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Abstract

During recent decades, the emergence of pathogenic fungi has posed an increasing public health 

threat, particularly given the limited number of antifungal drugs available to treat invasive 

infections. In this Review, we discuss the global emergence and spread of three antifungal-resistant 

emerging fungi: Candida auris, driven by global healthcare transmission and possibly facilitated 

by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by 

azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the 

underregulated use of over-the-counter high potency corticosteroid-containing antifungal creams. 

The diversity of the fungi themselves and the drivers of their emergence make it clear that we 

cannot predict what might emerge next. Therefore, vigilance is critical to monitoring for fungal 

emergence, as well as the rise in overall antifungal resistance.
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Introduction

Fungi are among the most abundant and diverse organisms in the world. They are found 

in and on most humans as a part of the human microbiome and we breathe in hundreds of 

fungal spores each day (supplementary Box 1). Out of several million species of fungi, only 

several hundred are known to cause human illness. Most fungal infections are superficial, 

such as onychomycosis of the nails, dermatophyte infections of the skin such as athlete’s 

foot and mucosal infections (for example, vulvovaginal candidiasis). However, for some 

people, especially those with frequent healthcare interactions or weakened immune systems, 

encounters with fungi poses a serious health threat.

The emergence of pathogenic fungi is not a rare event. In recent decades, Cryphonectria 
parasitica nearly destroyed all chestnut trees in the United States and Fusarium oxysporum 
var. cubense nearly decimated banana monoculture; Batrachochytrium dendrobatidis is 

destroying amphibian populations, and Pseudogymnoascus destructans is killing entire 

colonies of bats 1–4. Fungal diseases of plants threaten food security worldwide by causing 

epiphytotics in staple crops and by contaminating food supplies with toxins. Rice-blast 

disease, caused by Magnaporthe oryzae, destroys 12–30% of annual rice harvests, and a 

new, virulent strain of Puccinia graminis that causes stem rust disease on wheat jeopardizes 

harvests in Europe, Asia and the Americas5,6.

Emerging fungi that directly affect human health have been less common. During the early 

HIV epidemic, Candida dubliniensis emerged alongside Candida albicans as a cause of 

azole-resistant mucosal candidiasis, and both Cryptococcus neoformans and Pneumocystis 
jirovecii exploited a new population of immunosuppressed hosts to become major causes 

of death in patients with advanced HIV disease7–9. With the HIV epidemic, cancer and 

immunomodulating medicine, fungal infections in humans have become more common, 

but until now, the emergence of new human pathogenic fungi has been rare. We are 

now witnessing both the emergence of new species of fungi, such as Candida auris and 

Trichophyon indotineae, as well the emergence and spread of drug-resistant lineages of 

well-known common fungi such as azole-resistant Aspergillus fumigatus 10–12 (Figure 1).

Two important factors are common among C. auris, T. indotineae and azole-resistant A. 
fumigatus. First, these pathogens are spreading across the globe as essentially clonal 

lineages, C. auris as four clonal clades, T. indotineae as a single clonal clade and 

A. fumigatus as a clone (the clonal mutations, TR34, and TR46 to be discussed later 

with recombination. Although this has occurred before with fungi that infect amphibians 

(Batrachochytrium dendrobatidis3) and plants (Puccinia graminis6), this is the first time that 

human-pathogenic fungi have spread intercontinentally in such a short time frame (a decade 

for T. indotineae and C. auris, and several decades for azole-resistant A. fumigatus). The 

mechanisms for this spread may be different among the fungi, but the rapid rate is similar 

and concerning. What is surprising is that the emergence and spread of these three disparate 

species has occurred almost simultaneously.

The second commonality among these three fungi is that they share a very high rate 

of acquired antimicrobial resistance (Box 1). The mechanisms of acquired resistance and 
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the antifungals to which they are resistant are different for each of the fungi, but it is 

nonetheless remarkable to have three fungi with high levels of acquired resistance emerge 

simultaneously, particularly because antifungal resistance in fungi is rare. In the cases 

of C. auris and T. indotineae, resistance to more than one class of antifungal can be 

present, putting these pathogens in the rare category of multidrug-resistant fungi. Although 

the cause of the sudden emergence and spread of C. auris, azole-resistant A. fumigatus 
and T. indotineae is unknown, researchers have proposed several potential contributing 

factors. It has been proposed that climate change may be contributing to the emergence 

of fungal species, including C. auris, but the data confirming this hypothesis for most 

fungi is lacking13–16. As global temperatures rise, selective pressure will favor fungi that 

survive at increased temperatures such as the temperatures found in the human body. A 

second proposed factor is the widespread use of antifungal compounds in human and animal 

medicine, as well for other applications, including for crop agriculture and the preservation 

of wood products, plastics and paints 17. In addition to selecting for resistant organisms, 

this widespread usage of antifungals may also have a secondary harmful role: increasing 

antimicrobial usage could potentially be changing microbiomes of not only of human 

hosts but also natural microbiomes 18–20. Changes to the established microbiome might 

promote the emergence of never-before-seen colonization or infections by microorganisms 

not previously detected in microbiomes. These microorganisms might emerge in the setting 

of the alterations of the natural microbiome that has developed over tens of thousands of 

years on the surfaces of our mucosa, gastrointestinal tracts and skin. C. auris colonization 

is correlated with changes in the skin microbiome21,22. T. indotineae infection is associated 

with the use of combination antifungal, antibiotic and topical steroid products, and research 

has shown that antibiotics alter the skin microbiome, but a direct correlation with T. 
indotineae infection and changes to the skin microbiome has not yet been shown23. 

Whether the spread of azole-resistant A. fumigatus is linked to changes in the environmental 

microbiome is unclear, but the presence of resistance-causing azoles in soil has been shown 

to change the soil microbiome24–27.

In this Review, we discuss C. auris, azole-resistant A. fumigatus and T. indotineae, with 

the common thread that all three are currently emerging across the globe and have a 

high rate of acquired resistance, two characteristics that are rare among fungi. Although 

the precise details of their emergence might remain elusive, we outline and discuss our 

current understanding of the emergence, epidemiology, evolution, pathogenicity, clinical 

manifestations, resistance mechanisms and treatment options for these pathogens (Table 1).

Candida auris

Emergence and epidemiology.

The emergence of C. auris has been rapid and overwhelming. The first recognized clinical 

isolate was recovered from the ear of a patient in Japan in 2006 10 (Table 1). By 2014, C. 
auris had been identified in South Korea, India and South Africa; by 2016, four separate 

emerging clades had been described on three different continents 28–31(Figure 1a). In just 

over a decade after its initial discovery, researchers have identified C. auris in over 40 

countries and on all continents except Antarctica 32 (Figure 1a). A retrospective review of 
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culture collections across the globe identified some older isolates of C. auris, with the oldest 

isolates now identified from a collection in South Korea from 1996, a collection from Japan 

in 1997, a collection in France from 2007, and an isolate from Pakistan from 2008 (Refs. 
28,31,33–35). However, these are one-off isolates, which suggests that C. auris was extremely 

rare before the early 2010s, and that the emergence and spread across three continents has 

been sudden. Molecular clock analysis using whole-genome sequences indicates that the 

time to the most recent common ancestor of three of the four clades happened as recently as 

the 1980’s, whereas the oldest clade is likely to have only diverged from a common ancestor 

around 400 years ago 36. Whole-genome sequencing of isolates from around the world also 

reveals that the global spread occurred solely through the previously identified four clades 

and not through emergence of new clades, although a fifth clade has been recently identified 

exclusively in Iran 36,37.

The rapid emergence of C. auris is tied to its epidemiology. Three factors differentiate 

C. auris from other species of Candida: C. auris is primarily associated with the skin 

rather than the gut or mucosal surfaces; it spreads rapidly in healthcare environments 

leading to frequent outbreaks; and most isolates have acquired antifungal resistance, with 

some isolates demonstrating resistance to all three classes of systemic antifungals 38. Most 

Candida species are considered commensals of mucosal surfaces and the gastrointestinal 

tract, although some of the same species found on mucosal surfaces can also be found 

on the skin 39,40. By contrast, C. auris is primarily associated with the skin, although it 

is occasionally found in the respiratory and gastrointestinal tracts 41. C. auris colonizes 

the skin of patients in healthcare settings and has been associated with a disruption to the 

normal skin flora 21,22. Extensive screening of persons outside of a healthcare setting has 

not been performed, but two studies that looked for colonization of healthcare workers 

failed to detect colonization, which implies that an intact skin microbiome may be a 

barrier to C. auris colonization, although it has been shown to be transient on the hands 

of healthcare workers 41–43. Because C. auris can persist on the skin, it can spread widely 

in healthcare environments, including both among patients and on environmental surfaces. 

The degree of skin colonization has been shown to be proportional to the spread within 

the patient environment 22,44. Further, skin colonization with C. auris is a risk factor for 

bloodstream infections; approximately 5–10% of patients who are colonized with C. auris 
develop bloodstream infections 45. Because C. auris is a nationally notifiable disease in the 

United States, the degree of spread has been well documented. Initially, spread was due to 

importation followed by limited localized transmission. However, most contemporary cases 

have been acquired through localized transmission, and clinical cases continue to increase 
46. Of great concern, the annual percentage increase in clinical cases of C. auris was 44% in 

2019 and 95% in 2021 (Ref. 47).

Evolution.

The sudden, simultaneous emergence of C. auris on multiple continents has led to 

speculation on its origin 13,14,48. The two clades that have not yet spread outwardly, clade 

II (East Asian) and clade V (Iran), are primarily associated with the skin of the ear canal, a 

clue to the possible origin of emergence 33,49. It is unlikely that both clades independently 

found their way to this highly specialized niche following emergence, especially because 
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neither clade seems to be spreading globally; rather, the ear canal may be a natural niche 

for these clades and could have been the original skin reservoir for all of the C. auris 
clades before emergence33,35,37. C. auris has been identified in the environment both from 

coastal wetlands in the Andaman Islands and Colombia, and from apples that had been 

stored and processed in India 50–52. What we cannot discern from these environmental 

sources is whether these are the natural habitat of C. auris or a secondary niche following 

contamination of the environment following colonization of humans. Whether C. auris 
emerged from the environment or from an obscure human commensal niche, selective 

pressure from antifungal usage, the disruption of microbiomes, and climate change are all 

possible drivers of the emergence.

Pathogenicity and clinical manifestations.

As a colonizer of the skin, C. auris does not cause any symptoms to the colonized patient. 

This lack of symptoms enables C. auris colonization to go undetected and likely plays a 

substantial role in its ability to spread within healthcare facilities. At this point there is no 

evidence that Candida auris colonizes individuals without healthcare exposures. Outside of 

its detection in the ear, C. auris is not yet found in or on medically naïve persons41,42. 

Because of these factors, infection prevention and control measures [https://www.cdc.gov/

fungal/candida-auris/c-auris-infection-control.html] are critical to preventing the spread of 

C. auris

The clinical manifestations seen with C. auris are similar to those seen with infections 

caused by other Candida species 53. Candidemia, urinary tract infections, wound infections, 

otitis and skin abscesses are the most common infection types, but C. auris can also cause 

disseminated disease 54. C. auris has not been implicated as a frequent pathogen in other 

more common types of candidiasis (for example, vulvovaginal candidiasis or oral thrush). 

Risk factors for C. auris infection mirror those for infections by other Candida species 

including recent surgery, immunosuppression, neutropenia, extended healthcare exposure 

and use of antibiotics55. One of the primary risk factors for C. auris infection is the presence 

of indwelling medical devices including ventilator tubes, central venous catheters, feeding 

tubes and urinary catheters, as they provide a mechanism for C. auris to disseminate from 

the skin. The ability of C. auris to form biofilms both on these devices as well as robust 

biofilms on the skin may prolong colonization and increase the risk of a disseminated 

infection56–58. C. auris infections made a leap forward during the first few years of the 

COVID-19 pandemic. Increased medical intervention, limited personal protective equipment 

due to supply chain issues, and increased corticosteroid use for COVID-19 treatment are 

likely to have contributed to the increase in cases59.

In a mouse model of infection C. auris is less virulent than C. albicans but more virulent 

than C. glabrata and C. haemulonii60. This decreased overall virulence may be related to the 

fact that C. auris is only able to form rudimentary hyphae, which is notable because hyphae 

formation is a major virulence factor of other Candida species61. One of the more intriguing 

virulence factors of C. auris may be its ability to evade phagocytosis by neutrophils62. In 

a zebrafish model of disseminated infection, neutrophils were twice as responsive to C. 
albicans as to C. auris62. Further work in this area has revealed that mannans in the C. 
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auris cell wall may mask critical components recognized by neutrophils such as β-glucan, 

and chitin63. There is also evidence that C. auris can replicate within and escape from 

macrophages 64. Under in vitro conditions, C. auris may be able to kill macrophages as well 

through the mechanism of rapid replication and glucose depletion64.

Resistance mechanisms and treatment options.

Aside from intrinsically resistant species, such as Candida krusei, fluconazole resistance 

among Candida species is rare. Before the emergence of C. auris, the Candida species 

with the highest frequency of acquired resistance was C. glabrata, a pathogen whose 

overall worldwide resistance rate is approximately 10–12% (Ref. 65). This changed with 

the emergence of C. auris, for which acquired resistance to fluconazole is observed in most 

clinical isolates 31,66,67. Resistance seems to be clade-specific, with isolates of clades I 

and III being almost universally resistant to fluconazole, isolates of clade II being almost 

universally susceptible to fluconazole, and isolates of clade IV showing variable resistance, 

depending on the circulating clone36.

The most common mechanism of azole resistance in C. auris is a mutation in the drug 

target lanosterol 14-a-demethylase (ERG11) such as Y132F, K143R and F126L (Figure 2). 

Increased expression of efflux pumps, including those due to mutations in the gene encoding 

the transcription factor TAC1b, which cause an increase in the expression of the efflux pump 

Cdr1p, have also been determined to increase resistance68,69. Resistance to echinocandins 

is uncommon. However, resistance can develop during echinocandin therapy and is caused 

by several different mutations at amino acid S639 (S639Y, S639F or S639P) in hotspot1 

of the drug target 1,3-β-D-glucan synthase (FKS1)66,70,71. A breakpoint for amphotericin B 

against C. auris does not exist, but based on pharmacokinetic–pharmacodynamic values in 

animal models, a tentative breakpoint of 2 μg/ml was set 72. Using this value, resistance to 

amphotericin B has been reported in about 30% of isolates; however, resistance seems to 

vary based on the clone or the clade being tested 31,32. Because resistance to amphotericin 

B is difficult to define, it is unknown whether this represents clinical or in vitro resistance. 

To date, only a single mechanism, a mutation in the ERG6 gene, has been definitively 

associated with amphotericin B resistance 73.

Multidrug resistance in most Candida species is extremely rare and pan-antifungal resistance 

has rarely been reported in any Candida species74. As C. auris began to emerge, several 

pan-antifungal resistant isolates were reported. Fortunately, further spread of these isolates 

did not occur, and it was speculated that pan-resistance in these organisms was associated 

with a fitness cost75. However, documented transmission of pan-resistant and echinocandin-

resistant C. auris isolates was later reported from the United States, which suggests that high 

transmissibility of C. auris can lead to spread of drug-resistant clones in healthcare settings 

despite any actual or perceived fitness cost 70.

Several societies, including the Australasian Society for Infectious Disease and the 

Federation of Infectious Disease Societies of Southern Africa, have released guidelines 

that include treatment recommendations for C. auris76–78. The first option for treating C. 
auris infection in adults and children aged >2 months is an echinocandin, which is in 

accordance with the Infectious Diseases Society of America guidelines for the treatment of 
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candidiasis79. For a central nervous system infection, for infants aged <2 months or when 

echinocandins are unavailable, amphotericin B is the recommended treatment. Because 

antifungal resistance is common, susceptibility testing is recommended for all isolates for 

which treatment is intended. The use of antifungals in patients who are only colonized is not 

recommended.

Treatment options for pan-antifungal resistant isolates of C. auris may soon become 

available. Two new antifungals in development, ibrexafungerp and manogepix, have 

shown good in-vitro activity against multi-drug resistant isolates of C. auris80,81. 

Ibrexafungerp has an FDA-approved indication for the treatment of vulvovaginal 

candidiasis, but both ibrexafungerp (ClinicalTrials.gov Identifier: NCT03059992) and 

manogepix (ClinicalTrials.gov Identifier: NCT05421858) are undergoing clinical trials for 

the treatment of systemic infections, including the treatment of patients with multi-drug 

resistant C. auris.

Azole-resistant Aspergillus fumigatus

Emergence and epidemiology.

Aspergillus fumigatus, a globally distributed mold found throughout the environment, is an 

important opportunistic pathogen in humans. It is the primary cause of invasive aspergillosis, 

an infection responsible for substantial morbidity (>14,000 annual U.S. hospitalizations) and 

mortality (>1,200 annual U.S. deaths) 82–84 and requiring treatment with systemic antifungal 

medications. Globally, there may be as many as 250,000 cases of invasive aspergillosis and 

3 million cases of chronic pulmonary aspergillosis each year 85. In addition to invasive 

disease, A. fumigatus is also responsible for various clinical syndromes, including chronic 

pulmonary aspergillosis and allergic bronchopulmonary aspergillosis, especially in patients 

with cystic fibrosis or asthma, that cause considerable morbidity and frequently require 

treatment with antifungal therapy 86,87.

Isolates of azole-resistant A. fumigatus have been recognized almost since the use of 

azoles for treatment began a few decades ago, but during the last decade or so resistance 

has noticeably increased 88–90. Of public health concern, isolates of A. fumigatus are 

increasingly identified that are resistant to some or all azole antifungals 12,91. Patients 

acquire azole-resistant A. fumigatus infections through two routes: repeated exposure to 

azoles for the treatment of chronic Aspergillus infections or direct inhalation of resistant 

A. fumigatus spores from the environment 92 (Figure 3). Even though active surveillance 

for drug-resistant molds is absent or minimal in most countries, researchers have identified 

azole-resistant A. fumigatus across the globe 93,94. As of this report, 20 countries have 

reported clinical isolates demonstrating azole resistance, and it has been identified in 

environmental specimens in an even larger number of countries (Figures 1b and 1c). In 

Dutch studies focused primarily on patients at high risk, >20% of patients with invasive 

aspergillosis harbored a triazole-resistant strain, with rates varying based on the population 

studied 95.
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Pathogenicity and clinical manifestation.

Aspergillus is a saprophytic fungus whose spores are found throughout the environment. 

A. fumigatus is the most common Aspergillus species encountered by humans. Humans 

inhale Aspergillus spores every day, but because the innate immune system can clear 

these spores, most immunocompetent persons do not develop illness96. However, some 

immunocompetent hosts, especially those with cavitary lesions of the lung, can develop 

chronic pulmonary aspergillosis, and other immunocompetent hosts can suffer from allergic 

bronchopulmonary aspergillosis97,98. In immunocompromised patients, Aspergillus species 

can colonize the lungs, potentially leading to the development of invasive pulmonary 

aspergillosis97–99. Invasive aspergillosis is the most common infection among patients who 

received hematopoietic stem cell transplant and the second most common infection among 

patients who received solid organ transplant 100–102. Aspergillus species colonization and 

infection are also associated with other chronic conditions such as cystic fibrosis and 

chronic granulomatous disease103, and invasive aspergillosis can develop as a secondary 

complication in patients recovering from tuberculosis, viral influenza and COVID-19 (Refs. 
104,105). In severely immunocompromised patients, mortality from A. fumigatus infection 

can be 40–50% despite the availability of several treatment options97,98.

Data to understand the clinical significance of azole-resistant A. fumigatus infections have 

generally come from small case series and several larger cohort studies, primarily from 

Europe 106. In one cohort study, patients with azole-resistant invasive aspergillosis had a 

90-day mortality rate approximately 25% higher than those with azole-susceptible infections 
107. That study also found a higher 42-day mortality among patients with voriconazole-

resistant aspergillosis who were started on inappropriate antifungal therapy (for example, 

voriconazole monotherapy) versus patients receiving appropriate therapy 107. In another 

study involving patients with hematologic malignancies, the 6-week mortality was 2.7-times 

higher among patients with azole resistance-associated mutations in the Cyp51A gene 108. 

These studies point out that two of the outstanding features of infections due to azole-

resistant A. fumigatus are resistant infections in azole-naïve patients and treatment failure. 

Azole-resistant infections not only occur in patients with invasive aspergillosis, they also 

occur in patients with chronic pulmonary aspergillosis.

Resistance mechanisms.

Recent research has linked the use of azole fungicides, which are chemically similar to azole 

antifungal compounds used in medicine, to the development of azole-resistant infections in 

patients 109–111. Azole fungicides are applied in numerous agricultural and non-agricultural 

settings around the world. Although A. fumigatus is not a plant pathogen, it is found 

throughout the environment, especially associated with plant debris. The use of azole 

fungicides, such as tebuconazole, propiconazole, epoxiconazole and difenoconazole, can 

select for A. fumigatus strains that are resistant to antifungal drugs used in clinical medicine 

to treat aspergillosis 92. Aspergillus fumigatus strains that have developed resistance 

through exposure to azole fungicides in the environment harbor unique mutations in the 

target gene CYP51A, which encodes lanosterol demethylase, an essential enzyme in the 

ergosterol pathway (Figure 4). The two most widely dispersed CYP51A mutations are TR34/

L98H (a 34 base-pair tandem repeat in the promoter sequence and a leucine to histidine 
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mutation at amino acid 98) and TR46/Y121F/T289A (a 46 base-pair tandem repeat in the 

promoter sequence and mutations at amino acids 121 and 289) 112,113. These mutations 

confer resistance to itraconazole and voriconazole, respectively, but isolates carrying these 

mutations are often, but not always, pan-azole resistant when tested in vitro113–116. The 

tandem repeats in the promoter region cause an upregulation of gene transcription while the 

amino acid mutations decrease the efficacy of the antifungals by altering the target binding 

site 117. The TR34 and TR46 mutations have been shown to be associated with environmental 

fungicide exposure, with a recent study confirming that A. fumigatus strains that became 

drug resistant in the environment can cause resistant infections in humans 109. Although 

these two mutations are predominant, surveillance of A. fumigatus isolates collected during 

environmental sampling indicates that some of the other CYP51A mutations that were long 

thought to be exclusively associated with long-term azole use in patients, such as mutations 

at M220 and G54, may also be associated with environmental fungicide exposure 118–120. 

In addition, the mutations in the CYP51A promoter are evolving both through sexual 

recombination and random mutation 121,122. How these newer mutations will affect drug 

resistance and organism fitness remains to be seen.

Azole resistance acquired during long-term treatment is generally associated with either 

specific amino-acid substitutions in the CYP51A gene or mutations in HMG1, a 

hydroxymethylglutaryl-CoA reductase, which is a rate-limiting enzyme in the ergosterol 

pathway (Figure 4). Approximately 30% of isolates of A. fumigatus that exhibit in vitro 
resistance to azoles have no defined mechanism of resistance. Whether these isolates also 

exhibit in vivo resistance in not known. There are no breakpoints for echinocandins and A. 
fumigatus, but increased minimal effective concentration values are rare123. The European 

Commission on Antimicrobial Susceptibility Testing (EUCAST) has developed breakpoints 

for A. fumigatus, and amphotericin B resistance is rare but not unprecedented124. Resistance 

to multiple classes of medical antifungals in A. fumigatus is exceedingly rare, but resistance 

to multiple classes of fungicides has recently been reported in environmental A. fumigatus 
isolates from the United States 111.

Evolution.

Recent use of whole-genome sequencing that compares TR34 isolates collected around 

the globe to azole susceptible A. fumigatus isolates indicates that the TR34 isolates are 

tightly clustered in a single clade 109,111,125. These data suggest that the TR34 and TR46 

mutations arose only once or, at most, a few times and that the global spread is due to 

one or a limited number of closely related strains and not the repeated de novo generation 

of this resistance mechanism 125. Of concern, in the United States, azole fungicide use 

has drastically increased in recent years (four-fold increase during 2006–2016), and in 

Europe, azole fungicide use is also increasing 17,126. As fields are sprayed year after year, 

continued selection for azole-resistant strains is a concern. Although not specifically a plant 

pathogen, the association with agriculture is likely to have a role in the global dispersal of 

these resistant strains, as TR34 A. fumigatus has been isolated from flower bulbs and other 

agricultural products destined for global distribution and are likely to be globally dispersed 

as aerosols as well 127. The current distribution of these mutations in the environment is not 
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known because most countries, including much of the Americas, Africa and Asia, do not 

have robust surveillance mechanisms in place and have simply not looked for it.

The CYP51A gene, the target of azole resistance, is highly divergent across individual 

isolates, with many reported amino acid polymorphisms that have not been linked to 

azole resistance 88,128. This pleomorphism, in combination with sexual recombination 

and selective pressure of environmental fungicides may drive the future selection of other 

resistance mutations 122,129.

Azoles are currently the only class of antifungal used in both human medicine and as 

agricultural fungicides. However, this may soon be changing with a new class of antifungal, 

the orotomides, which act by inhibiting the dihydroorotate dehydrogenase (DHODH) 

enzyme. A new mold-active DHODH inhibitor, olorofim, is active against azole-resistant 

Aspergillus species and is currently in phase 3 clinical trials. Recently, the fungicide 

ipflufenoquin, also a DHODH inhibitor, has been approved by the U.S. Environmental 

Protection Agency (EPA) for agricultural use. A recent study shows that resistance 

mechanisms between the antifungal and the fungicide are similar and therefore may lead 

to a similar circumstance of environmentally induced resistance to a medically important 

antifungal130.

Treatment options.

Azole antifungal drugs (for example, voriconazole, itraconazole, posaconazole and 

isavuconazole) are the first-line treatment for invasive aspergillosis and the only orally 

available therapeutic options. The emergence of azole-resistant A. fumigatus could limit 

the clinical use of these life-saving drugs 87,92. Data to guide the optimal treatment for 

patients with azole-resistant aspergillosis are limited, and consensus guidelines do not 

exist 131. However, expert opinions on the management of patients with azole-resistant 

infections have been published and emphasize the importance of choosing initial antifungal 

therapy based on the prevalence of environmental azole resistance. For example, in areas 

where azole resistance related to environmental mechanisms is more than 10%, clinicians 

might reconsider voriconazole monotherapy for primary treatment of invasive aspergillosis, 

pending the availability of susceptibility testing results. For patients with aspergillosis 

confirmed to be resistant to azoles, therapy could be adjusted to include a drug to which 

the A. fumigatus is susceptible such as amphotericin B 131.

Three new antifungals, ibrexafungerp, fosmanogepix and olorofim, have shown good in 

vitro activity against azole-resistant isolates132–134. Although these new agents are not 

yet available, clinical trials are underway. Neither trial specifically includes treatment of 

resistant isolates, but neither excludes them either. The SCYNERGIA trial is a phase 2 

randomized double-blind study of ibrexafungerp in combination with voriconazole for the 

treatment of invasive pulmonary aspergillosis versus voriconazole alone (ClinicalTrials.gov 

Identifier: NCT03672292). The OASIS study is a phase 3 randomized blinded study 

to compare treatment of proven invasive aspergillosis with either olorofim or liposomal 

amphotericin B (ClinicalTrials.gov Identifier: NCT05101187).
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Trichophyton indotineae

Emergence and epidemiology.

Dermatophytosis, also known as ringworm or by the syndromic name tinea, is a contagious 

superficial infection caused by keratinophilic fungi called dermatophytes 135. The most 

common causative organisms are Trichophyton spp. A substantial public health burden, 

dermatophytosis affects an estimated 20–25% of the world’s population 136. Patients may 

acquire dermatophyte infections from fomites or through direct contact with infected 

persons or animals. Risk factors include living in humid climates and overcrowded 

conditions, participating in activities involving skin-to-skin contact (for example, certain 

sports) and having a weakened immune system 137. Though generally considered a 

mild, treatable condition, dermatophytosis can cause stigma, debilitating pruritis, immune 

reactions, and bacterial superinfections, particularly in immunocompromised patients 138.

Historically, clinicians could successfully treat most patients with dermatophytosis using 

available antifungal drugs, but dermatophyte resistance to conventional antifungal drugs, 

including terbinafine and itraconazole, is an emerging public health threat 139. During 

the past decade, researchers from India have noted an alarming increase in the incidence 

of difficult-to-treat dermatophytosis cases 140. These infections can persist for years, 

spread easily within households, and cause substantial suffering 139. Researchers identified 

Trichophyton interdigitale/Trichophyton mentagrophytes ITS (internal transcribed spacer) 

Type VIII as the etiologic agent behind the epidemic of antifungal resistant tinea in India. 

In 2020, researchers determined that these highly terbinafine-resistant Trichophyton strains 

were different enough from the T. mentagrophytes/T. interdigitale complex to be a new 

species, Trichophyton indotineae 11. Several lines of evidence support this separation into 

distinct species. Trichophyton indotineae clusters separately from T. mentagrophytes sensu 
stricto and T. interdigitale at several unlinked DNA loci141. Also, T. mentagrophytes is 

zoophilic and has a sexual cycle, whereas T. indotineae has evolved to be a predominantly 

clonal anthropophilic fungus141. And finally, T. indotineae is frequently associated with 

terbinafine resistance, conferred by mutations in the squalene epoxidase gene 142. A 

large study of patients from eight geographically dispersed regions in India found that T. 
indotineae was the dominant causative agent for dermatophytosis in all regions studied, 

representing an epidemiologic shift in the predominant pathogen causing dermatophytosis 

from Trichophyton rubrum 139.

Even though T. indotineae as a recognized species is only a few years old, it has already 

become a major public health concern. Cases of T. indotineae infection have been identified 

in numerous countries outside of India, including Germany, Belgium, Denmark, France, 

Greece, Italy, Switzerland, Canada, the United States Australia, United Arab Emirates, 

Oman, Iran, China and Vietnam 143–157 (Figure 1d). The extent of spread is likely to be 

underestimated because speciation of dermatophytes and antifungal susceptibility testing are 

not routinely performed in most countries. Most cases of T. indotineae in Europe and North 

America have been linked to international travel, but because the pathogen can be acquired 

from contact with infected individuals or fomites, there is the potential for domestic spread. 
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T. indotineae infections have been identified on dogs in India, which suggests the pathogen 

could start to spread zoonotically as well158.

The total burden of T. indotineae infections is unknown, as identification of dermatophytes 

to the species level is not routinely performed. Further, identification of T. indotineae 
is challenging because unequivocal identification can only be performed using DNA 

sequencing 141. T. indotineae has become widespread; therefore, it is important to recognize 

the risk of local transmission of T. indotineae in non-endemic countries that may give rise to 

a worsening worldwide epidemic scenario of difficult-to-treat infections.

Pathogenicity and clinical manifestations.

As mentioned previously, various underlying conditions (for example, diabetes 

mellitus, immune‐suppressive conditions, Cushing syndrome, atopic dermatitis and 

systemic corticosteroid therapy) may increase host susceptibility for dermatophytosis135. 

Dermatophytes possess virulence factors that facilitate infection in patients, regardless 

of host immune status, but immunocompromising conditions may lead to more severe 

infection. For example, the dermatophytic fungi produce several enzymes, including 

proteases, lipases, elastases, collagenases, phosphatases and esterases, that have been 

implicated in host invasion and assimilation of nutrition159. The dermatophytic hyphae 

invades the uppermost, non-living, keratinized layer of the skin, namely the stratum 

corneum, produce exo-enzyme keratinase, and induce inflammatory reaction at the site 

of infection. Although studies pertaining to T. indotineae-specific immune responses 

are lacking, the cell-mediated immune response is responsible for the control of 

dermatophytosis160.

Typical manifestations of T. indotineae include extensive chronic relapsing infection of the 

body (tinea corporis) and the groin (tinea cruris). Clinical presentation commonly involves 

multiple lesions in different anatomical locations exhibiting varying degrees of inflammation 

with peripherally spreading, flat, whitish or brownish pigmentation. One of the hallmarks 

of infection by T. indotineae is the severity of infection compared with those caused by 

the closely related species T. mentagrophytes and T. interdigitale. Many infections with T. 
indotineae are highly inflammatory, cover much or all the lower body and groin, and can 

extend to the extremities and head. Because of the inflammatory nature of the lesions, they 

are often associated with painful burning and itching and can cause substantial morbidity161. 

It has been speculated that a large proportion of the most severe cases present with steroid-

modified dermatophytosis after having used combination creams with steroids161,162.

Inappropriate use of antifungal drugs, particularly the use of over-the-counter antifungal 

creams containing high potency steroid clobetasol is likely to have been and is likely 

to continue to be a driver of dermatophyte resistance and selection in India162. These 

creams are widely available without a prescription in India and are frequently used by 

patients to self-treat skin conditions162. Creams with antifungal medications are available in 

other countries to treat both dermatophyte infections as well as mucocutaneous candidiasis. 

These creams do not contain steroids and there is no indication that these creams have led 

to an increase in antifungal resistant organisms. Although corticosteroids like clobetasol 

may temporarily relieve symptoms of dermatophytosis, these medications do not treat the 
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underlying infection and the steroid-associated immunosuppression may ultimately worsen 

the dermatophytosis163.

Evolution.

Internal transcribed spacer sequencing, multilocus sequence typing and whole-genome 

sequencing clearly delineate T. indotineae from the T. mentagrophytes/T. interdigitale 
complex11,141,164. Multilocus sequence data from T. mentagrophytes species complex 

isolates from humans and animals shows that T. indotineae has evolved to be distinct 

from T. mentagrophytes, with every genotype unique only to the new species. Although 

the genomes are clearly different across species, T. indotineae is still so young as a clonal 

species that the overall structural architecture of its genomes is quite similar to the parental 

species T. mentagrophytes. A full analysis of the differences between T. indotineae and 

the T. mentagrophytes/interdigitale complex has not yet been performed. Trichophyton 
indotineae may still be in the early stages of separation as a species from T. mentagrophytes. 

As it moves across the world reproducing as an anthropophilic rather than a zoonotic 

fungus, its genome may undergo more changes that cannot be repaired in a predominantly 

clonal population, and this may further separate it from T. mentagrophytes141. Although 

the literature on this new fungus dates from only the past few years, it may have arrived 

in Europe as early as 2011, and a search of Genbank for sequences corresponding to T. 
mentagrophytes type VIII (the previous designation) indicates it was in Indian, Oman, Iran 

and Australia by 2013 and possibly as early as 2004 (Refs. 144,145).

Resistance mechanisms.

Terbinafine is a first-line drug for treatment of dermatophytosis. High terbinafine resistance 

rates, reaching 80% in at least one study, were one of the first indicators that T. indotineae 
strains from India were different from the usual T. mentagrophytes/interdigitale complex 
165,166. More alarming, T. indotineae isolates resistant to itraconazole have also been 

identified, including isolates that are resistant to both itraconazole and terbinafine167–169.

The mechanisms of resistance to both terbinafine and itraconazole have been determined. 

Terbinafine-resistant T. indotineae isolates exhibit single point mutations in the target gene 

squalene epoxidase (also known as squalene monooxygenase and designated either as SQLE 
or ERG1; which is a key enzyme in the ergosterol biosynthetic pathway), which lead to 

single amino-acid substitutions, Leu393Phe, Phe397Leu, or Phe415Val169 (Figure 5). In 

addition, azole resistance is frequently identified in T. indotineae. With the emphasis on 

terbinafine resistance, few studies have been performed to determine the mechanism of 

azole resistance144,167,168. However, one study identified tandem repeats of the lanosterol 

demethylase gene CYP51B, another study identified specific point mutations associated with 

resistance, and an early study found a point mutation in SQLE that caused itraconazole 

resistance while the same isolate was susceptible to terbinafine144,167,168 Interestingly, 

neither study identified mutations in the primary lanosterol demethylase CYP51A.

Treatment options.

There are no guidelines specifically for the treatment of Trichophyton infections, but 

a frequent and effective choice is terbinafine170. However, given the proportion of T. 
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indotineae isolates that are resistant to terbinafine and the general lack of availability of 

susceptibility testing of dermatophytes, other treatment options require consideration. In one 

randomized control trial of dermatophyte infection, itraconazole had a higher success rate 

than terbinafine171. There are reports of successful treatment of T. indotineae specifically 

using other topical antifungals such as ciclopirox olamine, bifonazole and miconazole, but 

these case reports are anecdotal147. Topical voriconazole has also been used successfully 

for treatment of terbinafine-resistant T. indotineae, and the newer topical azole antifungal 

luliconazole exhibits high in vitro activity against T. indotineae and could be considered as a 

treatment option172,173.

Several public health actions might help prevent further spread of T. indotineae. Such 

actions include increasing laboratory capacity to detect and monitor the spread of resistance, 

redoubling antifungal stewardship efforts with an emphasis on appropriate diagnostic testing 

and proper antifungal utilization, and performing further research to quantify the overall 

burden of disease and identify potential drivers of infection. In addition, guidelines for 

therapy, partially based on new animal models for infection are warranted.

Summary and outlook

This Review highlights three antifungal-resistant fungi that have recently emerged and are 

spreading across the globe, posing an ongoing threat to public health. C. auris is acquired 

and spread almost exclusively though the healthcare community. Medical tourism, global 

migration and the international transfer of patients has promoted the spread of C. auris to six 

continents in a little over a decade. T. indotineae is carried on the skin by otherwise healthy 

individuals and is spread within families and across communities, a situation that is likely 

to be exacerbated by the overuse and misuse of over-the-counter medications. The spread 

of azole-resistant A. fumigatus is driven by the use of fungicides in agricultural and other 

settings and is likely facilitated by the international trade in agricultural products127.

Although each pathogen emerged differently and affects distinct populations, the three fungi 

share the common thread of antifungal resistance, the potential to become a worsening 

public health threat, and the likelihood of spreading further through international travel 

and trade. However, despite the need, fungal disease surveillance is still rare in most 

countries, and antifungal susceptibility testing is still the exception rather than the norm 

in most clinical laboratories across the globe, even in resource-rich countries. Because C. 
auris is transferred from person to person within healthcare settings, rigorous infection 

control practices, screening and surveillance are essential for stopping or slowing the spread. 

Likewise, robust surveillance for azole-resistant A. fumigtus and T. indotineae infections is 

critical to monitor the spread of these pathogens and inform public health actions and policy.

Although this Review focused on three specific examples of fungi that are both spreading 

globally and carry antifungal resistance, other resistant fungi are quickly becoming a global 

concern. C. glabrata has long had the highest proportion of multidrug-resistant isolates, but 

fortunately, it does not seem to be spreading and outbreaks of multidrug-resistant isolates 

have been rare174. However, aside from C. auris, we may be seeing the emergence of other 

antifungal resistant Candida species. Azole-resistant C. parapsilosis has recently caused 
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outbreaks in several different countries including South Africa, Turkey, Mexico, Brazil and 

Spain, and we are starting to see a similar emergence of azole-resistant C. tropicalis in 

Asia and South America 175–181. Similar to what has been seen with T. indotineae, reports 

of terbinafine- and azole-resistant T. rubrum have been increasing 143,182,183. Although 

species and dissemination may vary, antifungal resistance is a recurring theme. The World 

Health Organization (WHO) has recently released the WHO fungal priority pathogens list. 

Two of the fungi in this Review, C. auris and A. fumigatus, are in the critical group 

primarily because the WHO recognized that resistance poses such a high public health 

risk184. A cross-sector emphasis on antifungal and fungicide stewardship is urgently needed 

to protect human health in addition to preventing the emergence of fungicide-resistant 

plant pathogens185. Multiple barriers exist to antifungal stewardship programs. The first 

is a paucity of effective fungal expertise and fungal diagnostics. Most fungal infections 

are treated empirically until diagnosis is confirmed, which can take up to a few weeks, 

if this occurs at all. The second barrier is the lack of availability on a global scale 

of rapid susceptibility testing. Susceptibility testing can facilitate step-down of therapy 

to generic or more easily tolerated antifungals. The third barrier is the that only three 

antifungal classes are currently approved for the treatment of systemic fungal infections. 

With the availability of three new classes of antifungals in the foreseeable future, the 

development of antifungal susceptibility testing capacity and effective stewardship programs 

are of paramount importance. Preventing the emergence of resistant human-pathogenic fungi 

hinges on the improvement of clinical and environmental fungal surveillance, increasing 

clinical capacity for fungal speciation and antifungal susceptibility testing, and encouraging 

policies that improve antifungal stewardship in both the clinical and agricultural realm.
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Box 1

Antifungal resistance.

Two categories of antifungal resistance exist: intrinsic and acquired resistance. Intrinsic 

resistance means that the wild type of a fungal species naturally exhibits resistance 

to antifungal compounds. By contrast, acquired resistance means that a fungal species 

is normally susceptible to antifungal compounds, but certain isolates have acquired 

mutations or epigenetic changes that confer resistance 186. In general, when researchers 

and clinicians discuss antifungal resistance, they are referring to acquired resistance.

Intrinsic antifungal resistance is a common phenomenon. For example, Basidiomycetes, 

Mucormycetes, and Fusarium species all exhibit resistance to echinocandins, a class 

of antifungal drugs that targets one of the proteins responsible for synthesis of β-1,3 

glucan in fungal cell walls 187,188. Because β-1,3 glucan constitutes only a minor 

component of Basidiomycete, Mucormycete, and Fusarium species, these fungi are 

intrinsically resistant to this drug class. Another example is the intrinsic resistance of 

Candida krusei to fluconazole, an antifungal drug that targets the enzyme lanosterol 

deacetylase, a protein in the ergosterol synthesis pathway. Fluconazole is ineffective 

against C. krusei because this Candida species has an amino acid polymorphism in 

its lanosterol deacetylase that prevents fluconazole from binding to the protein and 

inhibiting ergosterol synthesis 189,190.

Acquired resistance is uncommon in fungi. For Candida species, among those with 

established breakpoints, the overall resistance rate to antifungals is 7% (Ref. 191). 

Acquired resistance in molds is thought to be even less common, but because antifungal 

resistance testing of molds is infrequently performed, the true extent of acquired 

resistance in molds is unknown.

Fungi acquire antifungal resistance through numerous mechanisms. The most common 

forms of acquired resistance involve mutations to target protein binding-sites, which 

prevent the antifungal from binding 192. This mechanism is common among azole-

resistant strains of Candida species such as C. albicans, C. tropicalis and C. parapsilosis, 

as well as in azole-resistant Aspergillus species 192. Certain yeast species acquire 

resistance through mutations in transcription factors that lead to increased expression 

of the antifungal drug’s target, diluting the antifungal’s effect. In C. glabrata, the most 

common mechanism of fluconazole resistance involves mutations in transcription factors 

which lead to increased expression of efflux pumps that remove the antifungal from the 

cytoplasm before it can bind the target protein 193. Overexpression of the target protein 

through polyploidy and chromosomal duplication is another way that fungi overexpress 

target proteins and dilute the effect of antifungals 194,195. Although the mechanisms have 

not been well studied, some fungi may acquire resistance to azoles and amphotericin B 

by changing the composition of the fungal cell wall or cell membrane, thus compensating 

for the loss of the product of the target protein 192.

Fungal cells have evolved over hundreds of millions of years to become as efficient 

as possible. Mutation or overexpression of housekeeping genes can lead to a fitness 

cost for the cells. With the advent of RNAseq and whole-genome sequencing, data 
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increasingly suggest that most cells that acquire antifungal resistance undergo multiple 

other compensatory changes 196. Some of these changes are epigenetic changes in 

expression; others are mutations in other proteins. These secondary mutations are 

generally compensatory, and their role is most likely to alleviate fitness costs that may be 

associated with the acquired resistance 197–200.

The emergence of antifungal resistance has been a concern for clinicians, as the 

armamentarium for treating invasive fungal infections is essentially limited to three drug 

classes: azoles, echinocandins, and polyenes. For invasive mold infections, treatment 

options are further limited to certain azoles and the polyenes. When a mold becomes 

azole resistant, the choices remaining are to use combination treatment with an 

echinocandin or a less effective antifungal like terbinafine, or to use the polyene 

amphotericin B 131. Although amphotericin B has excellent efficacy against most fungal 

infections, it can cause severe side effects.
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Figure 1. Global disbursement of the three emerging fungi Candida auris, azole-resistant 
Aspergillus fumigatus and Trichophyton indotineae.
The presence of any of the organisms in a country does not mean they are ubiquitous 

there, and in some cases may be represented by a single isolate. a). Map of countries 

that have reported cases of Candida auris. b). Map of countries that have reported azole-

resistant Aspergillus fumigatus containing the TR34/L98H or TR46/Y121F/T289A mutation 

in patients. c) Map of countries that have reported azole-resistant A. fumigatus containing 

the TR34/L98H or TR46/Y121F/T289A mutation in the environment. D) Map of countries 

where Trichophyton indotineae has been identified from patients or the country where the 

infection was most likely acquired.
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Figure 2. 
The more common mechanisms of acquired antifungal resistance of Candida auris. One of 

the most remarkable aspects of C. auris is the number of different mechanisms of acquired 

antifungal resistance that have been identified. For the azoles, especially fluconazole, these 

include mutations in the target enzyme lanosterol demethylase (ERG11), mutations in 

transcription factors such as TAC1B that lead to the over-expression of efflux pumps, and 

changes in ploidy that lead to overexpression of ERG11 and target site dilution. For the 

echinocandins, the predominant mechanism of resistance is a change in the amino acid 

sequence at the target site hotspot in Fks1p the mechanism that is conserved across Candida 
species. For amphotericin B, a specific amino acid change in Ergp6 that alters membrane 

sterol composition has been identified, but other, as yet unidentified, mechanism that prevent 

ergosterol sequestration have been identified phenotypically but not molecularly.
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Figure 3. 
Diagram of possible routes of acquisition of antifungal resistant Aspergillus fumigatus.
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Figure 4. 
Mechanisms of acquired resistance of azole-resistant Aspergillus fumigatus. Azole 

resistance in A. fumigatus appeared almost as soon as azoles became available. 

Approximately 30% of isolates have no identified mechanism of resistance, but the other 

70% have changes either in the azole target enzyme lanosterol demethylase (CYP51A), or in 

HMG1, the gene encoding hydroxymethylglutaryl-CoA reductase, a rate-limiting enzyme in 

the ergosterol pathway. Some target site mutations, such as those at amino acids G54, G138, 

P216, M220 and G448, are associated predominantly with acquired resistance following 

long-term azole treatment. There is a unique set of targets, TR34/L98H (TR34) and TR46/

Y121F/T289A (TR46) that are specifically associated with environmental acquisition of 

resistance due to exposure to agricultural fungicides. These mutations consist of both a 

duplication in the 5’ untranslated region that causes increased transcription and a single or 

double amino acid change in the target binding site. The TR34 mutation leads to pan-azole 

resistance while the TR46 mutation is specific for voriconazole resistance.
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Figure 5. 
Mechanisms of acquired resistance of Trichophyton indotineae. T. indotineae is a newly 

emerging species so our current knowledge of the mechanisms of resistance is limited. 

Resistance to terbinafine is caused by specific mutations in the target enzyme, squalene 

epoxidase, which may also lead to azole resistance as it is a component of the ergosterol 

pathway. Azole resistance has been linked to changes in the target enzyme lanosterol 

demethylase (CYP51B) either through amino acid mutation, changes in ploidy, or mutations 

in transcription factors that result in overexpression.
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Table 1

Features of Candida auris, azole-resistant Aspergillus fumigatus and Trichophyton indotineae.

Feature Candida auris Azole-resistant Aspergillus 
fumigatus

Trichophyton indotineae

Antifungal 
resistance

Nearly all isolates are fluconazole 
resistant; amphotericin B, echinocandin and 
flucytosine resistance has been recorded

TR34 – itraconazole; TR46 – 
voriconazole; through additional 
mechanisms, some isolates may 
become pan-azole resistant

Frequently resistant to terbinafine, 
sometimes resistant to azole 
antifungals (for example, 
itraconazole)

Country or region 
where first cases 
have been 
identified

East Asia, Indian subcontinent, South 
Africa and Venezuela

Europe Southern and Southeast Asia

Current treatment 
options

For azole- and amphotericin B resistant 
isolates the treatment of choice is an 
echinocandin; for pan-resistant isolates 
there are ongoing clinical trials for 
new the antifungals ibrexafungerp and 
fosmanogepix

Amphotericin B; there are 
ongoing clinical trials for the 
new antifungals ibrexafungerp 
and olorofim

Terbinafine remains a treatment 
option, but for resistant isolates 
itraconazole or other triazoles are an 
option

Current 
distribution

Worldwide distribution, predominantly 
from the clades that originate from the 
Indian subcontinent, South Africa and 
Venezuela

Predominant in Europe but has 
been identified in Africa, North 
America, South America, Asia 
and Australia

Predominantly in India; cases have 
been reported throughout Asia, 
Europe, Africa, and North America; 
cases in Europe have generally been 
associated with travel or migration

Clinical 
presentation

Can be present as both a skin or urinary 
tract commensal with no symptoms or a 
pathogen in the bloodstream with typical 
symptoms of candidemia

Typical presentation for 
aspergillosis but may be 
refractory to initial therapy

Inflammatory dermatophyte 
infection, most commonly affecting 
the face and body, occasionally 
affecting nails
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