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Despite intensive studies for decades, the common mechanistic correlations among
the underlying pathology of diabetes mellitus (DM), its complications, and effective
clinical treatments remain poorly characterized. High-quality diets and nutrition
therapy have played an indispensable role in the management of DM. More impor-
tantly, tribbles homolog 3 (TRIB3), a nutrient-sensing and glucose-responsive regu-
lator, might be an important stress-regulatory switch, linking glucose homeostasis
and insulin resistance. Therefore, this review aimed to introduce the latest research
progress on the crosstalk between dietary nutrition intervention and TRIB3 in the
development and treatment of DM. This study also summarized the possible mech-
anisms involved in the signaling pathways of TRIB3 action in DM, in order to gain
an in-depth understanding of dietary nutrition intervention and TRIB3 in the patho-
genesis of DM at the organism level.
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INTRODUCTION

Diabetes mellitus (DM) is a progressive and chronic
metabolic disease, which is characterized by persistent

hyperglycemia and deficiencies in the production or
action of insulin. It is caused by numerous genetic and
environmental factors and various comorbidities,

including obesity, cardiovascular diseases, microangiop-
athy and renal failure, and has emerged as a major epi-

demic in this century.1–3 Insulin resistance (IR), a
major hallmark of type 2 DM (T2DM), poses a major

threat to human health.4 Although patients with type 1
DM (T1DM) and T2DM exhibit a genetic predisposi-

tion to promote disease onset, high-quality diets and
nutrition therapy can play a pivotal role in DM manage-

ment. Especially after initial clinical diagnosis, nutrition
therapy can be used to efficaciously reduce or delay

DM-associated complications. In this regard, natural

products from fruits and vegetables are gaining popu-
larity worldwide. Sharma et al5 demonstrated that

kaempferol, a fruit flavonol, could reduce oxidative
stress and levels of proinflammatory cytokines in rat

and human renal tubular epithelial cells, which cause
the inhibition of the hyperglycemia-induced activity of

RhoA kinase, thereby significantly improving diabetic
nephropathy (DN).

Moreover, the recent discovery of the integration
of dietary nutrition and gene action provides a unique

opportunity for the treatment of T1DM and T2DM.
Numerous lines of evidence suggested that nutrients

might target multiple genes, such as ovarian-tumor-
domain–containing deubiquitinases 3, AMP-activated
protein kinase (Ampk), vascular endothelial growth fac-

tor, and tribbles homolog 3 (Trib3).6–8 Noticeably,
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TRIB3, a nutrient-sensing and glucose-responsive regu-

lator, is widely expressed in insulin target tissues and

plays an integral role in regulating glucose homeostasis
and mediating IR in DM. A previous study showed

that, due to nutrient deficiencies, TRIB3 could inhibit

the induction of fibroblast growth factor 21 (FGF21)

in vivo and in vitro by inhibiting the CCAAT/enhancer
binding protein (C/EBP)–activating transcription factor

response elements in the promoter region of Fgf21.8

Antrodia cinnamomea, a rare mushroom, extract could

significantly inhibit HCT116 tumor growth in nude
mice through the C/EBP homologous protein (CHOP)/

TRIB3/protein kinase B (Akt)/mammalian target of

rapamycin (mTOR) pathway.9 Therefore, for DM treat-

ment, targeting the role of TRIB3 in dietary nutrition
intervention might be a promising therapeutic strategy.

The current review attempted to summarize the latest

studies on dietary nutrition intervention and the role of

TRIB3 in the progression and treatment of DM as well
as the possible mechanisms and signaling pathways

involved in TRIB3 action, which might provide a basis

for follow-up research.

METHODS

Literature search strategy

The online literature search was conducted using the
PubMed, Google Scholar, and Web of Science data-

bases. The following keywords were used: “dietary

nutrition,” “diabetes mellitus,” “TRIB3,” “diabetic

complications,” “mechanisms,” “insulin resistance,”
“high-fat diet,” “diabetic cardiomyopathy,” “diabetic

nephropathy,” “diabetic retinopathy,” “apoptosis,”

“oxidative stress,” “inflammation,” “autophagy,”

“dietary fats,” “nutrient excess,” “overnutrition,”
“alcohol consumption,” “signaling pathways,” and

“natural products.” The selected literature was first eval-

uated by 4 investigators working independently. Any

differences were settled by consensus. Only articles pub-
lished in English were short-listed; all articles deemed

likely to meet the criteria were retrieved for full-text

review. In addition, the reference lists and citations of

the identified studies were examined to identify further
relevant research papers.

Role of TRIB3 in diabetes mellitus and its
complications

TRIB3, an intracellular pseudo-kinase, is a contributing
factor in glucose homeostasis and IR, and has been veri-

fied to act as a stress sensor in response to a diverse

range of stressors,10 including hypoxia,11 fasting,12 high

glucose (HG),13 and advanced glycation end-products

(AGEs).14 Numerous studies suggested that TRIB3

played a key role in a variety of organs, such as the
heart, kidney, liver, and skeletal muscle, in the complex

networks of glucose homeostasis; TRIB3 might trigger
IR and inhibit cell survival by promoting endoplasmic

reticulum (ER) stress, apoptosis, oxidative stress,
inflammatory response, and autophagy.15–19 More
importantly, as a nutrient sensor, TRIB3 exhibits a cru-

cial involvement in governing energy metabolism by
interacting with intracellular signals, such as TRIB3-Akt

signaling pathways, TRIB3–mitogen-activated protein
kinase (MAPK) signaling pathways, and b-cell apopto-

sis–related signaling pathways, which are involved in
mediating cell stress responses under conditions of

excessive nutrient intake, IR, and hyperglycemia.13,20–23

A previous study reported that TRIB3 might be closely

related to the modification of O-linked N-acetylglucos-
amine (O-GlcNAc), because proteins could enhance O-

GlcNAc modification under glucose deprivation and
HG conditions.24,25 A recent study found the involve-

ment of TRIB3 expression in a nutrient-sensing mecha-
nism, functioning both under the conditions of

hyperglycemia and glucose deprivation.25 More impor-
tantly, Sun et al26 used high-fat diet and low-dose strep-

tozotocin-induced T2DM rats models and observed
that the TRIB3-AMPK signaling pathway was associated

with IR in adipose tissues, and silencing the Trib3 gene
could effectively ameliorate glucose and lipid metabo-

lism and further mitigate IR.
It is worth noting that clinical data showed that 30–

40% of patients with T1DM and T2DM develop at least
1 complication after approximately 10 years of disease

onset,27 and TRIB3 is considered a potential target for
diabetic complications, such as DN, diabetic cardiomy-

opathy (DCM), diabetic retinopathy, and atherosclero-
sis. DN, a main complication of DM, is a chronic

progressive diabetic microangiopathy and is character-
ized by proteinuria, mesangial matrix overproduction,

renal hypertrophy, and fibrosis.28 Renal dysfunctions
and nephropathy are observed at a high rate in patients
with T2DM, accounting for approximately 30% of DM-

related deaths.29 A previous study showed that TRIB3
expression was enhanced through CHOP-mediated

transcriptional regulation in the kidneys and podocytes
of diabetic mice.16 Silencing the Trib3 gene could ameli-

orate DM-elicited accumulation of serum creatinine
and urinary albumin by activating the phosphorylation

of phosphatidylinositol 3-kinase (PI3K) and Akt in the
rat kidneys.1 Ample evidence has already elucidated

that interstitial fibrosis and glomerular sclerosis were
the main pathologic features in DN. TRIB3 might be

involved in DN-associated renal fibrosis by upregulat-
ing the expression levels of transforming growth factor

b1 (TGF-b1) and collagen type IV via extracellular
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signal-regulated kinase 1/2 (ERK1/2)–MAPK signal-

ing.17 Additionally, the overexpression of TRIB3 has
also been observed in proximal renal tubules of DM

rats, resulting in the accumulation of extracellular
matrix. Albumin accumulation could induce the over-

expression of TRIB3, the synthesis of collagen type I,
and fibronectin secretion, suggesting that TRIB3 is
involved in DN-associated fibrogenesis.18 As described

previously, TRIB3 might exhibit a threatening role in
the DN environment. However, a contradictory study

suggested that TRIB3 could reduce proteinuria and
expression levels of inflammatory genes in patients with

DN by inhibiting the mTOR complex 2 (mTORC2)/Akt
pathway.30 Therefore, due to these controversial results,

the exact regulatory mechanism of TRIB3 in DN
remains unclear and requires further exploration.

Moreover, DCM is one of the leading causes of
increased morbidity and mortality in patients with DM.

TRIB3 has been found to be involved in the AGE-
induced decrease in collagen type I and increase in col-

lagen type III in cardiac fibroblasts by activating the
ERK1/2 and p38-MAPK signaling pathways. Inhibiting

the expression of the Trib3 gene might be a therapeutic
approach for regulating collagen expression and

DCM.15 Ti et al31 suggested that silencing Trib3 could
improve cardiac function, myocardial remodeling, lipid

accumulation, and cardiac inflammation. Furthermore,
our and other previous studies have confirmed that

TRIB3 can promote Akt-inactivating glycogen synthase
kinase (GSK) 3b (GSK-3b), thereby modulating the

major molecular events under diabetic and IR condi-
tions, while the inhibition of the Trib3 gene could

attenuate IR, metabolic disorders, and
cardiomyopathy.32,33

Besides DCM, vascular complications are also the
main causes of morbidity, hospitalization, and death in

diabetic patients; in the past decades, patients with DM
have shown an increased risk of vascular complica-

tions.34 According to the World Health Organization,
diabetic retinopathy is on a priority list of eye diseases,
and one-third of people with DM have the disease.35

Pitale et al36 demonstrated that TRIB3 was a major reg-
ulatory factor of diabetic retinal pathophysiology, which

might accelerate the occurrence and progression of dia-
betic retinopathy in humans; the inhibition of Trib3

resulted in a significant increase in survival and func-
tional recovery of the retinal ganglion cells, along with a

significant reduction in pericyte loss and acellular capil-
lary formation.

Additionally, the clinical correlation between DM
and accelerated atherosclerosis has been increasingly

investigated. Atherosclerosis is another major complica-
tion of DM, and hyperglycemia and hyperlipidemia are

related factors in its accelerated development.37 The

formation of macrophage foam cells is the initial event,

leading to the formation of atherosclerotic lesions;
TRIB3 could accelerate the formation of foam cells and

the accumulation of cholesterol.38 Reportedly, Trib3-

silenced diabetic mice showed a significant increase in
atherosclerotic plaque stability and a reduction in athe-

rosclerotic lesion load.39 Although the effects of TRIB3

on DM and diabetic complications have been exten-
sively studied, the specific mechanisms and pathways

remain to be further explored.

Mechanisms of TRIB3 in diabetes mellitus and its
complications

TRIB3 is involved in the crosstalk of endoplasmic

reticulum stress and apoptosis. Endoplasmic reticulum is
widely present in eukaryotic cells and serves as a cell

sensor to monitor and maintain cellular homeostasis.40

Adverse environmental conditions can cause ER stress,
resulting in the accumulation of unfolded or misfolded

proteins.41,42 Increasing evidence suggested that ER

stress was an important mechanism of DM, and thus
contributes to its worsening.43,44 As an ER stress–asso-

ciated protein, TRIB3 might play a crucial regulatory

role in the pathological process of DM.30 A previous
study indicated that an increased level of TRIB3 in aged

rat liver was correlated with increased ER stress and

hepatic glucose production, suggesting that inhibiting
TRIB3 might be a key event in antagonizing ER stress

and glucose metabolism.45

Under physiological conditions, in response to the

occurrence of ER stress, the adaptive unfolded protein

response (UPR) is activated to maintain protein homeo-
stasis and promote cell survival. Importantly, if ER

stress is not reduced by activating the UPR pathway, it

might exceed the ER functional tolerance capacity,
thereby causing the imbalance of ER homeostasis and

eventually leading to cell apoptosis.40,42 In DM, ER

stress is stimulated by various factors, including hyper-
glycemia, palmitate, and proinflammatory cytokines,

which can worsen the sensitivity of pancreatic b cells,

thereby resulting in apoptosis and dysfunction and fur-
ther promoting the development of DM. A previous

study illustrated that palmitate and HG concentrations

could induce UPR-dependent apoptosis in pancreatic b
cells and concomitantly increase TRIB3 expression.46

Fang et al47 demonstrated that ER stress could induce

TRIB3 expression, which resulted in a proapoptotic
function in rat insulinoma (INS-1) b cells by activating

the nuclear factor-jB (NF-jB) signaling pathway. This

indicated that TRIB3 was essential for promoting the
ER stress–induced apoptosis of b cells. Moreover, a

study demonstrated that the HG treatment elicited ER

stress and further increased the expression levels of
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TRIB3 in rat INS-1 cells, and overexpression of Trib3

also synergistically enhanced the HG-induced apopto-
sis.48 However, in contrast to these studies, TRIB3 has

been reported to also have antiapoptotic effects.49–51

These discrepancies might be due to using specific spe-

cies, cell types, and different stressors; however, further
studies are needed to explore the reasons behind these

differences.
In addition, in many cases, TRIB3 is also directly

involved in promoting apoptosis independently of ER
stress. Humphrey et al,52 utilizing Trib3-deficient mice,

observed that the loss of Trib3 resulted in the basal acti-
vation of Akt and resistance to the cytokine-induced

apoptosis of b cells. Furthermore, TRIB3 was rapidly
upregulated in free fatty acid (FFA)–induced INS-1 b
cells, thereby promoting the apoptosis of INS-1 b cells
through the protein kinase C (PKC) d (PKCd) path-

way.53 Altogether, these studies demonstrated that
TRIB3, a pivotal regulator of cellular ER stress and

apoptosis, might play a mediating role in the occurrence
and development of T1DM and T2DM.

TRIB3 is involved in oxidative stress and inflammation.
Oxidative stress is a negative effect caused by uncon-

trolled free radicals, which results from an imbalance
between the production of free radicals and the effects of

reactive metabolites in the body.54,55 Increasing evidence
suggested that changes in the expression levels of TRIB3

were correlated with oxidative stress. A study by Morse
et al16 reported that the increase in the contents of reac-

tive oxygen species (ROS) and/or FFAs was associated
with an increase in the expression levels of CHOP and

TRIB3 in podocytes in DM, and TRIB3 could further
inhibit the expression of monocyte chemoattractant pro-

tein 1 (MCP-1). Moreover, TRIB3 might mediate the
AGE-induced oxidative damage in INS-1 cells and regu-

late nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase activity, resulting in the synthesis of

ROS. ROS could induce oxidative stress by activating the

PKCb2 pathway, thereby causing cell failure.14

Over the past 2 decades, numerous studies demon-

strated a close correlation between oxidative stress and
inflammation.56–58 Inflammation is a natural defense

mechanism against pathogens, which plays an integral
role in responding to changes in tissue integrity and

inducing various repair mechanisms to restore tissue
homeostasis.59,60 Oxidative stress plays a critical role in

the pathogenesis of inflammation and subsequently
mediates numerous chronic diseases, including obesity,

IR, DM, and cardiometabolic complications.61,62 ROS
has also been involved in causing chronic inflammation

by increasing the production of proinflammatory cyto-
kines through activation of the NF-jB signaling path-

way.63 An in vivo study of muscle-specific Trib3-

overexpressing mice showed that TRIB3 could enhance

inflammation by increasing the levels of proinflamma-
tory cytokines, including NF-jB, interleukin 6 (IL-6),

tumor necrosis factor a (TNF-a), and MCP-1. In addi-
tion, the muscle-specific overexpression of Trib3 could

also significantly increase the expression levels of the
ROS-producing gene NADPH oxidase-1 (NOX-1), and

impair antioxidation capacity, while significantly
decreasing the expression of catalase (CAT), superoxide

dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1),
and GPX4, suggesting that TRIB3-induced IR was

coupled with alterations in oxidative stress and inflam-
mation mechanistic pathways.64 Moreover, a study by

Zhang et al65 showed that Q84R missense polymor-
phism in the TRIB3 (arginine at position 84 replaced

glutamine) resulted in a gain of function variant, which
could attenuate the ability of TRIB3 to inhibit oxidative

stress–induced inflammation in DN. Based on the
above-mentioned findings, TRIB3 tightly participates in

oxidative stress and inflammation under diabetic condi-
tions; however, the specific correlation and underlying

mechanisms of TRIB3 with oxidative stress and inflam-
mation require further investigation.

Autophagy and proteasomal degradations mechanism of
TRIB3. Under normal circumstances, cells must con-

stantly remove defective proteins or damaged organelles
through a process called autophagy to maintain a

healthy and functional intracellular environment and
achieve cellular metabolism and the renewal of certain

organelles.60 Current studies on the mechanisms of
autophagy and proteasomal degradation of TRIB3 in

DM showed that TRIB3 was mainly associated with
cancers. Both DM and cancer are chronic diseases,

which seriously threaten human health, and metabolic
risk factors play a critical role in triggering various can-

cers. A recent study introduced that TRIB3 might bind
to an autophagic receptor p62, and inhibit autophagic/

proteasomal degradation, thereby enabling the accumu-
lation of multiple tumor factors in cells and ultimately

promoting tumor invasion and metastasis.66

Furthermore, a study on the role of metabolic risk fac-

tors in cancer showed that the Trib3 depletion could
induce the clearance of an autophagic receptor,

sequestosome-1 (SQSTM1), thereby activating an
autophagy-dependent degradation pathway; this sug-

gested that the stress protein TRIB3 could mediate the
progression and development of autophagy-related

metabolic risk factor–induced cancers in patients with

T2DM.67 According to previous studies, the dysfunc-
tion of vascular smooth muscle cells (VSMCs) might

play an important role in the vascular complications of
DM.68,69 Due to the critical role of TRIB3 in the induc-

tion and maintenance of the contractile phenotype of
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VSMCs, the vascular remodeling of VSMCs can be sup-

pressed by inhibiting Trib3 expression. A study on

VSMC dysfunction showed that, during HG condition

in VSMCs, the expression levels of

hsa_circRNA_0008028 and TRIB3 were significantly

elevated; mechanistically, hsa_circRNA_0008028 could

promote autophagy by regulating TRIB3 and act as a

sponge for miR-182-5p.70 Overall, these studies sug-

gested that there might be a balance between the levels

of TRIB3-related autophagy and proteasomal degrada-

tion in DM, which is yet to be investigated. The sche-

matic diagram of the mechanisms involved in TRIB3 in

DM and its complications is shown in Fig. 1.

Dietary nutritional disorder targets TRIB3 in diabetes
mellitus and its complications

Dietary fats. Insulin resistance, a key trigger for T2DM,

is an abnormality, which promotes the progression of

T2DM.71 Over recent years, dietary nutrition interven-

tions have been effectively used for the prevention or

treatment of IR and DM. In the past 2 decades, the

health effects of individual dietary fats have been inves-

tigated, and complex dietary fats are widely considered

a risk factor for DM. Epidemiological studies have

shown that dietary fat composition can affect the prog-

nosis of DM and IR.72,73 Chronic elevation in the con-

tents of fatty acids (FAs) is linked to increased IR and

inflammation. Saturated FAs can reduce insulin sensi-

tivity, while unsaturated FAs can prevent this from hap-

pening. Geng et al74 demonstrated that the dietary

alterations in the major saturated and unsaturated FAs

could differentially regulate ER stress, TRIB3 induction,

and IR; specifically, a diet with lower unsaturated fat

content could induce ER stress, TRIB3, and IR as com-

pared with the standard and widely used obesogenic

diets with higher unsaturated fat contents. This,

together with the findings that Trib3 is encoded by ER

stress–inducible gene,75 suggested that ER stress–medi-

ated induction of TRIB3 might link the dietary fat com-

position to IR. Therefore, dietary interventions that

contain more polyunsaturated fats and fewer saturated

fats might reduce circulating FAs, resulting in lower IR

and reduced risk of future DM.

Figure 1 The mechanisms of TRIB3 in DM and its complications. Abbreviations: Akt, protein kinase B; ATF4, transcription factors 4; BIP,
immunoglobulin heavy chain binding protein; CAT, catalase; CHOP, CCAAT/enhancer binding protein homologous protein; DM, diabetes mel-
litus; eIF2a, eukaryotic translation initiation factor 2; FoxO1, forkhead box O 1; GPX1, glutathione peroxidase 1; IL-6, interleukin 6; IRE1a, inosi-
tol-requiring enzyme 1; JNK, c-Jun N-terminal kinase; LC3, light chain 3; MCP-1, monocyte chemoattractant protein-1; MLK3, mixed lineage
kinase-3; NF-jB, nuclear factor-kappa B; NOX-1, NADPH oxidase-1; P, phosphorylation; PERK, protein kinase RNA-like endoplasmic reticulum
kinase; PKCb2, protein kinase C b2; PKCd, protein kinase C d; SOD1, superoxide dismutase 1; SQSTM1, sequestosome-1; TNF-a, tumor necrosis
factor-a; TRIB3, tribbles homolog 3.
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The liver is the primary organ responsible for the

endogenous production of glucose, which is tightly con-
trolled by multiple metabolic and nutritional factors.76

Defective insulin signaling in hepatocytes is a major
cause of DM. Dietary fat composition might mediate

obesity-related liver pathology, and IR due to TRIB3 is
closely related to dietary exposure factors in liver IR.74

Dietary fats have acute and persistent effects on the
uptake and metabolism of glucose, which have impor-

tant implications in chronic metabolic control and the
acute regulation of glucose homeostasis in diabetic

patients.77,78 Moreover, FA-induced lipotoxicity plays
an essential role in the pathogenesis of DM.

Lipotoxicity leads to the development and progression
of DM via IR and/or impaired function of pancreatic b
cells.79 Under lipotoxic conditions, TRIB3 could recruit
constitutive photomorphogenic 1 (COP1) to Sirtuin 1

(SIRT1) to promote its proteasomal degradation, result-
ing in IR in hepatocytes.79

Nutrient excess. Excess feeding (overnutrition) is associ-
ated with systemic and tissue-related IR and has

become an epidemic problem as an underlying cause of
metabolic disorders, including DM.80,81 TRIB3 expres-

sion is induced in the liver under fasting conditions and
interferes with insulin signaling by directly binding to

Akt and blocking the activation of the kinase; this sug-
gested that TRIB3 might contribute to IR in T2DM-

susceptible individuals.19 However, in the presence of
overnutrition, TRIB3-induced IR is coupled with

changes in various metabolic pathways, such as oxida-
tive stress, inflammation, adiponectin action, ER stress,

and insulin signaling, thereby promoting the develop-
ment of DM.64 Furthermore, accumulating evidence

suggested that TRIB3 expression in skeletal muscle and
liver tissues was associated with overnutrition and

hyperglycemia.25,82,83 Moreover, under the conditions

of nutrient excess, Zhang et al64 examined the effects of
Trib3 overexpression on metabolism; both the glucose-

induced IR and IR due to diet-induced obesity were
dependent on muscle TRIB3 levels. Under physiological

conditions, muscle TRIB3 could affect energy consump-
tion and substrate metabolism. However, under the

condition of long-term nutrient excess, the expression
of TRIB3 in muscle is increased, and the muscle-

specific inhibition of Trib3 showed a preventive effect
on IR and improved insulin signal transduction in

muscles.
More importantly, Matsushima et al84 demon-

strated that, compared with C57BL/6 mice, in hyperin-
sulinemic, hyperphagocytic db/db mice, overnutrition

could induce the hepatocytes to respond to the
nutrients, increasing the activity of S6 kinase 1 (S6K1).

An increase in the binding of TRIB3 to constitutive

S6K1 activity resulted in diminished insulin signaling in

the insulin receptor substrate 1 (IRS-1)/PI3K/Akt path-

way. Furthermore, studies have shown that the

increased levels of TRIB3 in the adipose tissue of

fructose-fed rats could directly interact with Akt and

block its activation.85 In case of overnutrition, the

increased TRIB3 levels in cells might limit the excessive

glucose uptake to muscle, while the decreased TRIB3

levels in adipose tissue might lead to an increase in glu-

cose uptake required for glycerol/triglyceride synthesis.

Thus, TRIB3 can inversely affect tissue glucose uptake

in muscle and fat and redirect the fuel from muscle to

adipose tissue for storage under overnutrition condi-

tions.13 As previously mentioned, TRIB3 is considered

to be a critical regulator of energy metabolism in vivo

and a necessary factor for the induction of IR by

nutrient excess; however, the specific correlation and

underlying mechanisms require further investigation.

Alcohol consumption. Modern epidemiological studies

have shown that chronic and excessive alcohol con-

sumption could reduce glucose absorption and utiliza-

tion and increase IR, thereby positively correlating with

the development of T2DM.86–89 A study conducted on

female adult rats, which were prenatally exposed to

alcohol, revealed an increased expression of phospha-

tase and tensin homolog (PTEN) and TRIB3 in the

liver, concomitant with an increase in gluconeogenesis

and diminished insulin signaling.90 In addition, feeding

rats an ethanol-containing diet could significantly

enhance the expression level of TRIB3 and inhibition of

Akt activation and phosphorylation in their hepatic tis-

sues, thereby resulting in the inhibition of insulin sig-

naling.91 In summary, chronic and excessive alcohol

consumption can target TRIB3 and is an important and

modifiable risk factor for DM. The schematic diagram

in Fig. 2 summarizes the dietary nutritional disorders

that target TRIB3 in DM and its complications.

Possible pathways of TRIB3 in the development of
diabetes mellitus and its complications

TRIB3-Akt signaling pathways. Serine (Ser)-threonine

(Thr) kinase Akt is a major target of the insulin path-

way. Under physiological conditions, the binding of

insulin to its receptor can trigger the activation of a

phospholipid-dependent kinase cascade that culminates

in the phosphorylation of Akt.92 TRIB3 acts as an

endogenous negative regulator of Akt and binds to both

nonactivated and nonphosphorylated Akt, inhibiting

the phosphorylation and activation of Thr308 and

Ser473, thereby negatively regulating the insulin signal-

ing pathway.19,93
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GSK-3b, a downstream target of Akt, is involved in

insulin-regulated glycogen synthesis, and its phosphory-

lation requires the activation of Akt.94,95 During DCM,

upregulated TRIB3 leads to the inhibition of Akt2 func-

tion and GSK-3b activation, which ultimately causes

abnormalities in the cardiac insulin signal delivery.32

Akt is a key enzyme for the regulation of apoptosis,96

and the activated Akt can promote cell survival in mul-

tiple cell types and prevent apoptosis by protecting the

cells from a variety of apoptotic stimuli.97,98 The

insulin-mediated PI3K/Akt signaling pathway primarily

regulates the synthesis and storage of proteins, carbohy-

drates, and lipids. As IR is an early feature of T2DM,

the identification and inhibition of negative regulators

of this pathway might be of great therapeutic interest.99

Ma et al1 observed that, during the development of DN

lesions, the Trib3 gene could suppress the phosphoryla-

tion of PI3K and Akt, thereby promoting cellular

inflammation and extracellular matrix protein accumu-

lation. Furthermore, absence of Trib3 was associated

with the enhanced phosphorylation of Akt residue

Ser473; TRIB3 could reduce the gene expression levels

of albuminuria and inflammation in DN through a

mechanism involving inhibition of the mTORC2/Akt

pathway.30 Meanwhile, TRIB3 could also reduce glucose

tolerance, decrease insulin sensitivity, increase IR, and

inhibit Akt activation, thereby aggravating DCM and

T2DM.19,98 Additionally, chronic ethanol intake can

also increase the expression of TRIB3, which, by bind-

ing to Akt, can prevent its plasma membrane associa-

tion, Akt-Thr308 phosphorylation, and subsequent

Akt-mediated signaling. This resulted in maintaining

GSK-3 activation, GSK-3-induced phosphorylation of

sterol-regulatory element-binding protein 1 (SREBP-

1c), decreasing the abundance of nuclear SREBP-1c,

thereby disinhibiting alcohol dehydrogenase gene tran-

scription.91 In summary, because of the decisive role it

plays in the Akt pathway, TRIB3 might be an important

target for DM and IR.

TRIB3-MAPK signaling pathways. Mounting evidence

indicates that IR is associated with the development of

both T1DM and T2DM.100 Besides Akt, MAPK is also

an important pathway involved in IR.101 Under normal

conditions, TRIB3 acts as a scaffold protein and regu-

lates the activation of MAPK.102 However, ERK1/2, a

member of the MAPK family, can be activated in the

presence of HG.103 Ti et al31 illustrated that the mRNA

and protein expression levels of cardiac TRIB3 were

upregulated in diabetic rats, and the phosphorylation

levels of ERK1/2 and c-Jun N-terminal kinase (JNK)

were significantly increased, while the level of p38

MAPK was significantly decreased. Therefore, it was

speculated that TRIB3 activation might be involved in

the development and progression of DCM through the

MAPK pathway. MAPK also plays a crucial role in col-

lagen synthesis and cardiac fibrosis, and is known as an

important mediator of fibrosis.104–108 A previous study

showed that ERK activity might enhance TGF-b1–

dependent responses, and TRIB3 might upregulate the

expression levels of fibrosis cytokine TGF-b1 and colla-

gen type IV via the ERK1/2-MAPK signaling pathway,

Figure 2 Dietary nutritional disorders that target TRIB3 in DM and its complications. Abbreviations: Akt, protein kinase B; COP1, constitu-
tive photomorphogenic 1; DM, diabetes mellitus; ER, endoplasmic reticulum; GSK-3b, glycogen synthase kinase-3b; IR, insulin resistance; IRS-
1, insulin receptor substrate 1; P, phosphorylation; PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin homolog; SIRT1, sirtuin
1; SREBP-1c, sterol-regulatory element-binding protein-1; S6K1, S6 kinase 1; TRIB3, tribbles homolog 3; Ub, ubiquitination.
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thereby participating in the renal fibrosis of DN.17

However, inhibiting TRIB3 could partially reverse the
MAPK-regulated expression levels of collagen types I

and III, suggesting that the TRIB3/MAPK signaling
pathway might be involved in regulating collagen types

I and III via AGEs. This might provide new strategies
for the treatment of DCM.15

b-Cell apoptosis–related signaling pathways. The

American Diabetes Association defines T1DM as auto-
immune b-cell destruction, usually leading to absolute

insulin deficiency, and T2DM as progressive loss of b-

cell insulin secretion, frequently occurring in the con-
text of IR.109 Therefore, elucidating the underlying

molecular mechanism of b-cell apoptosis might help in
understanding the etiology of DM. Numerous recent

studies have described that the complex signaling regu-
latory network of ER stress, cytokines, and chronic

exposure to FFAs might induce b-cell apoptosis and are
involved in the progression of DM.110–112

Emerging evidence revealed that the prolonged ER
stress in b cells could increase their sensitivity to apop-

tosis and contribute to DM development.113–115 During
ER stress, the NF-jB pathway plays a vital role in the

apoptosis of b cells. A recent study indicated that the
overexpression of Trib3 in rat INS-1–derived cells could

increase the nuclear translocation of NF-jB, playing a
proapoptotic role, which was even more prominent

under ER stress conditions. This suggested that TRIB3-
mediated ER stress could induce b-cell apoptosis

through the NF-jB pathway.47 Accumulating evidence
suggests that the cytokine-induced mixed-lineage kinase

3 (MLK3)–JNK pathway could effectively reduce the
cellular defense and increase the potency of subsequent

inflammatory events, resulting in impaired glucose
homeostasis and reduced insulin sensitivity.116–119

Moreover, in the absence of Trib3, the increased activity
of Akt could rapidly induce MLK3 degradation,

decreasing the total amount of MLK3 available for JNK

activation. This suggested that TRIB3 was required for
the activation of MLK3-JNK for optimal kinetics to ena-

ble cell death.52 FFAs might induce the dysfunction and
apoptosis of b cells in T2DM. Saturated FFAs can upre-

gulate TRIB3 expression, which is also associated with
an increase in the apoptosis of b cells. The activation

and nuclear accumulation of PKCd could also be
enhanced by the upregulation of TRIB3. Inhibiting the

PKCd nuclear translocation and its selective antagonist
could significantly reduce the proapoptotic effects.53

Collectively, TRIB3-related signaling pathways, such as
NF-jB, JNK, and PKCd, might play a crucial role in the

apoptosis of b cells. The possible pathways of TRIB3
action in the development of DM and its complications

are shown in Fig. 3.

Antidiabetic effects of natural products targeting
TRIB3 function

Although various drugs have been used for the treat-

ment of T1DM and T2DM, novel antidiabetic drugs are

currently emerging. In particular, natural products,

such as fruits, vegetables, herbal medicines, and their

active ingredients, are widely accepted as adjuncts to

conventional treatments due to their antidiabetic prop-

erties with minimal toxicity and fewer adverse effects

and are used worldwide.120–122 Winiarska-Mieczan

et al123 demonstrated that the regular consumption of

tea or dietary supplements containing tea polyphenols

could combat oxidative stress and inflammation in the

body and had a positive effect on improving DM. These

compounds are widely found in vegetables, herbs, fruits,

and other plant-based foods and are increasingly being

applied for the treatment of DM. The underlying effects

of natural products as dietary supplements against DM

occur through various targets, among which TRIB3

might be an important player.

Yacon. Among the various natural products, yacon, a

perennial plant with a lower caloric value and a high

fiber content, has shown a wide range of therapeutic

effects against DM and DM-related complications in

animal studies.124–127 In a recent study, concentrated

yacon syrup, extracted and concentrated from the

yacon tubers, could improve IR and reduce body weight

in obese individuals.128 Researchers suggested that

yacon supplementation might effectively increase hep-

atic insulin sensitivity and reduce hepatic glucose pro-

duction. Mechanistically, in yacon-fed rats, the

phosphorylation of Akt increased uniformly, while the

expression levels of TRIB3 in the liver was decreased,

providing a physiological mechanism for the beneficial

effects of yacon dietary supplementation on T2DM in

humans.129

Resveratrol. Resveratrol is another naturally occurring

polyphenolic compound present in grape skins as well

as in various other plants and fruits, such as soybeans,

peanuts, pomegranates, and aster. The mechanisms of

resveratrol to regulate blood glucose levels and improve

insulin sensitivity have gained great attention of

researchers. Resveratrol could activate SIRT1 in vivo,

which acts downstream of energy deprivation and has

beneficial effects on glycemic control.130,131 In addition,

resveratrol could also stimulate glucose uptake by

increasing the expression levels of glucose transport-

ers,132 thereby activating the Akt and AMPK signaling

pathways to regulate energy expenditure.133 Moreover,

resveratrol-treated, high-fat-diet–fed mice showed

reduced levels of TRIB3 and ER stress in the liver,
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resulting in increased insulin sensitivity and glucose

levels.134

Shengmai san. Shengmai san consists of 3 traditional

Chinese herbs: Ginseng radix, Ophiopogon japonicus,

and Fructus schisandrae. A previous study demon-

strated that Shengmai san exhibited a variety of phar-

macological activities, such as antioxidant and anti-

inflammatory activities.135 It could also improve myo-

cardial fibrosis and ventricular remodeling in diabetic

mice.136 Recent studies showed that Shengmai san

could ameliorate lipid metabolism. In a high-fat-diet–

induced DCM rat model established by the intraperito-

neal injection of high-dose streptozotocin, the expres-

sion levels of TRIB3 were significantly upregulated,

while Shengmai san supplementation could significantly

decrease the expression levels of TRIB3 as well as blood

glucose levels, cholesterol, and triglycerides, thereby sig-

nificantly delaying the development of DCM in

hyperglycemic rats through multiple pathways.137

Collectively, further investigation is needed to explore

the antidiabetic activities of Shengmai san.

Micronutrient zinc. It has been shown that there is an

intricate correlation between the micronutrient zinc

and insulin hexamer structure.138 The highest amount

of zinc in the human body is present in pancreatic b
cells, and DM has been characterized by zinc defi-

ciency.139 Accumulating evidence suggests that micro-

nutrient zinc supplementation might play a significant

role in preventing IR and DM.139,140 Mechanistically, it

can affect the synthesis and action of insulin by promot-

ing proper insulin hexamerization and processing, both

physiologically and in DM, which can stimulate insulin

action and insulin receptor tyrosine kinase activ-

ity.141,142 Most importantly, zinc is the major microele-

ment that binds to metallothionein (MT) under

physiological conditions.143 A study on streptozotocin-

Figure 3 The possible pathways of TRIB3 in the development of DM and its complications. Abbreviations: ADH, alcohol dehydrogenase;
Akt, protein kinase B; DM, diabetes mellitus; ERK1/2, extracellular signal-regulated kinase 1/2; GSK-3b, glycogen synthase kinase-3b; JNK, c-
Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MLK3, mixed lineage kinase-3; mTOR, mammalian target of rapamycin; NF-
jB, nuclear factor-kappa B; P, phosphorylation; PI3K, phosphatidylinositol 3-kinase; PKCd, protein kinase C d; SREBP-1c, sterol-regulatory ele-
ment-binding protein-1; TGF-b1, transforming growth factor b1; TRIB3, tribbles homolog 3.
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induced diabetic mice observed that chronic supple-

mentation with zinc could mediate cardiac MT induc-

tion, thereby preventing cardiac pathological changes

and dysfunction, and protecting against DCM.144

Moreover, our previous study demonstrated that the

DM-inhibited cardiac Akt2 function via TRIB3 upregu-

lation led to aberrant cardiac glucose metabolism; sup-

plementation of zinc to induce MT significantly

protected against all DM-induced cardiac structural

and functional changes via the TRIB3-Akt signaling

pathway, thereby alleviating DCM.32 Although it is now

well accepted that the supplementation of zinc exhibits

a crucial involvement in preventing DM, the precise

mechanisms and optimal dose of zinc supplementation

during the process of DM treatment and its complica-

tions remain unresolved. The antidiabetic effects of nat-

ural products targeted by TRIB3 are detailed in Table 1.
It is worth noting that numerous studies on natural

products have been conducted on rodents, and the find-

ings have not been validated in humans. In particular,

there is a lack of randomized, placebo-controlled

human clinical trials involving the use of natural prod-

ucts to treat DM and its complications.

CONCLUSIONS AND FUTURE PERSPECTIVES

Diabetes mellitus has become a major global epidemic

of this century. Exploring the complexity of dietary

nutrition and the TRIB3 signal transduction pathway

has shown their correlations and importance in DM.

Although some of these questions remain to be

answered, the crosstalk between dietary nutrition and

TRIB3 signaling is surprising. In conclusion, in-depth

studies on the regulation network of dietary nutrition

and the TRIB3 signaling pathway might provide novel

therapeutic strategies for the prevention and treatment

of DM.
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Table 1 Antidiabetic effects of natural products targeted by TRIB3 in the development of DM and its complications
Natural
products

Animal species Animal or cellular
model

Natural product
dose

Treatment
period

Effect on
expression

of TRIB3

Reference

Yacon Zucker fa/fa rats 6-wk-old male
Zucker fa/fa rats
display pro-
nounced IR

6.5% of yacon incor-
porated in feed
pellet preparation

5 wk Inhibition 129

RES C57BL/6J mice and
HepG2 cells

HFD-induced IR
model, PA-
induced IR model

60 mg/kg, 20 lM 12 wk, 24 h Inhibition 134

SMS Male SD rats HFD for 4 wk with
intraperitoneal
injection of
50 mg/kg STZ-
induced DCM rat
model

7.5 mL/kg 8, 11, 14 wk Inhibition 137

Zinc FVB background mice Male db/db mice 10% kcal %fat plus
Zn, 90 mg/
4057 kcal

3 mo Inhibition 32

Abbreviations: DCM, diabetic cardiomyopathy; FVB, friend virus B; HFD, high-fat diet; IR, insulin resistance; PA, palmitate; RES, resvera-
trol; SMS, shengmai san; STZ, streptozotocin.
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type 2 diabetes mellitus; TRIB3, tribbles homolog 3;

UPR, unfolded protein response; VSMC, vascular

smooth muscle cell.
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