an evolutionarily con-
served posttranslational modification present in a wide range
of organisms, from yeast to mammals (reviewed in (Neubert
and Strahl 2016; Sheikh et al. 2017; Endo 2019; Larsen et al.
2019)). Mammalian O-mannosyl glycans were first discov-
ered on glycoproteins in rat brain lysate about 40 years ago,
which suggested that POM may play an important role in the
nervous system (Finne et al. 1979). This hypothesis was later
confirmed by identifying genetic disorders associated with
defects in the POM pathway that cause pronounced neuro-
logical abnormalities in humans (Yoshida et al. 2001; Beltran-
Valero de Bernabe et al. 2002). One of the most common
types of these disorders is classified as congenital muscular
dystrophies (CMDs), a group of debilitating neuromuscular
abnormalities that are present at birth or in infancy and
rapidly progress with age. CMDs that involve POM defects
are commonly associated with more severe neurological phe-
notypes. The involvement of POM in the regulation of the
nervous system has been documented now by many studies.
New enzymes that mediate POM were recently discovered
and many proteins were found to be O-mannosylated (Vester-
Christensen et al. 2013; Larsen et al. 2017a; Larsen et al.
2023; Monagas-Valentin et al. 2023). However, the mecha-
nisms of POM functions are still not well understood and
significant knowledge gaps are associated with the paucity
of functionally characterized substrates and limited structure–
function information on different O-mannose linked glycans.
In this review, we will discuss the recent studies on POM
while focusing on the known and proposed roles of this
posttranslational modification in the nervous system. We will

summarize the current knowledge about the biosynthesis of
POM, review pathologies associated with POM abnormal-
ities, and emphasize the evolutionary perspectives revealed
by studies in the Drosophila model system. Our review will
also highlight the gaps in understanding POM biosynthesis
and posit important questions about molecular and cellular
mechanisms associated with POM functions.

Biosynthesis of O-mannosyl glycan
modifications of proteins

Enzymes initiating POM

Posttranslational modification of proteins with O-linked
mannose was first described in yeast and later found to
be widespread in other organisms, from fungi to mammals
(Falcone and Nickerson 1956; Sentandreu and Northcote
1968; Finne et al. 1979; Chiba et al. 1997). Three families of
glycosyltransferase enzymes that modify serine and threonine
residues of proteins with O-mannose have been found in
mammalian cells. They all localize to the ER and use dolichol-
phosphate-mannose (Dol-P-Man) as an activated sugar donor
to modify protein substrates, however their molecular targets
are different (see below) (Fig. 1). The initially discovered
family is comprised of two protein O-mannosyltransferases 1
and 2 (POMT1 and 2) that are highly conserved in metazoans
and their origin can be traced in evolution to yeast PMT4
and PMT2 O-mannosyltransferases, respectively (reviewed in
Nakamura et al. 2010a; Neubert and Strahl 2016). POMT1
and POMT2 work together as an obligatory enzymatic
complex (Manya et al. 2004), in a presumed heterodimer
configuration, analogous to the PMT1-PMT2 complex
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Fig. 1. Three families of enzymes mediating POM in animal cells. POMT1/2 O-mannosylate α-DG, RPTPs, KIAA1549, and some other proteins, whereas
TMTC1–4 specialize in attaching O-mannose to the EC domains of cadherins. TMEM260, a recently discovered O-mannosyltransferase, is responsible for
modifying the IPT domains of plexins and transmembrane receptor tyrosine kinases RON and MET. All these POM-mediating enzymes work in the ER and
use Dol-P-Man as a donor substrate. They have a similar molecular architecture of integral membrane proteins with multiple membrane-spanning helixes,
catalytically important aspartic acid residues in the first luminal loop (blue circles), and include different functional domains that are thought to be involved in
substrate interactions (such as MIR and TPR). The substrate recognition of the enzymes remains not well understood. Modified from Larsen et al. (2019).

mediating POM in yeast (Bai et al. 2019). Several studies
attempted to elucidate the substrate specificity of POMTs,
however, no local consensus sequence recognized by these
enzymes was determined as the substrate recognition appears
to rely on some distant structural elements that remain poorly
understood (as discussed elsewhere; Nakamura et al. 2010a;
Neubert and Strahl 2016; Larsen et al. 2019). The number
of known protein substrates of POMTs remain limited;
they include dystroglycan (DG), receptor protein tyrosine
phosphatases (RPTPs), KIAA1549, and some other proteins
(Manya et al. 2004; Larsen et al. 2017b; Monagas-Valentin
et al. 2023).

More recently, a second family of O-mannosyltransferases
was discovered in human cells. It is represented by four struc-
turally similar proteins originally known under the generic
name transmembrane and tetratricopeptide repeat (TPR)-
containing proteins 1–4 (TMTC1–4) (Larsen et al. 2017a).
Mass-spectrometry (MS)-based glycoproteomic analyses
combined with the SimpleCell technology (allowing efficient
analyses of glycans in genetically modified mammalian
cultured cells with simplified glycosylation) revealed that
these enzymes add O-mannose to the extracellular cadherin
(EC) domains of cadherins and related proteins (Fig. 1). Thus,
to reflect their substrate specificity, TMTCs were renamed as
transmembrane O-mannosyltransferases targeting cadherins.
Remarkably, individual TMTCs can target distinct strands of
the EC domains (Larsen et al. 2017a; Larsen et al. 2017b),
suggesting that these enzymes have the substrate specificities
finely tuned to recognize different structural features of the
same EC fold. TMTCs are thought to interact with their
protein substrates via TPR motifs located at TMTCs’ C-
termini, in a way analogous to the substrate recognition
mediated by the TPR motifs of the O-GlcNAc transferase that

carries out nucleocytoplasmic O-GlcNAcylation (Zachara
et al. 2022).

A third type of O-mannosylating enzymes was predicted
to exist because O-mannose was also identified on the IPT
(Ig-like, plexin, and transcription factor) domains of pro-
teins, including plexins and receptor tyrosine kinases MET
(mesenchymal-epithelial transition factor) and RON (receptor
originated from Nantes), however, POMTs and TMTCs could
not modify IPT domains (Larsen et al. 2017a). Combin-
ing bioinformatics, MS-based glycoproteomics, and CRISPR/-
Cas9 genetic engineering of cultured cells, an elegant study by
Halim, Joshi and collaborators recently identified TMEM260
as the gene responsible for IPT O-mannosylation (Larsen et al.
2023) (Fig. 1). Known targets of TMEM260 (transmembrane
protein 260) include multiple plexins and plexin-related pro-
teins, such as two homologous receptor tyrosine kinases,
hepatocyte growth factor receptor MET (also known as c-
MET) and RON (also known as macrophage stimulating one
receptor (Larsen et al. 2023)).

The three families of animal protein O-mannosyltransferases
are evolutionarily related and share the characteristic features
of the GT-C superfamily of glycosyltransferases (Moremen
and Haltiwanger 2019), the integral membrane enzymes that
use isoprenoid-linked carbohydrate donor substrates. This
superfamily also includes tryptophan C-mannosyltransferase,
oligosaccharyltransferase, and ALG transferases working
in the N-glycosylation pathway, and glycosyltransferases
involved in the GPI (glycosylphosphatidylinositol) biosyn-
thesis (Albuquerque et al. 2019; Bloch et al. 2020; Bai and Li
2021; Bloch et al. 2023). Although these glycosyltransferases
do not show significant overall sequence homology, they have
similar molecular architecture, including a conserved GT-C
module with seven membrane-spanning helices and catalytic
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Fig. 2. Biosynthesis of POM. POM is initiated in the ER by three families of O-mannosyltransferases: POMT1/2, TMTC1–4 (transmembrane
O-mannosyltransferases targeting cadherins), and TMEM260. Depending on a protein substrate, the O-mannose attached to a protein can remain
non-elongated (M0 structure), or undergo further modification, such as elongation in the Golgi with β1,2-GlcNAc by POMGnT1 (protein O-mannose β1,
2-N-acetylglucosaminyltransferase 1), which creates core M1 structure, and additional modification with β1,6-GlcNAc by MGAT5B
(α1,6-Mannosylglycoprotein 6-β-N-Acetylglucosaminyltransferase B), which creates core M2. M1 and M2 are further modified by enzymes that are not
specific for POM, such as a galactosyltransferase, a sialyltransferase, etc., which results in structures with terminal sialic acid, HNK-1 (human natural
killer 1 carbohydrate HSO3-3GlcAβ1-3Galβ1-4GlcNAc-), or LewisX (Galβ1-4(Fucα1-3)GlcNAc-) epitopes. As an alternative to M1/M2 biosynthesis, the
O-mannose can be modified in the ER with β1,2-GlcNAc by POMGnT2 (protein O-mannose β1,4-N-acetylglucosaminyltransferase 2), which creates core
M3 and allows for further modification by the enzymes involved in the biosynthesis of matriglycan: B3GALNT2, POMK, FKTN (ribitol-5-phosphate
transferase), FKRP (ribitol-5-phosphate transferase), RXYLT1, B4GAT1 (β1,4-glucuronyltransferase 1), and LARGE (β1,3-glucuronyltransferase and
α1,3-xylosyltransferase, a bifunctional glycosyltransferase-polymerase that creates a long chain of -3GlcAβ1-3Xylα1- disaccharide repeats).

residues in its first luminal loop, as well as functional domains
interacting with different substrates and regulating enzyme
specificity and mechanism, such as MIR domains and TPR
motifs (Bloch et al. 2020; Chiapparino et al. 2020; Bai and Li
2021). In contrast to POMTs that target unstructured mucin-
like region of α-DG, TMTCs, and TMEM260 recognize
specific folded domains (Endo 2019; Larsen et al. 2019;
Larsen et al. 2023), suggesting distinct mechanisms of
substrate recognition. How these different enzymes recognize
and carry out O-mannosylation of their substrates remains an
important focus of future studies.

Structure of O-mannosyl glycans

Depending on the context of a protein substrate, O-
mannose can undergo further extension with additional sugar
residues, resulting in linear oligo mannose structures in yeast,
or more complex, heterogeneous structures in mammals
(Neubert and Strahl 2016; Sheikh et al. 2017). Extended
O-mannosyl glycans in mammalian cells can be built on
POMTs-modified glycoproteins, whereas, so far, there is

no evidence that O-mannose can be elongated on the EC
and the IPT domains modified by TMTCs and TMEM260,
respectively. The best-studied POMTs’ substrate is DG, a
highly glycosylated cell-surface glycoprotein modified with
complex O-mannose glycans that are crucial for interactions
with the extracellular matrix (ECM; Barresi and Campbell
2006). Extended O-mannose oligosaccharide structures
were originally discovered on the extracellular subunit of
DG (termed α-Dystroglycan) in bovine peripheral nerve, and
since then, a motley of extended O-mannose-linked glycans
have been found on α-DG and some other proteins, such as
RPTPζ /phosphacan (Chiba et al. 1997; Morise et al. 2013;
Dwyer et al. 2015), reviewed in Praissman and Wells (2014)
and Endo (2019), revealing a remarkable complexity of
possible elongation of O-mannose in mammalian cells (Fig. 2).
Core O-mannosyl glycan structures are classified depending
on their type of elongation as M0 (unextended O-mannose),
M1 (O-mannose modified with β1,2-GlcNAc, non-branched
structures), M2 (O-mannose modified with β1,2- and β1,6-
linked GlcNAc, branched structures), and M3 (initiated on O-
mannose by the addition of β1,4-GlcNAc). M1 is synthesized
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on O-mannose by POMGNT1 (protein O-mannose β1,2-N-
acetyl-glucosaminyltransferase 1) and can serve as a precursor
for M2 that is built by the addition of β1,6-GlcNAc by the
branching N-acetylglucosaminyltransferase MGAT5B (α1,6-
mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase
B, also known as GNT-VB or GNT-IX). M1–2 cores
are usually elongated with short sugar chains built by
enzymes that are not specific for O-mannosyl glycans, thus
creating terminal structures also present on other types of
carbohydrate chains. The termini of M1 and M2 can be
sialylated, carry LewisX, or modified with HNK-1 (Human
Natural Killer-1) carbohydrate epitopes (Fig. 2) (Chiba et al.
1997; Smalheiser et al. 1998; McDearmon et al. 2006).

Much attention has been drawn to a particularly unique and
functionally important structure called matriglycan, the phos-
phorylated M3 glycans carrying a long glycosaminoglycan-
like polysaccharide chain composed of (-3GlcAβ1-3Xylα1-)
disaccharide repeats (Inamori et al. 2012). Matriglycan is
one of the most complex, elaborately built glycan structures
found in mammalian cells. The enzymatic steps of its
biosynthesis were elucidated by a combination of advanced
MS, biochemical, and genetic approaches (Yoshida-Moriguchi
et al. 2010; Kanagawa et al. 2016; Praissman et al. 2016),
reviewed in (Yoshida-Moriguchi and Campbell 2015; Sheikh
et al. 2017; Endo 2019). Unlike M1 and M2 that are
synthesized on O-mannosylated glycoproteins after they
are transferred from the ER to the Golgi, the M3 core is
built in the ER by the addition of β1,4-linked GlcNAc
mediated by POMGNT2 (protein O-mannose β1,4-N-
acetylglucosaminyltransferase 2). This is the commitment step
in M3 biosynthesis, thus POMGNT2 serves as a gatekeeper
enzyme for building matriglycan (Yoshida-Moriguchi et al.
2013; Halmo et al. 2017). The β1,4GlcNAc of the M3
core is further elongated in the ER with β1,3-GalNAc
by B3GALNT2 (β1,3-N-acetylgalactosaminyltransferase
2), and then the glycan undergoes phosphorylation of
O-mannose at the C6 position, which is carried out by
POMK (protein-O-mannose kinase). The following steps of
matriglycan biosynthesis are mediated in the Golgi, first, by
the orchestrated work of another three glycosyltransferases,
Fukutin (FKTN), Fukutin-related protein (FKRP), and
RXYLT1 (ribitol-5-phosphate β1,4-xylosyltransferase 1,
also known as TMEM5). They build a substrate struc-
ture for LARGE (β1,3-glucuronyltransferase and α1,3-
xylosyltransferase-polymerase, also known as “like-acetyl-
glucosaminyltransferase”), a bifunctional glycosyltransferase-
polymerase that synthesizes a long chain of (-3GlcAβ1-
3Xylα1-) disaccharide repeats (Fig. 2). The mechanism of
chain length regulation is not fully understood; however,
recent studies suggested that several factors can play roles
in this process. They include the modulation of LARGE
activity by POMK-mediated phosphorylation of O-mannose,
the regulation involving the N-terminal domain of α-DG,
as well as the competition of LARGE for the GlcA termini
of matriglycan with HNK-1 sulfotransferase that is known
to target matriglycan termini in the nervous system (Sheikh
et al. 2020; Walimbe et al. 2020; Okuma et al. 2023).
An additional layer of regulation is possibly mediated by
factors that affect activities of the enzymes involved in
matriglycan biosynthesis, such as CDP-glycerol that inhibits
Fukutin and FKRP (Imae et al. 2018), however, so far
little is known about these mechanisms and how they can
operate in vivo.

Function of O-mannosyl glycans and disorders
associated with their defects

Matriglycan

So far, matriglycan has only been detected on α-DG,
and it remains the best functionally studied O-mannosyl
glycan. Defects in matriglycan biosynthesis are associated
with severe muscular dystrophies, collectively termed
dystroglycanopathies (Table 1), which emphasizes the impor-
tance of this carbohydrate structure for neuromuscular
development and homeostasis.

Matriglycan is essential for binding between α-DG
and LG (laminin-globular) domains of extracellular ligands
that are usually embedded in the ECM, such as laminin,
agrin, perlecan, neurexin, and pikachurin (Hohenester 2019).
DG (encoded by the Dag1 gene) is a central component
of the dystrophin-associated glycoprotein complex (DGC)
that provides an essential bridge between the ECM and
the cytoskeleton via interactions with dystrophin and other
DGC-associated proteins inside the cell (Fig. 3; Ibraghi-
mov-Beskrovnaya et al. 1992; Ervasti and Campbell 1993),
reviewed in Barresi and Campbell (2006). The size of LARGE-
synthesized matriglycan correlates with the ability of α-DG to
bind ECM ligands, which inversely correlates with the clinical
severity of associated dystroglycanopathies (Goddeeris et al.
2013; Walimbe et al. 2020; Okuma et al. 2023).

Animal models of dystroglycanopathies significantly
elucidated the relationship between pathomechanisms of
these disorders and defects in matriglycan biosynthesis
(Yoshida-Moriguchi and Campbell 2015; Nickolls and
Bonnemann 2018; Endo 2019; Kanagawa 2021). Functional
matriglycan structures can be detected on α-Dg using IIH6
antibody or ligand binding assays on western blots (e.g. a
Laminin overlay assay; Ervasti and Campbell 1993; Michele
et al. 2002). The size of a functional fully glycosylated α-
DG is cell-specific: α-DG form corresponding to an ∼ 150–
250 kDa band is present in skeletal muscles, a shorter
∼120 kDa form is more prevalent in the brain, whereas
an intermediate size form (∼180 kDa) is produced by some
neurons in the cerebellum (such as Purkinje cells; Smalheiser
and Schwartz 1987; McDearmon et al. 2006; Satz et al.
2010). These differences in the size probably reflect the
function of matriglycan in cell-specific fine tuning of cell
adhesion. Without proper interactions with N-terminal part
of α-DG, LARGE synthesizes a short form of matriglycan
(∼100–120 kDa) that can still bind laminin and maintain
the specific force of muscles; however, this causes a force
deficit induced by lengthening contractions, which is also
associated with dystrophic changes in muscles (Okuma
et al. 2023). The size of matriglycan is important for the
proper morphology of neuromuscular junctions (NMJ) and
normal distribution of AChRs (acetylcholine receptors) at
NMJ synapses, indicating that NMJ synaptic maturation
requires a fully extended matriglycan (Nishimune et al. 2008;
Okuma et al. 2023). Synaptic functions in the hippocampus
are also affected by LARGE deficiency, as it is evident
from reduced long-term potentiation of CA3-CA1 synapses
in LARGEmyd mutant mice with a spontaneous mutation
inactivating the gene (Lane et al. 1976; Satz et al. 2010). Severe
dystroglycanopathies, such as Walker-Warburg Syndrome and
Muscle-Eye-Brain (MEB) disease caused by defects in LARGE
and other enzymes required for matriglycan biosynthesis, are
usually associated with pronounced brain defects, including
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Fig. 3. Modification of α-DG with matriglycan is essential for interaction of the DGC complex with extracellular ligands. Left panel: α-DG ligands
imbedded in the ECM, such as Laminin, Agrin, etc., bind to matriglycan-modified O-mannosyl glycans. Inside the cell, DGC interacts with actin filaments
via dystrophin, which creates a DGC-mediated bridge between the basal lamina outside the cell and the cytoskeleton inside the cell. Note that
matriglycan is also specifically recognized by IIH6 IgM antibody in vitro and by some viruses (e.g. Lassa virus) that use binding to matriglycan as a
mechanism for cell infection. In POMT mutants (right panel), the O-mannosylation of α-DG is abolished, which disrupts α-DG interactions with the ECM
ligands, leading to muscular dystrophy phenotypes (dystroglycanopathy).

cobblestone lissencephaly, hydrocephalus, cortical and
cerebellar dysplasia, ocular defects, cognitive disability, and
other neurological abnormalities (Table 1; Godfrey et al.
2007; Clement et al. 2008; Devisme et al. 2012).

The function of DG is particularly important for the
integrity of the pial basement membrane, and O-mannosylation
required for DG-laminin binding plays a central role in
this process (Moore et al. 2002; Myshrall et al. 2012).
Ruptures in the pial basement membrane, mislocalization
of glial cells, and associated abnormal neuronal migration are
common phenotypes of dystroglycanopathies, and they are
recapitulated in mouse KO models with mutations in LARGE,
POMT1/2, POMGNT1, POMGNT2, and FKRP (Michele
et al. 2002; Hu et al. 2007; Li et al. 2008, 2011; Ackroyd
et al. 2009; Chan et al. 2010; Hu et al. 2011; Nakagawa et al.
2015). Axon guidance defects in longitudinal axonal tracts
in the hindbrain and the spinal cord are caused by mutations
in genes encoding CRPPA (CDP-L-ribitol pyrophosphorylase
A, also known as ISPD, an enzyme producing CDP-ribitol,
the sugar donor for FKTN and FKRP (Fig. 2)) and B4GAT1,
whereas CRPPA mutants also have disorganized optic chiasm
axons, which largely phenocopies axon defects in Dag1
conditional KO mutants (Wright et al. 2012; Clements and
Wright 2018).

Unexpectedly, mutations in POMGNT1 were also found
to be associated with MEB syndrome and a defect in
matriglycan, even though this gene encodes β-1,2-N-
acetylglucosaminyltransferase that works in the biosynthesis
of M1 structures and does not enzymatically participate
in making matriglycan (Fig. 2; Yoshida et al. 2001). This
paradox was explained by unveiling a non-enzymatic role of
POMGNT1 in the recruitment of Fukutin to non-extended
M3 structures via a direct protein complex formation and
protein-carbohydrate interactions with M1 structures nearby,
which potentiates further maturation of M3 (Kuwabara et al.
2016).

Taken together, these studies suggest that all known major
functions of DG require its proper O-mannosylation. This
notion was further supported by a recent elegant research that
used enzymatic glycoengineering to synthesize matriglycan on
an irrelevant carrier in the cells that lack DG, which restored
Laminin binding, induced the IIH6 reactivity, and was able to
support a Lassa-pseudovirus infection, (Sheikh et al. 2022),
the key molecular/cell properties that normally require a
functional DG (Fig. 3). This and other studies underscored
the importance of thorough understanding of the biosynthesis
and functions of O-mannosyl glycans for translational
research. Recent progress in this area stimulated studies on
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gene therapy and pharmacological approaches, which showed
promising results. Mouse models of dystroglycanopathies,
for example, demonstrated that even a partial restoration of
DG glycosylation during fetal development can significantly
ameliorate neurological phenotypes (Sudo et al. 2018), that
LARGE gene transfer in older LARGEmyd mutant mice
with severe muscular dystrophy restores skeletal muscle
function, normalizes systemic metabolism, and greatly
improves survival (Yonekawa et al. 2022), and that a CDP-
ribitol prodrug can be an effective treatment for conditions
with a defect in the biosynthesis of CDP-ribitol, the sugar
donor required for FKTN and FKRP (Tokuoka et al. 2022).
These proof-of-principle studies pave the way for future
development of therapies for dystroglycanopathies.

RPTPs and M1/M2 glycans

RPTPζ (also known as phosphacan) represents the first target
of POM discovered in metazoans (Krusius et al. 1986; Maurel
et al. 1994; Dwyer et al. 2012). This RPTP belongs to the
R5 subgroup of the big evolutionarily conserved family of
transmembrane receptor-type protein phosphatases involved
in the regulation of a wide spectrum of cell-adhesion and cell-
signaling interactions (reviewed in Tonks 2006; Xu and Fisher
2012). RPTPζ is highly expressed in the mammalian brain
and required for the development of perineuronal nets (Eill
et al. 2020), the prominent aggregated ECM structures that
surround the cell body and proximal neurites and are involved
in brain plasticity and memory modulation (Fawcett et al.
2022). Earlier studies indicated that RPTPζ is modified with
chondroitin sulfate chains and O-mannosyl glycans bearing
keratan-sulfate (Maurel et al. 1994); however, these glycans
were not well characterized and their detailed analysis awaits
modern glycoproteomics approaches. More recent MS-based
glycomics approaches revealed that RPTPζ is extensively
modified with O-mannosyl glycans in the developing brain
in a cell-specific manner. An array of different O-mannosyl
glycans, including M0, M1, and M2 structures, was identified
on RPTPζ (Pacharra et al. 2013; Trinidad et al. 2013; Dwyer
et al. 2015; Bartels et al. 2016). M1 and M2 glycans were
found with a variety of terminal modifications, including
sialylated termini, LewisX and HNK-1 epitopes, and sulfo-
LacNAc modifications; however, M3 structures were never
detected on this glycoprotein (Dwyer et al. 2015).

Remarkably, RPTPζ is the major carrier of LewisX and
HNK-1 epitopes in the developing brain (Stalnaker et al.
2011; Morise et al. 2014; Dwyer et al. 2015; Yaji et al.
2015). Considering that HNK-1 and LewisX structures are
important for memory and learning, synaptic plasticity and
brain development (Yamamoto et al. 2002; Yoshihara et al.
2009; Yaji et al. 2015), the modification of RPTPζ with O-
mannosyl glycans are thought to play prominent parts in
these processes; however, their underlying mechanisms remain
not well understood. RPTPζ is notably hypoglycosylated in
POMGNT1 mutants, indicating that it is modified with a
significant number of M1 and M2 O-mannosyl glycans that
require POMGNT1 for biosynthesis (Dwyer et al. 2012)
(Fig. 2). This result also suggested that the phenotypes caused
by defects in RPTPζ O-mannosylation (abnormal biosynthesis
of M0-M2 glycans) may contribute to the neurological phe-
notypes of dystroglycanopathies associated with POMT and
POMGNT1 mutations.

The function of M2 structures is particularly interesting
because they are thought to be strictly brain-specific as their

biosynthesis depends on MGAT5B that shows a brain-limited
expression (Inamori et al. 2003; Kaneko et al. 2003). Cell
culture assays demonstrated that MGAT5B-mediated branch-
ing of O-mannosyl glycans promoted RPTPζ interactions
with galectin-1 and the receptor dimerization, which inhib-
ited its phosphatase activity and enhanced phosphorylation
of β-catenin. These events are accompanied by decreased
cell adhesion and increased cell migration, together suggest-
ing a mechanism of O-mannosylation-mediated regulation
of RPTPζ signaling and its effect on cell–cell and cell–ECM
interactions (Abbott et al. 2008). However, MGAT5B knock-
out mice show no conspicuous neurological defects besides
impaired astrocyte activation and abnormal axon remyeli-
nation in an induced demyelinating model (Lee et al. 2012;
Kanekiyo et al. 2013), suggesting that M2 modifications func-
tion mainly in responses to neural insult and injury, whereas
the involvement M2 structures in general regulation of neural
cell adhesion is probably redundant in vivo.

RPTPζ remains an orphan substrate of O-mannosylation
as so far there is no direct experimental evidence indicating
what enzyme(s) is(are) responsible for its O-mannosylation.
However, the presence of M1 and M2 structures suggests that
RPTPζ is probably O-mannosylated by POMTs. This notion
was recently reinforced by experiments using the Drosophila
model that revealed that Drosophila RPTP 69D (PTP69D), a
homolog of mammalian RPTPζ , is a substrate of POMT1–2
(Monagas-Valentin et al. 2023). Interestingly, the molecular
architecture of PTP69D, including several Immunoglobulin-
like (Ig) and Fibronectin type 3 (FN3) domains in its extra-
cellular part, closely resembles that of LAR and other R2A-
type RPTPs, such as PTPσ and PTPδ (Johnson and Van Vactor
2003; Coles et al. 2015), suggesting that these mammalian
counterparts might also be substrates of POMTs. R2A-type
RPTPs are involved in synaptogenesis, axon guidance and
nerve regeneration, which indicates an intriguing possibility
that these functions may be regulated by POMT-mediated O-
mannosylation of the R2A receptors. Further biochemical and
in vivo studies are required to understand the function of O-
mannosyl glycan modification of RPTPs in greater detail.

Cadherins and TMTCs

The cadherin superfamily in mammals encompasses more
than 100 cell surface receptor-type molecules that mediate
cell adhesion and signaling and regulate a wide spectrum of
processes, from separation of embryonic cell layers to synapse
formation in the nervous system and to tissue homeostasis
at the adult stage (Halbleib and Nelson 2006). Extracellular
parts of cadherins include EC domains with a characteristic
structure of a β-sandwich fold including ∼110 amino acids,
the functional units that mediate homophilic interactions
and clustering of cadherins extending from apposed cells
(Brasch et al. 2012; Troyanovsky 2023). Cadherins represent
the largest group of known substrates of O-mannosylation
in animals, with TMTCs being the enzymes that are dedi-
cated to attaching O-mannose to their EC domains (Vester-
Christensen et al. 2013; Larsen et al. 2017a; Larsen et al.
2017b). O-mannose on cadherins is not elongated (Lommel
et al. 2013; Winterhalter et al. 2013; Larsen et al. 2017b),
and different TMTCs are responsible for O-mannosylation
of B- and G-strands located on opposite sides of the β-fold
structure, suggesting that O-mannosylation of cadherins is a
highly regulated process, and that O-mannose on distinct EC
strands may have different functions ((Larsen et al. 2017a,
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Larsen et al. 2017b), reviewed in Larsen et al. (2019). How-
ever, it remains unknown how O-mannose on cadherins can
affect molecular interactions.

Mutations in TMTC genes are associated with severe neu-
rological disorders, such as intellectual disability, epilepsy,
brain malformations due to defects in neuronal migration,
and microcephaly (TMTC3), sensorineural hearing loss and
auditory neuropathy (TMTC2), and schizophrenia (TMTC1;
Schizophrenia Working Group of the Psychiatric Genomics
Consortium 2014; Runge et al. 2016; Farhan et al. 2017;
Guillen-Ahlers et al. 2018; Hana et al. 2020) (Table 1). Knock-
out of TMTC4 in mice results in acquired hearing loss,
the condition analogous to noise-induced hearing loss in
humans (Li et al. 2018), which is consistent with proposed
involvement of TMTC defects in sensorineural hearing loss
disorders (Guillen-Ahlers et al. 2018). Interestingly, defects
in TMTC3 were found to be associated with cobblestone
lissencephaly and periventricular nodular heterotopia, the
conditions known to result from abnormal neuronal migra-
tion (Jerber et al. 2016; Farhan et al. 2017; Liu et al. 2020).
The defects in cell migration are consistent with the proposed
role of TMTCs in regulation of cadherins that function in cell
adhesion and migration, and these neurological phenotypes
are hypothesized to result from defects in cadherin functions
(Graham et al. 2020; Liu et al. 2020). Genetic manipulation
of TMTCs and E-cadherin in human cultured cells indicated
that TMTC3 can potentiate E-cadherin-mediated cell adhe-
sion, which further supported the hypothesis that TMTC3
is required for proper cadherin-mediated cell interactions
(Graham et al. 2020). However, the effect of TMTCs on
cadherin functions has not been analyzed in vivo and the
function of TMTC-mediated O-mannosylation remain not
well understood. Furthermore, the phenotypes not directly
linked to cadherins were also found to be associated with
abnormalities in TMTCs, such as activation of the unfolded
protein response in TMTC4 mutants, abnormal ER calcium
homeostasis associated with deregulation of TMTC1 and 2,
and the involvement of possible non-cadherin substrates of
TMTC1 in ovarian cancer malignancy (Sunryd et al. 2014;
Li et al. 2018; Yeh et al. 2023), which further complicates
the dissection of pathological mechanisms caused by defects
in TMTCs. Studies in model organisms and tissue culture
systems are expected to accelerate research in this area, shed-
ding more light on the mechanism of O-mannose-mediated
regulation of cadherin functions.

IPT-containing substrates

Mammalian plexins represent a family of nine cell surface
signaling molecules that serve as major receptors for
semaphorins and play essential roles in cell–cell interactions,
affecting a broad spectrum of processes, such as axon
guidance, neuronal migration, macrophage activation, the
development of cardiovascular system and bone morphogen-
esis (reviewed in (Worzfeld and Offermanns 2014)). Plexins
have been also implicated in different pathologies, including
cancer (Gurrapu and Tamagnone 2019). IPT domains play an
important part in plexin activation (Kong et al. 2016), suggest-
ing an intriguing possibility that O-mannose may affect this
process; however, the role of O-mannosylation in plexin regu-
lations remains unknown. Mutations in TMEM260, the gene
encoding the O-mannosyltransferase responsible for modifi-
cation of IPT domains, were recently found to be associated
with SHDRA (structural heart defects and renal anomalies)

syndrome, a genetic disorder characterized by developmental
heart defects, kidney abnormalities, neurological defects, and
perinatal death (Ta-Shma et al. 2017; Pagnamenta et al.
2022). A recent study analyzed the effect of O-mannosylation
on TMEM260 substrates in cultured cells, which revealed
that TMEM260 is required for proteolytic maturation
and ER exit of Plexin-B2 and RON (Larsen et al. 2023).
However, no effect on MET was detected in similar experi-
ments, suggesting that O-mannose may impact the function
of IPT-containing substrates by different mechanisms. It
is tempting to draw parallels between the promotion of
maturation of RON and Plexin-B2 by O-mannose and the
effect of O-fucose on the secretion of substrates with EGF
(epidermal growth factor) and TSR (thrombospondin type 1)
repeats, which is mediated via stabilization and acceleration
of the substrate folding (Holdener and Haltiwanger 2019).
However, whether the molecular mechanisms underlying
functions of these different types of O-glycosylation are
indeed similar remains to be elucidated.

Evolutionary perspective from the Drosophila
model

The functions of DG and POMTs are conserved in
Drosophila

Drosophila genome encodes all essential protein components
of the DGC complex, but they are represented by fewer
homologs and DGC is predicted to show reduced complexity
(Nakamura et al. 2010a). Unlike mammals that have a sole
DG, Drosophila produces three different DG isoforms that are
generated by the same Dg gene via alternative splicing (Deng
et al. 2003). One of these isoforms includes a mucin-like
region, the structural feature important for O-mannosylation
of the mammalian counterparts (Deng et al. 2003; Nakamura
et al. 2010b). Although POMT1 and POMT2 are conserved in
flies (see below), Drosophila does not have close homologs of
mammalian enzymes mediating the biosynthesis of extended
O-mannosyl glycans, which is consistent with the fact
that only non-elongated O-mannose has been identified in
Drosophila (Aoki et al. 2008; Nakamura et al. 2010b; Sheikh
et al. 2017; Monagas-Valentin et al. 2023). Dg was shown
to regulate several developmental processes in flies, such as
planar polarity of the basal actin stress fibers and oriented
basement membrane fibrils in the ovarian follicle, as well
as wing vein development (Deng et al. 2003; Christoforou
et al. 2008; Mirouse et al. 2009; Cerqueira et al. 2020).
Dg mutants have muscle defects during larval stages, and
decreased mobility and age-dependent muscle degeneration
as adult flies, thus showing the phenotypes reminiscent
of dystroglycanopathies, which highlights the evolutionary
conservation of DG function between Drosophila and
mammals (Haines et al. 2007; Shcherbata et al. 2007). In
the nervous system, Dg is required for photoreceptor axon
pathfinding and normal synaptic transmission at larval NMJs
where Dg affects glutamate receptor subunit composition
and is required to maintain the normal level of Laminin and
Dystrophin (Dys) (Shcherbata et al. 2007; Bogdanik et al.
2008; Wairkar et al. 2008). Dg and Dys show strong genetic
interactions, affect similar functions, and usually have similar
mutant phenotypes, further supporting the notion that the
DGC function is conserved in flies (Shcherbata et al. 2007;
van der Plas et al. 2007; Bogdanik et al. 2008; Christoforou
et al. 2008; Wairkar et al. 2008; Marrone et al. 2011).
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Drosophila orthologues of mammalian POMT1 and
POMT2 are encoded by the rotated abdomen (rt) and
twisted (tw) genes that were discovered due to the same
conspicuous mutant phenotype of misalignment of abdominal
segments (“abdomen rotation”) in adult flies (Bridges and
Morgan 1923; Martin-Blanco and Garcia-Bellido 1996;
Ichimiya et al. 2004; Lyalin et al. 2006). RT and TW
are structurally and functionally similar to mammalian
counterparts (Fig. 4A); they have non-redundant functions
and work together in the ER as an enzymatic heterocomplex
that modifies Drosophila DG with O-mannose (Ichimiya et al.
2004; Lyalin et al. 2006; Nakamura et al. 2010b). Drosophila
POMT mutants have abnormal synaptic transmission
at larval NMJs and defects of muscle morphology, the
phenotypes that they share with Dg mutants (Martin-Blanco
and Garcia-Bellido 1996; Haines et al. 2007; Wairkar et al.
2008). In vivo expression experiments unveiled several
interesting features of RT-TW activity: (i) they produce O-
mannose that is apparently not extended but nevertheless can
modulate DG function; (ii) they add numerous O-mannose
residues to the mucin-like domain of DG in a processive
manner; (iii) they generate O-mannose modifications that
can compete with O-GalNAc addition to the same serine
or threonine residues; and (iv) RT-TW complex can modify
sites outside of the unstructured mucin-like region, at the
locations with a defined predicted structure (Ichimiya et al.
2004; Nakamura et al. 2010a; Nakamura et al. 2010b).
These results have important implications for understanding
POMT1/2 function, suggesting, for example, that POMT
mutations may cause phenotypes due to abnormal modifi-
cation of O-mannosylation substrates with O-GalNAc (O-
mannose potentially competes with O-GalNAc addition to
serine/threonine residues), which may result in an aberrant
conformation and ectopic molecular interactions (Nakamura
et al. 2010a, 2010b; Tran et al. 2012; Borgert et al. 2021).
The processive activity of RT-TW toward DG is consistent
with structural studies of yeast homologs that proposed a
carbohydrate-binding role of MIR domains that may underlie
the processivity of the POMT1–2 complex (Chiapparino et al.
2020).

PTP69D as a new type of POMT1–2 substrates

Although Drosophila POMTs and Dg have several similar
mutant phenotypes, POMT mutants also show phenotypes
that cannot be explained by abnormalities in Dg function.
POMT mutants have prominent defects in sensory axon
wiring, the neurological phenotype leading to abnormal mus-
cle contractions and body torsion during embryonic and larval
stages (Baker et al. 2018); however, these phenotypes are not
observed in Dg mutants. Furthermore, Dg is not epistatic to rt
and tw in producing the rotation phenotype, and Dg functions
at NMJs postsynaptically, whereas rt is required on both
sides of the synapses (Wairkar et al. 2008; Nakamura et al.
2010a; Baker et al. 2018). Taken together, these data indicate
that, besides DG, POMTs have other important targets in the
nervous system (Nakamura et al. 2010a). Indeed, we recently
found that PTP69D, one of Drosophila receptor-type protein
phosphatases, is a functional substrate of POMTs (Monagas–
Valentin et al. 2023). POMT1/2 and Ptp69D mutants have
similar wiring defects of sensory axons in the larval ventral
ganglion, whereas mutant alleles of POMTs and Ptp69D
show prominent genetic interactions in producing the wiring

phenotype, as well as abdomen rotation (Monagas-Valentin
et al. 2023). Ptp69D is known to regulate axon guidance and
connectivity of different types of neurons, including motoneu-
rons, photoreceptors, and neurons of the giant fiber (Desai
et al. 1996; Garrity et al. 1999; Lee and Godenschwege 2015),
suggesting that O-mannosylation may also affect PTP69D
function in these contexts; however, the role of POMTs in
these processes has not been analyzed. Ptp69D is structurally
and functionally related to the R2A subfamily of mammalian
RPTPs (Tonks 2006; Hatzihristidis et al. 2015; Fukai and
Yoshida 2021). Structural and functional similarities between
PTP69D and R2A-type RPTPs (characterized by a large extra-
cellular part including N-terminal Ig domains followed by
FN3 domains) suggest an intriguing possibility that other
members of this subfamily may be modified and regulated by
O-mannosylation. Numerous different O-mannosyl glycans
were found on RPTPζ , a more distant mammalian homolog
of PTP69D, however, their attachment sites were not well
characterized and their in vivo function remain to be elu-
cidated (Dwyer et al. 2015). Drosophila experiments rein-
forced the hypothesis that these glycans play important role in
RPTPζ regulation. Remarkably, O-mannose was found in the
membrane-proximal region (MPR), as well as on Ig and FN3
domains of PTP69D, the structural folds that are very different
from the mucin-like region modified in DG, which highlights
that POMTs have a complex, not well-understood mech-
anism of protein substrate recognition (Monagas-Valentin
et al. 2023). Thus, the Drosophila studies shed new light on
POMTs’ functions and raised a number of important research
questions, which warrants further investigation in flies and
mammals and is expected to unveil novel conserved functions
of POM in the nervous system.

POMT1/2 - independent O-mannosylation

TMTCs and their cadherin substrates are well-conserved in
Drosophila. Functional and bioinformatic analyses identified
17 cadherin genes in Drosophila ((Hynes and Zhao 2000;
Hill et al. 2001; Li et al. 2022), and FlyBase information
(Gramates et al. 2022)). A number of them are known to
play essential conserved roles in cell interactions, including
important functions in the nervous system, such as control
of targeting choices of photoreceptor axon (N-cadherin and
atypical cadherin Flamingo; Schwabe et al. 2013), protec-
tion of photoreceptors from neurodegeneration (atypical
cadherin Fat; Napoletano et al. 2011), neuroblast niche
positioning (DE-cadherin; Doyle et al. 2017). So far, however,
O-mannosylation of cadherins has not been analyzed
in Drosophila.

Like mammals, flies have four TMTC genes, TMTC1–4.
Interestingly, Drosophila apparently does not have a true
orthologue of mammalian TMTC1 that was probably lost in
evolution. Drosophila TMTC1 and TMTC2 appear to be par-
alogues that arose from a gene duplication of an ancestral gene
related to mammalian TMTC2 (Fig. 4B). It will be important
to elucidate the functional relationship between Drosophila
and mammalian TMTCs, which will shed light on the evolu-
tion of the TMTC family of transferases in animals. So far,
only TMTC3 has been studied in flies, which indicated that
its function is conserved in Drosophila (Farhan et al. 2017).
The neuronal knockdown of Drosophila TMTC3 resulted in
susceptibility to induced seizures, the phenotype analogous to
epilepsy caused by TMTC3 mutations in humans, whereas
the transgenic expression of the human counterpart in flies
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Fig. 4. Phylogenetic trees of animal POMT1–2 and TMTC1–4 enzymes. A, Phylogenetic tree of Drosophila, mouse, and human POMTs. RT (Rotated
Abdomen), Drosophila POMT1; TW (Twisted), Drosophila POMT2 (modified from Nakamura et al. 2010a). (B) Phylogenetic tree of Drosophila, mouse,
and human TMTCs. The trees were built based on multiple sequence alignments performed using the EMBL-EBI Clustal Omega server, followed by
distance-based construction of phylogenic trees using a neighbor joining algorithm ((https://www.ebi.ac.uk/Tools/msa/clustalo/). The trees were
visualized using the FigTree software (http://tree.bio.ed.ac.uk/software/figtree/). Scale bars, phylogenetic distance expressed as substitutions per site.

could rescue the seizure phenotype (Farhan et al. 2017).
Considering these intriguing results, Drosophila is expected
to be a useful model system to unveil the function and mecha-
nisms of TMTC-mediated O-mannosylation and shed light on
analogous mechanisms in mammals. However, how cadherin
functions are affected by TMTCs in Drosophila remains an
important open question.

Drosophila possesses two homologs of mammalian
plexins, Plexin A and B, which play conserved roles in
axon guidance as receptors for semaphorins (Zlatic et al.
2009). They participate in creating positional cues for
axons in the developing ventral nerve cord along the dorso-
ventral axis and mediate trans-synaptic signaling to control
presynaptic homeostatic plasticity (Zlatic et al. 2009; Orr
et al. 2022). However, whether fly plexins are substrates for
O-mannosylation is not known, and functional homologs of
TMEM260 have not been identified in protostomes, including
Drosophila.

Concluding remarks

Recent research highlighted the importance of POM for
crucial biological functions and elucidated several key steps
in the biosynthesis of O-mannosyl glycans in animals. The
studies revealed numerous new substrates and discovered
novel enzymes involved in the pathway. This progress
has been driven in no small part by advances in MS-
based glycomics and glycoproteomics, as well as genetic
engineering approaches using cultured cells, such as the
SimpleCell technology. However, the mechanisms of substrate
recognition of different POM enzymes are not well under-
stood, whereas non-enzymatic functions of these proteins
were also suggested. Furthermore, the functions of different

O-mannosyl glycans besides matriglycan remain largely
unstudied, particularly in vivo. Various core M1 and M2
structures are present on α-DG, and they were also identified
on several other glycoproteins with important functions in the
nervous system, including CD24, neurofascin, and lecticans
(Bleckmann et al. 2009; Stalnaker et al. 2011; Pacharra
et al. 2012; Pacharra et al. 2013); however, the role of these
modifications remains to be investigated. Yet, other important
open questions are about the crosstalk between POM
and other glycosylation pathways, and the cooperation of
different enzymes involved in POM biosynthesis. Considering
significant advantages of model systems due to experimental
amenability, simplified glycosylation, and powerful genetic
approaches, studies in Drosophila and other models are
expected to help fill these knowledge gaps. The evolutionary
conservation of POM and its substrates suggests that O-
mannose modifications play similar roles in a wide range of
animal organisms, from Drosophila to humans. Remarkably,
all types of POM substrates are known to play prominent
roles in the nervous system, which is consistent with the
facts that O-mannosyl glycans are abundant in the brain,
and that defects in the POM pathway are associated with
severe neurological abnormalities. Thus, POM appears to
be especially important for the function of the nervous
system, and more neurological disorders associated with POM
defects are expected to be identified. Modeling these human
pathologies in simplified, genetically tractable systems, such
as Drosophila, can help overcome obstacles encountered by
research dealing with exceedingly complex nervous system
and intricate glycosylation pathways in mammalian organ-
isms. When applied together, different models can efficiently
unveil pathomechanisms, test therapeutic strategies, and
provide guidance for translational and clinical research in
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developing treatments for debilitating POM disorders that
currently have no available cure.
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