Skip to main content
. 2024 Jan 26;128(5):945–957. doi: 10.1021/acs.jpca.3c07129

Table 1. Average MAE, RMSE, and Dataset Size with Standard Deviations from 5-Fold Cross-Validation Given in Parentheses of Combinations of Active Learning Hyperparameters Evaluated by Training cNNPs with an Oxalic Acid CSP Landscapea.

entry training quantity committee size % uncertain target batch size energy MAE (kJ mol1) energy RMSE (kJ mol1) final training set size
1 E 6 10.0 30 1.11 (0.05) 1.74 (0.18) 852 (24)
2 E, F 6 10.0 30 1.08 (0.10) 1.50 (0.13) 546 (40)
3 ΔE 6 10.0 30 1.09 (0.11) 1.47 (0.18) 205 (53)
4 ΔE, ΔF 6 10.0 30 0.92 (0.06) 1.20 (0.07) 216 (22)
5 ΔE 6 2.5 30 0.89 (0.11) 1.21 (0.20) 354 (72)
6 ΔE 6 5.0 30 0.97 (0.06) 1.29 (0.10) 252 (45)
7 ΔE 2 5.0 30 1.19 (0.18) 1.61 (0.26) 168 (65)
8 ΔE 18 5.0 30 0.90 (0.06) 1.20 (0.12) 288 (41)
9 ΔE 6 5.0 15 1.01 (0.05) 1.37 (0.17) 216 (15)
10 ΔE 6 5.0 60 0.90 (0.08) 1.38 (0.43) 320 (45)
a

The cNNPs were trained either on total energy (E)/forces (F) or the difference between the force field (FIT + DMA) values and the reference values (ΔEF), i.e., Δ-learning. All entries used an uncertainty cutoff of 1.0 kJ mol–1, with candidates selected by highest uncertainty.