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Abstract

Introduction: Subjective tinnitus, a perception of phantom sound, is a common otological 

condition that affects almost 15% of the general population. It is known that noise-induced hearing 

loss (NIHL) and tinnitus exhibit a high level of comorbidity in individuals exposed to intense noise 

and music. However, the influence of genetic variants associated with NIHL on tinnitus remains 

elusive. We hypothesized that young musicians carrying genetic variants associated with NIHL 

would exhibit a higher prevalence of tinnitus than their counterparts.

Methods: To test this hypothesis, we analyzed the database by Bhatt et al. (2020) (originally 

developed by Phillips et al., 2015) that investigated the genetic links to NIHL in young college-

aged musicians. The present study identified 186 participants (average age = 20.3 yrs, range = 

18–25 yrs) with normal tympanometry and otoscopic findings and with no missing data. We 

included 19 single nucleotide polymorphisms in 13 cochlear genes that were previously associated 

with NIHL. The candidate genes include: KCNE1, KCNQ1, CDH23, GJB2, GJB4, KCNJ10, CAT, 

HSP70, PCDH70, MYH14, GRM7, PON2, and ESRRB.

Results: We find that individuals with at least one minor allele of rs163171 (C > T) in KCNQ1 

exhibit significantly higher odds of reporting tinnitus compared to individuals carrying the major 

allele of rs163171. KCNE1 rs2070358 revealed a suggestive association (p = 0.049) with tinnitus, 

but the FDR corrected p-value did not achieve statistical significance (p < 0.05). A history of 

ear infection and sound level tolerance showed a statistically significant association with tinnitus. 

Music exposure showed a suggestive association trend with tinnitus. Biological sex revealed a 

statistically significant association with distortion product otoacoustic emissions SNR measures.

Conclusions: We concluded that KCNQ1/KCNE1 volta-gegated potassium ion channel plays a 

critical role in the pathogenesis of NIHL and tinnitus. Further research is required to construct 

clinical tools for identifying genetically predisposed individuals well before they acquire NIHL 

and tinnitus.
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Tinnitus, a phantom perception of sound in the absence of an external sound source, is a 

prevalent hearing disorder. Over 50 million US adults experience some form of tinnitus, 

and almost 20 million people struggle with clinical manifestations of chronic tinnitus, while 

2 million have extreme and debilitating cases (1). About 10% of young adults experience 

chronic tinnitus (2-5). About 15% of workers exposed to occupational noise experience 

chronic tinnitus (6). Tinnitus is the most prevalent service-connected disability (7). The US 

military spends over $3.5 billion on tinnitus-related costs annually; this amount is likely to 

increase drastically (8). Tinnitus can cause anxiety, stress, depression, cognitive dysfunction, 

social isolation, and insomnia leading to poor quality of life (9-11).

The phenotypic spectrum of tinnitus is likely to be influenced by a combination of 

environmental, genetic, and lifestyle-related factors (12). Environmental and health-related 

variables, such as loud noise/music exposure, hearing loss, persistent middle ear infection, 

smoking, stress, head injury, exposure to certain ototoxic medications, and systemic 

diseases are known risk factors for tinnitus (2-4,13). In older adults, tinnitus is often 

associated with noise-induced hearing loss (NIHL), other forms of hearing loss (e.g., 

presbycusis), cochlear dysfunction, stress, occupational noise exposure, leisure-time noise/

music exposure, smoking, head injury, ototoxic drugs, depression, and history of the 

middle ear or sinus infections, severe neck injury, migraine or systematic diseases 

(e.g., hypertension, hyperlipidemia) (14-16). Noise/music exposure is a predominant 

environmental risk factor for tinnitus (2-4). However, it is estimated that only 3% of the 

cases are exclusively attributable to noise/music exposure (17). Almost 50% of the cases 

cannot be attributed to any known causes (18). A longitudinal twin study exploring the 

genetic contribution to tinnitus suggested a moderate genetic influence on tinnitus (19). 

Therefore, there is a need to identify genetic factors underlying tinnitus perception.

Table 1 presents a list of major case–control studies investigating the genetic influence on 

tinnitus. The case–control studies investigated potential candidate gene set, which included 

the genes essential for cardiovascular physiology (ACE, ADD1), ion recycling in the inner 

ear (i.e., KCNE1, KCNJ10, SLC12A2, GJB family), serotonin receptor and transporters 

(e.g., SLC6A4), and neurotrophic factors (e.g., BDNF, GDNF) (Table 1). A genome-wide 

association study (GWAS) investigating 4,000,000 single nucleotide polymorphisms (SNPs) 

could not obtain any statistically significant associations with tinnitus. The study reported 

novel target genes and SNPs, showing promising association trends to tinnitus (20). A recent 

GWAS using the UK biobank database identified 6 genome-wide significant loci and 27 

genes in the discovery cohort. The study replicated 3 of 6 loci and 8 of 27 genes in a 

replication sample (21).

While it is known that NIHL and tinnitus exhibit a high level of comorbidity in individuals 

exposed to high levels of noise/music (e.g., 32)(32), the influence of genetic variants 

associated with NIHL on tinnitus remains elusive. We hypothesized that young musicians 
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carrying genetic variants related to NIHL would exhibit a higher prevalence of tinnitus than 

their counterparts. To test this hypothesis, we analyzed the database by Phillips et al. (33) 

that investigated the genetic links to NIHL in young college-aged musicians. This population 

is exposed to a traumatic level of music regularly (e.g., 34,35)(34,35), but it exhibits an 

absence of age-related confounding variables (e.g., systemic diseases) and exposure to 

ototoxic agents. This unique combination is suitable to investigate the genetic influence on 

NIHL and related hearing health concerns (e.g., tinnitus). This study aimed to examine the 

relationship between selected genetic variants and measures of tinnitus in a sample of young 

musicians.

METHODS

Participants

The present study evaluated the database by Phillips et al. (33), which included phenotype 

and genotype data of 640 music students aged 18 to 25 years. The data were collected in the 

academic year 2010 to 2012. All participants were music majors with daily music exposure 

that included individual practice and ensemble practice. Audiometric testing was conducted, 

and participants were asked to complete an online survey inquiring about demographic 

details, music exposure, tinnitus, and other audiological details. The cohort for the present 

study was chosen from the initial sample of 640 young adults (34). The present study 

identified 186 participants (average age = 20.3 yrs, range = 18–25 yrs) from the initial 

sample of 640 young adults with normal tympanometry and otoscopic findings and with no 

missing genetic and phenotype data. Bhatt et al. (36) conducted an association analysis of 

candidate SNPs (those included in the present study) and audiological measures of NIHL. 

We evaluated the association between the candidate SNPs (i.e., SNPs associated with NIHL 

– further details can be found in Bhatt et al. (36)) and tinnitus. Here we briefly present the 

relevant testing procedures. The study details can be found in our previous reports (33,36).

Prerequisite Testing

All participants underwent otoscopic examination. Participants with normal findings were 

tested with immittance audiometry. We performed tympanometry using a 226-Hz probe 

tone with Maico MI 24 (MAICO Diagnostics, Eden Prairie, MN). Participants with normal 

otoscopic findings and normal immittance measures (i.e., tympanometric compliance value 

ranging from 0.33 to 1.75 cm3, ear canal volume ranging from 0.8 to 1.8 cm3, middle-ear 

pressure ranging from −50 to 25 daPa in both ears) were considered for the statistical 

analysis.

Hearing Threshold Measurement

All audiometric measures were collected in a sound-treated booth meeting the ANSI 

standards (ANSI S3.1-1999). Audiometric thresholds were obtained at 250; 500; 1,000; 

2,000; 3,000; 4,000; 6,000; and 8,000 Hz (GSI-61, Eden Prairie, MN) with TDH-39 supra-

aural headphones (Telephonics, Farmingdale, NY), using the modified Hughson-Westlake 

procedure. We found 186 individuals with complete audiometric, genetic, and survey data 

from the initial database.
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Distortion Product Otoacoustic Emissions

The details about the recording procedure can be found in Bhatt et al. (2020). In brief, 

distortion product otoacoustic emissions were measured using an ERO-SCAN OAE screener 

(MAICO Diagnostics, Eden Prairie, MN). DPOAEs were measured for primary levels of 

65/55 dB SPL with F2/F1 = 1.22. DPOAEs were measured for F2 frequency ranging from 

1,500 to 10,000 Hz at nine data points (i.e., 1,500; 2,000; 3,000; 4,000; 5,000; 6,000; 7,000; 

8,000; and 10,000 Hz). DPOAEs were measured for 2 seconds at each F2 frequency while 

participants were seated comfortably in a sound-treated booth meeting ANSI standards 

(ANSI S3.1-1999). The database contained DPOAE data for 165 participants from 186 

participants meeting the inclusion criteria of the study.

Questionnaire Data

The survey included an assessment of three areas: demographic details, medical and 

audiological history, music exposure history, tinnitus, and sound level tolerance (SLT).

1. Demographic details: The questionnaire inquired about age, sex, and ethnicity. 

Response choices for sex included male/female/no disclosure. Ethnicity was 

evaluated with a question, “Please indicate your predominant racial ancestry. 

Use percentages that add up to 100%.” The response choices included African/

European/East Asian/Middle Eastern/Native American/Polynesian/South Asian. 

Ethnicity was classified: European American and others (including multiracial).

2. Medical and audiological history: These questions addressed the history of 

hearing loss, medical conditions such as meningitis, high blood pressure, head 

injury, diabetes, mumps, heart trouble, malaria, scarlet fever, and others.

3. Music exposure history: The music exposure was calculated using the methods 

described in Bhatt et al. (36). In brief, we used questionnaire data about musical 

instruments (average hours/wk and a total number of years), ensembles (average 

hours/wk and a total number of years), and music player use (average hours/wk, 

typical volume control settings, and a total number of years) to calculate the 

overall music exposure value for each participant. Music exposure was divided 

into four categories using the quartile range – low, mid, high, very high.

4. Tinnitus phenotype: The survey inquired about tinnitus using the following 

question – “Do you have ringing, static, or a hissing sound in your ears?” The 

answer choices include Yes/No. If the participants answered positively, they were 

asked to indicate the affected side (Right/Left/Both) and were injured to indicate 

when they hear tinnitus (Occasionally/After practice/After noise/Constantly). 

The individuals responding positively to the question, “Do you have ringing, 

static, or a hissing sound in your ears?” were identified as cases, and those 

responding “no” to the question were considered controls for the statistical 

analysis.

5. The survey inquired about SLT with the following question – “Do loud sounds 

hurt your ears?” The participants were required to answer Yes/No.
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Genotyping Data

The genotyping details can be found in Phillips et al. (33). In brief, the buccal cell samples 

(Isohelix: Boca Raton, FL) were collected and DNA was extracted for SNP genotyping 

and validation (GeneSeek; Lincoln, NE) on the Sequenom MassARRAY iPLEX platform. 

We identified a subset of SNPs from the original database that has been associated with 

NIHL in the previous studies (36). SNPs with the minor allele frequency >0.001 and with 

no missing data were included. The present study included 19 SNPs in 13 cochlear genes 

that were previously associated with NIHL. These include two SNPs in KCNE1 (rs2070358, 

rs1805127) (25,37), one SNP in KCNQ1 (rs163171) (38), one SNP in CDH23 (rs1227051) 

(39), two SNPs in GJB2 (rs9552098, rs3751385) (25), one SNP in GJB4 (rs755931) (25), 

one SNP in KCNJ10 (rs1130183) (25), two SNPs in CAT (rs475043, rs12273124) (25,40), 

three SNPs in HSP70 (rs1043618, rs1061581, rs2227956) (41), one SNP in PCDH70 

(rs7095441) (42), two SNPs in MYH14 (rs667907, rs588035) (42), one SNP in GRM7 

(rs11928865) (43) (associated with age-related hearing loss), one SNP in PON2 (rs987539) 

(44), and one SNP in ESRRB (rs61742642) (33).

Statistical Analysis

The statistical analysis was performed with the SPSS software (version 25, SPSS, INC). A 

binomial logistic regression analysis was performed to identify the predictors for tinnitus. 

The regression model included biological sex, SLT, history of ear infection, and 19 SNPs 

as the dependent variables. SNPs were coded into two categories (dominant genetic model) 

– participants carrying major allele (e.g., CC genotype), and those with at least one minor 

allele (e.g., CT or TT genotypes). The odds ratio and Chi-square statistics, and Pearson’s 

productmoment correlation coefficients were calculated to examine the relationship between 

the experimental variables.

RESULTS

The study sample included 99 males and 87 females. One hundred six participants (57%) 

reported tinnitus perception. Among individuals with tinnitus, 95 participants reported 

ringing, seven participants reported hissing, and four reported other types of tinnitus 

perception. Among participants with tinnitus, 20 individuals reported tinnitus perception 

in only one ear, and 87 reported tinnitus perception in both ears. One hundred seventy 

individuals reported predominant European ancestry, 56 individuals reported a history of 

ear infection, and 22 individuals reported that they smoked tobacco at least once in their 

lifetime. Fifty-six participants (about 30%) reported a history of ear infections.

Comparison of Audiometric Thresholds Between Individuals With and Without Tinnitus

The repeated measure ANOVAs were performed to identify the group difference in the 

audiometric thresholds between individuals with and without tinnitus. The analysis was 

performed with six independent variables and two dependent variables – tinnitus and 

biological sex. The analyses revealed that the main effect of tinnitus (F[1,171] = 1.3, p 
= 0.25) and biological sex (F[1,171] = 1.8, p = 0.17) were not significant for the right ear. 

Similarly, we could not obtain statistically significant main effect for tinnitus (F[1,171] = 

1.2, p = 0.27) and biological sex (F[1,171] = 3.5, p = 0.06) for the left ear. The interaction 
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effect between the dependent variables was found to be significant (F[1,171] = 5.29, p = 

0.02). The estimated marginal means for the interaction effect revealed that male participants 

with tinnitus (marginal mean = 5.16 dB) and without tinnitus (marginal mean = 7.8 dB) 

revealed a higher mean difference. Female participants with tinnitus (marginal mean = 5.4 

dB) and without tinnitus (marginal mean = 4.5 dB) showed lower mean difference. The 

repeated measure ANOVAs revealed no significant difference between the SLT groups in 

both ears (p > 0.05). Figure 1 presents audiometric results between the experimental groups.

Comparison of DPOAEs Between Individuals With and Without Tinnitus

We performed repeated measure ANOVAs with 9 within-subject factors (DPOAE frequency 

bands) and two between-subject factors – biological sex and tinnitus. The results revealed 

that gender showed significant main effect for right (F[1,160] = 16.04, p < 0.0001) and 

left (F[1,160] = 7.19, p = 0.008) ears. The main effect for tinnitus was not significant 

for both ears (p > 0.05). Similarly, the repeated measure ANOVAs revealed no significant 

difference between the SLT groups in both ears (p > 0.05). Figure 2 presets audiometric 

results between the experimental groups.

Association Between Tinnitus and Hearing Health-Related Variables

We performed Chi-square analyses to identify the association between tinnitus and hearing 

health-related variables. Tinnitus revealed statistically significant association with SLT 

(χ2[1, N = 186] = 4.18, p = 0.041) and a history of ear infection (χ2[1, N = 186] = 6.81, 

p = 0.009). No significant relationship was obtained for biological sex, music exposure, 

self-reported ethnicity, family history of hearing loss, and smoking. Figure 3 presents the 

association between tinnitus and hearing health-related variables.

Results of the Regression Analyses

We performed binomial logistic regression analysis with tinnitus as an independent variable 

and 24 dependent variables – sex, ethnicity, SLT, music exposure, history of ear infection, 

and 19 SNPs in 13 cochlear genes listed in methods. We applied false discovery rate 

corrections to the p-value to correct for multiple comparisons. History of ear infection 

(odds ratio [OR] = 0.29, p = 0.004, 95%CI = 0.12–0.66) and KCNQ1 rs163171 (OR = 

2.83, p = 0.004, 95%CI = 1.38–5.78) were found to be associated with tinnitus (Fig. 3). 

These associations remained statistically significant after FDR correction. SLT (OR = 2.1, 

p = 0.04, 95%CI = 1.03–4.27) and KCNE1 rs2070358 (OR = 0.41, p = 0.049, 95%CI = 

0.17–0.99) showed suggestive associations not statistically significant after FDR correction. 

The overall model resulted in a statistically significant Chi-square value (p = 0.02) and a 

Cox and Snell R2 value of 0.193. No other predictors were associated with tinnitus. We 

performed a Chi-square analysis to rule out a possibility of population stratification due 

to self-reported ethnicity. Self-reported ethnicity revealed no significant association with 

KCNQ1 SNP rs163171 (χ2[1, N = 186] = 0.051, p = 0.82) and tinnitus (χ2[1, N = 186] = 

1.25, p = 0.26). We performed a similar regression analysis for SLT as a dependent variable 

(Table 2). Sex (OR = 3.8, p = 0.0004, 95%CI = 1.81–8.04) and tinnitus (OR = 2.01, p = 

0.046, 95%CI = 1.01–3.99) revealed statistically significant association with SLT. No other 

audiological and genetic variables showed an association with SLT.
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DISCUSSION

The present study evaluated tinnitus in a sample of young adults (N = 186). We hypothesized 

that individuals carrying SNPs associated with NIHL would exhibit a significantly higher 

prevalence of tinnitus as these conditions are highly comorbid. Our results showed that 

individuals with at least one minor allele of rs163171 (C > T) in the KCNQ1 gene 

exhibit significantly higher odds of reporting tinnitus compared to individuals carrying the 

major allele of rs163171. Our analysis further revealed that a history of ear infection and 

SLT showed a statistically significant association with tinnitus. Music exposure showed 

a promising association trend with tinnitus, but the p-value failed to achieve statistical 

significance. Biological sex revealed a statistically significant association with DPOAE SNR 

measures. The main effects of tinnitus on hearing thresholds and DPOAE SNR were not 

statistically significant.

Association of the KCNQ1 Variant With Tinnitus

Potassium ion recycling is a necessary process for maintaining endolymphatic potential 

(45). KCNQ1 (Potassium Voltage-Gated Channel Subfamily Q Member 1) and KCNE1 

(Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1) form a voltage-gated 

potassium channel that is expressed in the marginal cell membrane of the stria vascularis 

(46). KCNQ1/KCNE1 channel is necessary to maintain potassium ions in endolymph 

to sustain endolymphatic potential, essential for cochlear transduction (e.g., 47)(47). 

Individuals with Jervell & Lange-Nielsen syndrome have KCNQ1 or KCNE1 mutations 

resulting in cardiac arrhythmia and hearing loss (48-51). SNP in KCNQ1 (rs163171) was 

associated with NIHL in factory workers (38). This SNP revealed a significant association 

with tinnitus in the present study. KCNE1 rs2070358 revealed a promising pattern of 

association (p = 0.049) with tinnitus, but the FDR corrected p-value could not achieve 

the statistical significance (adjusted p < 0.05). Our previous study showed that the KCNE1 

SNP was significantly associated with DPOAE SNR in young musicians (Bhatt et al., 

2020). Collectively, the results suggest the involvement of KCNQ1/KCNE1 voltage-gated 

potassium ion channel in the pathogenesis of NIHL and tinnitus.

Subjective tinnitus has been associated with a larger platelet count and volume (52-56). 

Interestingly, the minor allele of KCNQ1 rs163171 has been associated with larger platelet 

count, mean platelet volume, and other inflammatory markers (57). We hypothesized 

that individuals with the minor allele of KCNQ1 rs163171 might be more susceptible to 

noise damage due to inefficient inflammatory response following noisy events (e.g., music 

ensemble) resulting in tinnitus. KCNQ1 rs163171 is located in the noncoding (intronic) 

region of the KCNQ1 gene (https://www.ncbi.nlm.nih.gov/snp/rs163171) A recent GWAS 

investigating a genome-wide association to tinnitus using the UK Biobank database that 

identified most SNPs in the noncoding (intronic) regions from the genes associated with 

tinnitus (21). The biological mechanism underlying tinnitus and intronic SNPs largely 

remains unexplored (52). However, it is known that the genetic elements responsible 

for maintaining biological functions are likely to be regulated by epigenetic factors. The 

investigation of epigenetic factors on tinnitus is essential to acquire mechanistic insight into 

KCNQ1-related susceptibility to tinnitus.
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KCNQ1 did not reveal a statistically significant association with tinnitus in the large-

scale GWAS (21). This observation might be attributed to the differences in the tinnitus 

phenotyping process and the study population. The present study evaluated audiometric 

hearing thresholds to identify those with “normal” audiograms while the large-scale 

GWAS was dependent on the self-reported measure of hearing difficulties (21). The study 

population of young musicians does not exhibit age-related confounding factors (e.g., 

systemic diseases) that can often obscure the phenotype–genotype association analysis. 

Young musicians with routine exposure to traumatic sound levels are likely to facilitate the 

identification of genetic variants with a small effect size. Given that the KCNQ1 variant was 

not associated with tinnitus in a large-scale GWAS, we expect that its effect size would be 

smaller in the general population. Further research is required to investigate the role of the 

KCNQ1/KCNE1 channel in the pathogenesis of tinnitus and NIHL.

Association of Tinnitus With Other Audiometric Measures

Tinnitus revealed a statistically significant association with SLT and a history of ear 

infection. These results are consistent with other studies (2-5,15). We could not obtain a 

statistically significant main effect for tinnitus on DPOAE and audiometric measures. It 

is possible that the conventional audiometry evaluating hearing thresholds at the octave 

frequencies and DPOAE measured using discrete primary tone combination are not sensitive 

to detect physiological dysfunction between the tested frequencies (58). The audiometric 

“notch” configuration in the high-resolution audiometry has been associated with tinnitus in 

individuals with conventional hearing thresholds within normal limits, suggesting that the 

cochlear hearing loss that remains undetected with the conventional audiometry might play 

a role in tinnitus genesis (59). Therefore, the present study cannot rule out the cochlear 

dysfunction in individuals with tinnitus.

Young musicians are exposed to traumatic sound levels at occupational and recreational 

settings on a regular basis (34-35). Recent animal studies have shown moderate noise 

exposures that produce a large temporary threshold shift, but no permanent threshold shift 

could induce irreversible damage to inner hair cells ribbon synapses (60-62). Noise-induced 

cochlear synaptopathy preferentially damages auditory nerve fibers with a low spontaneous-

firing rate (SR) and high threshold (63). Low SR fibers show larger dynamic ranges (64), 

are essential for processing temporal information at the suprathreshold levels (65-67) and are 

less vulnerable to masking (68). Noise-induced cochlear synaptopathy could compromise 

auditory acuity in complex listening environments without affecting hearing sensitivity 

(69). Noise-induced cochlear synaptopathy might reduce the cochlear output, which might 

cause an elevation in the central gain contributing to tinnitus (70). Musicians with high 

noise exposure exhibit a reduction in their auditory brainstem response wave I amplitude 

(71). The proxy measures of cochlear synaptopathy remained unexplored in the present 

study. Therefore, we could not rule out the auditory neural dysfunction in our participants 

with normal audiograms. We hypothesized that the reduction in cochlear gain due to 

impaired functioning KCNQ1/KCNE1 voltage-gated potassium ion channel (as evident by 

reduced DPOAE SNR) (36) might cause maladaptive consequences resulting in abnormally 

increased central gain contributing to tinnitus genesis.
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Experimental Caveats

We evaluated an existing database with limited genotype and phenotype data. Our study 

evaluated sex, ethnicity, and music exposure to account for population stratification while 

investigating the genetic association to tinnitus and SLT. However, it should be noted that 

fully accounting for population stratification is a major weakness of the candidate gene 

studies (72). The database did not have an exhaustive set of SNPs associated with NIHL in 

previous studies (e.g., 73)(73). The study was limited by its small sample size and the survey 

design for evaluating tinnitus and music exposure. A comprehensive test battery including 

tinnitus evaluation and physiological measures might be more efficient to identify complex 

genetic elements that control the phenotypic spectrum underlying tinnitus.

CONCLUSIONS

The study revealed a significant association between SNP rs163171 (C > T) in KCNQ1 

and tinnitus. KCNE1 rs2070358 revealed a promising pattern of association (p = 0.049) 

with tinnitus, but the FDR corrected p-value could not achieve the statistical significance (p 
< 0.05). We concluded that KCNQ1/KCNE1 voltage-gated potassium ion channels play 

a critical role in the pathogenesis of NIHL and tinnitus. Further research is required 

to construct clinical tools for identifying genetically predisposed individuals well before 

they are exposed to environmental risk factors (e.g., noise, music) and acquire irreversible 

damage to their auditory system leading to NIHL and tinnitus.
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FIG. 1. 
Average hearing thresholds as a function of audiometric frequencies between individuals 

with and without tinnitus (A), sound level tolerance (SLT) (B), and between males and 

females (C).
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FIG. 2. 
Average DPOAE SNR values as a function of audiometric frequencies between individuals 

with and without tinnitus (A), sound level tolerance (SLT) (B), and between males and 

females (C). DPOAE, distortion product otoacoustic emissions.
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FIG. 3. 
(A) Prevalence of tinnitus between individuals with the major and minor allele for KCNE1 

rs163171. (B) Prevalence of tinnitus between individuals with and without a history of 

ear infection. (C) Prevalence of tinnitus between individuals with and without SLT. (D) 

Prevalence of tinnitus between males and females. (E) Prevalence of tinnitus between 

individuals with low, mid, high, and very high music exposure levels. SLT, sound level 

tolerance.
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