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Abstract
Recent advances in MRI-guided radiation therapy (MRgRT) and deep learn-
ing techniques encourage fully adaptive radiation therapy (ART), real-time MRI
monitoring, and the MRI-only treatment planning workflow. Given the rapid
growth and emergence of new state-of -the-art methods in these fields, we sys-
tematically review 197 studies written on or before December 31, 2022, and
categorize the studies into the areas of image segmentation, image synthe-
sis, radiomics, and real time MRI. Building from the underlying deep learning
methods, we discuss their clinical importance and current challenges in facil-
itating small tumor segmentation, accurate x-ray attenuation information from
MRI, tumor characterization and prognosis, and tumor motion tracking. In par-
ticular, we highlight the recent trends in deep learning such as the emergence
of multi-modal, visual transformer, and diffusion models.
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1 INTRODUCTION

Recent innovations in magnetic resonance imaging
(MRI) and deep learning are complementary and hold
great promise for improving patient outcomes. With the
advent of the Magnetic Resonance Imaging Guided Lin-
ear Accelerator (MRI-LINAC) and MR-guided radiation
therapy (MRgRT), MRI allows for accurate and real-
time delineation of tumors and organs at risk (OARs)
that may not be visible with traditional CT-based plans.1

Deep learning methods augment the capabilities of
MRI by reducing acquisition times, generating electron
density information crucial to treatment planning, and
increasing spatial resolution,contrast,and image quality.
In addition,MRI auto-segmentation and dose calculation
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methods greatly reduce the required human effort on
tedious treatment planning tasks,enabling physicians to
further optimize treatment outcomes.Finally,deep learn-
ing methods offer a powerful tool in predicting the risk of
tumor recurrence and adverse effects. These advance-
ments in MRI and deep learning usher in the era of
fully adaptive radiation therapy (ART) and the MRI-only
workflow.2

Deep learning methods represent a broad class of
neural networks which derive abstract context through
millions of sequential connections. While applicable
to any imaging modality, these algorithms are espe-
cially well suited to MRI due to its high information
density.3 Deep learning demonstrates state of the art
performance over traditional hand-crafted and machine
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F IGURE 1 An MRI-only workflow for prostate cancer. From top to bottom, a diagnostic MRI is taken to determine the sites of the target
volume and organs at risk (OARS) which can be aided by segmentation models and prognostic radiomics models. Simultaneously, sCT enables
x-ray attenuation information. Finally, fiducial markers (FMs) are identified to define the prostate position which can be monitored during
treatment with real time MRI. Reprinted by permission from Elsevier: Clinical Oncology, Magnetic Resonance Imaging only Workflow for
Radiotherapy Simulation and Planning in Prostate Cancer by Kerkmeijer et al. 2018.160

learning methods but are computationally intensive and
require large datasets.For MRI and other imaging tasks,
convolutional neural networks (CNNs), built on local
context, have traditionally dominated the field. However,
advancements in network architecture, availability of
more powerful computers, large high-quality datasets,
and increased academic interest have led to rapid
innovation. Especially exciting are the rapid adaptation
of cutting-edge transformer and generative methods,
which utilize data from multiple input modalities.

Deep learning techniques can be organized accord-
ing to their applications in MRgRT in the following
groups: segmentation, synthesis, radiomics (classifica-
tion), and real-time/4D MRI. Shown in Figure 1 is an
example of all of these groups working together for
an MRI-only workflow for prostate cancer. Segmenta-
tion methods automatically delineate tumors, organs
at risk (OARs), and other structures. However, deep
learning approaches face challenges when adapting
to small tumors, multiple organs, low contrast, and dif-
fering ground truth contour quality and style. These

challenges differ greatly depending on the region of the
body, so segmentation methods are primarily organized
by anatomical region.4

Synthesis methods are best understood by their input
and output modalities. Going from MRI to CT, synthetic
CT (sCT) provides accurate attenuation information
not apparent in MRI, augmenting the information of
co-registered CT images. In an MRI-only workflow, sCT
avoids registration errors and the radiation exposure
associated with traditional CT.5 In addition, synthetic
relative proton stopping power (sRPSP) maps can be
generated to directly obtain dosimetric information for
proton radiation therapy.6 The dosimetric uncertainty
can be further enhanced with deep learning dose calcu-
lation methods,which greatly reduce inference time and
could yield lower dosimetric uncertainties compared to
traditional Monte Carlo (MC) methods. Synthetic MRI
(sMRI), generated from CT, is appealing by combining
the speed and dosimetric information of CT with MRI’s
high soft tissue contrast. However, CT’s lower soft tissue
contrast makes this application much more challenging,
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but sMRI has still found success in improving CT-
based segmentation accuracy.7–9 Alternatively, there
are rich intra-modal applications by generating one
MRI sequence from another. For example, the spatial
resolution of clinical MRI can be increased by predicting
a higher resolution image10,11 and applying contrast
can be avoided with synthetic contrast MRI.12

Radiomics represents an eclectic body of works but
can be divided into studies which classify structures
in an MRI image13 or prognostic models which use
MR images to predict treatment outcomes such as
tumor recurrence or adverse effects.14,15 Deep learn-
ing methods in real-time and 4D MRI overcome MRI’s
long acquisition time and the low field strengths of the
MRI-LINAC by reconstructing images from undersam-
pled k-space,16 synthesizing additional MRI slices,17 and
exploiting periodic motion to improve image quality.18

In this review, we systematically examine studies that
apply deep learning to MRgRT,categorizing them based
on their application and highlighting interesting or impor-
tant contributions.We identify four distinct areas of deep
learning methods which enhance the clinical workflow:
segmentation, synthesis, radiomics (classification), and
real-time/4D MRI. For each category, the sections are
ordered as follows: foundational deep learning methods,
challenges specific to MRI, commonly used evalua-
tion metrics, and finally subcategories including a brief
overview followed by interesting or influential studies in
that subcategory. Since deep learning methods build on
each other, the unfamiliar reader is encouraged to read
the explanations on deep learning methods sequentially.
In Section 7, we discuss current trends in deep learn-
ing architectures and how they may benefit new clinical
techniques and MRI technologies like the MRI-LINAC
and higher strength MRI scanners.

2 LITERATURE SEARCH

This systematic review surveys literature which imple-
ments deep learning methods and MRI for radiation
therapy research. “Deep learning” is defined to be any
method which includes a neural network directly or indi-
rectly.These include machine learning models and other
hybrid architectures which take deep learning derived
features as input. Studies including MRI as at least part
of the dataset are included. Studies must list their pur-
pose as being for radiation therapy and include patients
with tumors.Studies on immunotherapy and chemother-
apy without radiation therapy are excluded. Conference
abstracts and proceedings are excluded due to an
absence of strict peer review.

The literature search was performed on PubMed on
December 31, 2022, with the following search crite-
ria in the title or abstract: “deep learning and (MRI or
MR) and radiation therapy” and is displayed in Table
1. This search yielded 335 results. Of these results,

F IGURE 2 Number of deep learning studies with applications
towards MRgRT per year by category including references 161–277
in Supporting Information.

F IGURE 3 Technical trends in deep learning.

197 were included based on manual screening using
the aforementioned criteria. Seventy-eight were classi-
fied as segmentation, 81 as synthesis, 24 as radiomics
(classification), and 14 as real-time or 4D MRI. There is
inevitably some overlap in these categories. In particular,
studies which use sMRI for the purposes of segmenta-
tion are classified as synthesis and papers which deal
with real-time or 4D MRI are placed in Section 6: Real-
Time and 4D MRI. Figure 2 shows the papers sorted
by category and year. Compared to other review papers,
this review paper is more comprehensive in its litera-
ture search and is the first specifically on the topic of
deep learning in MRgRT. In addition, this work uniquely
focuses on the underlying deep learning methods as
opposed to their results.Figure 3 shows technical trends
in deep learning methods implementing 3D convolution,
attention, recurrent, and GAN techniques.

3 IMAGE SEGMENTATION

Contouring (segmentation) in MRgRT is the task of
delineating targets of interest on MR images, which
can be broadly divided into distinct categories: con-
touring of organs at risk and other anatomical struc-
tures expected to receive radiation dose and contour-
ing of individual tumors. Both tumor and multi-organ
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segmentation suffer from intra- and inter- observer
variability.19 MRI does not capture the true extent of the
tumor volume, as well as poorly defined boundaries and
similar structures like calcifications lead to institutional
and intra-observer variability. Physician contouring con-
ventions and styles further complicate the segmentation
task and lead to inter-observer variability.20,21 Multi-
organ segmentation is mostly challenged by the large
number of axial slices and OARs which make the task
tedious and prone to error. Automated solutions to MRI
segmentation have been proposed to reduce physician-
workload and provide expert-like performance. In this
section,we first review foundational deep learning meth-
ods starting with CNN and moving into recurrent and
transformer architectures.

3.1 Deep learning methods

Since the application of CNNs to MRI-based segmenta-
tion in 201722, fully convolutional networks (FCNs) have
outperformed competing atlas-based and hand-crafted
auto-segmentation methods, often matching the intra-
observer variability among physicians.23 FCNs employ
convolutional layers which are trained to detect pat-
terns in either nearby voxels or feature maps output
from previous convolutional layers. In contrast with tra-
ditional CNNs, FCNs forgo densely connected layers.
This design choice enables voxel-wise segmentation,
allows for variable sized images, and reduces model
complexity and training time. Different types of convolu-
tions include atrous and separable convolutions. Atrous
convolutions sample more sparsely to gain a wider field
of view and can be mix-and-matched to capture large
and small features in the same layer. Separable convo-
lutions divide a 2D convolution into two 1D convolutions
to use fewer parameters for similar results. By connect-
ing multiple convolutional layers together with non-linear
activation functions, larger and more abstract regions
of the input image are analyzed to form the encoder.
For pixelwise segmentation, the final feature map is
expanded to the original image resolution through a cor-
responding series of transposed convolutional layers
forming the decoder. All FCNs include pooling layers to
conserve computational resources whereby the resolu-
tion of feature maps is reduced by choosing the largest
(max-pooling) or average local pixel.24

Advances from the field of natural language pro-
cessing (NLP) have had a tremendous impact on
segmentation tasks. Recurrent neural networks (RNNs)
are defined by the output of their node being connected
to the input of their node. To avoid an infinite loop, the
output is only allowed to connect to its input a set number
of times. This property allows for increased context and
the ability to handle sequential data which is especially
important in language translation. Applied to CNNs,
each recurrent convolutional layer (convolution+ activa-

tion function) is performed multiple times which creates
a wider field of view and more context with each subse-
quent convolution. However, recurrent layers can suffer
from a vanishing gradient problem. Long short-term
memory blocks (LSTM) solve this by adding a “forget”
gate, which forgets irrelevant information. In addition,
LSTMs are more capable of making long range con-
nections. Similar to the LSTM gate, the gated recurrent
unit (GRU) has an update and reset gate which decide
which information to pass on and which to forget. Both
LSTM and GRU also have bidirectional versions which
pass information forward and backwards.25,26 Relative
performance between the LSTM and GRU gates are sit-
uational with the GRU gate being less computationally
expensive.27

Related developments from NLP are the concepts of
attention and the transformer. In terms of MRI, attention
is the idea that certain regions of the MRI volume are
more important to the segmentation task and should
have more resources allocated to them. ROI schemes
can then be defined as a form of hard attention by
only considering the region around a tumor. A version
of soft attention would weight the region around the
tumor heavily and process the information in high res-
olution but also give a smaller weighting to nearby
organs and process it in lower resolution.28 In practice,
attention modules include a fully connected feedfor-
ward neural network to generate weights between a
feature map of the encoder and a shallower feature
map in the decoder. These weights are improved upon
through backpropagation of the entire network to give
higher representational power to contextually signifi-
cant areas of the image. This fully connected network
can also be replaced with other models such as the
RNN, GRU, or LSTM.29 If the same feature map is
compared with itself, this is called self -attention and is
the basis for the transformer architecture.30 The trans-
former can be thought of as a global generalization
of the convolution and can even replace convolutional
layers. The advantages of the transformer are explicit
long-range context and the transformer’s multi-head
attention block allows for attention to be focused on
different structures in parallel. However, transformers
require more data to train and can be very com-
putationally expensive. Such computational complexity
can be remedied by including convolutional layers in
hybrid CNN-transformer architectures,31 by making long
range connections between voxels sparse,32 or by
implementing more efficient self -attention models like
FlashAttention.33

From the field of neuroscience, deep spiking neu-
ral networks (DSNNs) attempt to more closely model
biological neurons by connecting neurons with asyn-
chronous time dependent spikes instead of the
continuous connections between neurons of tradi-
tional neural networks. Potential advantages include
lower power use, real-time unsupervised learning, and
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new learning methods. However, these advantages are
only fully realized with special neuromorphic hardware,
are difficult to train, and currently lag conventional
approaches. For these reasons, they are currently only
represented by one paper in this review.34

3.2 Challenges in MRI

The properties of MRI datasets have driven innova-
tion. Multiple MRI sequences, with and without contrast,
are often available. To capture all data, the different
sequences are co-registered and input as multiple chan-
nels yielding multiple segmentations. These segmen-
tations are combined to produce a final segmentation
using an average, weighted average, or more advanced
method. To account for MRI’s high through-plane reso-
lution relative to its in-plane resolution, 3D convolutional
layers are often utilized to capture features not appar-
ent in 2D convolution. However, 3D convolutions are
computationally expensive, so numerous 2.5D architec-
tures have been proposed.35–37 In a 2.5D architecture,
adjacent MRI slices are input as channels, and 2D con-
volutions are performed. It is also common to see new
papers forgo the 3D convolution to save resources for
new computationally intense methods. An unfortunate
fact is that high-quality MRI datasets are often small.
To remedy this, data augmentation methods such as
rotating and flipping the MR images are ubiquitous. In
addition, the generation of synthetic images to increase
dataset size and generalizability is an exciting field of
research.38 Public datasets and competitions have also
helped in this regard.For example, the Brain Tumor Seg-
mentation Challenge (BraTS) dataset,39 updated since
2012, has been a primary contributor to brain seg-
mentation progress, spawning the popular DeepMedic
framework.40 Another approach for small datasets is
transfer learning. In transfer learning, a model is trained
on a large dataset, and then retrained on a smaller
dataset with the idea that many of the previously found
features are transferable.41

A major issue faced in MRI-segmentation can be char-
acterized as “the small tumor problem”.Small structures
like tumors or brachytherapy fiducial markers represent
a small fraction of the total MRI volume, where CNNs
can struggle to find them or be confused by noise. Fur-
ther exacerbating the problem is that applying a deep
CNN to whole MR images consumes extensive compu-
tational resources, so the MRI must be downsampled.
In this case, the down sampling is very likely to cause
small tumors to be missed entirely. One of the simplest
ways to improve performance is to alter the loss func-
tion. Standard loss functions are cross-entropy and dice
loss which seek to maximize voxel wise classification
accuracy and overlap between the predicted and ground
truth contours, respectively. These can be modified to
achieve higher sensitivity to small structures at the

expense of accuracy.Focal loss is the cross-entropy loss
modified for increased sensitivity42 and Tversky loss
does the same for the dice loss.43 In addition, borders
of the contours are the most important part of the seg-
mentation, so boundary loss functions seek to improve
model performance by placing increased emphasis on
regions near the contour edge.44,45 Another approach
to solve the problem, albeit at the expense of long-
range context, is with two stage networks. In the first
stage, regions of interest (ROIs) are identified, and tar-
get structures are then contoured in the ROIs in the
second stage. Notable efforts include Mask R-CNN46

and Retina U-Net47 which implement convolution-based
ROI sub-networks with advanced correction algorithms.
Seqseg instead replaces the correction algorithms with
a reinforcement learning based model.45 An agent is
guided by a reward function to iteratively improve the
conformity of the bounding box. Seqseg reported com-
parable performance with higher bounding box recall
and intersection over union (IoU) compared to Mask
R-CNN.

Many new models for MRI segmentation have been
created by modifying U-Net. U-Net derives its name
from its shape which features convolutional layers in
the encoder and transposed convolutional layers in the
decoder. Its main innovation, however, is its long-range
skip connections between the encoder and decoder.
Dense U-Net densely connects convolutional layers
in blocks,48 ResU-Net includes residual connections,49

Retina U-Net is a two-stage network, RU-Net includes
recurrent connections, R2U-Net adds residual recur-
rent connections.50 Attention modules have also been
added at the skip connections.51,52 Both V-Net53 and
nnUNet54 were designed with 3D convolutional lay-
ers with nnUNet additionally automating preprocessing
and learning parameter optimization. Pix2pix uses U-
Net as the generator with a convolutional discrimina-
tor (PatchGAN).55 Other state-of -the-art architectures
include Mask R-CNN, DeepMedic, and DeepLabV3+.56

Mask R-CNN is a two-stage network with a ResNet
backbone. Mask Scoring RCNN (MS-RCNN) improves
upon Mask R-CNN by adding a module which penal-
izes ROIs with high classification accuracy but low
segmentation performance.57 DeepMedic, designed for
brain tumor segmentation, is an encoder-only CNN
which inputs a ROI and features two independent
row-resolution and normal resolution channels. These
channels are joined in a fully connected convolutional
layer to predict the final segmentation. The convolutions
in the encoder-only style reduce the final segmenta-
tion map dimensions compared to the original ROI
(25 × 25 × 25 vs. 9 × 9 × 9 voxels). DeepLabV3+
leverages residual connections and multiple separa-
ble atrous convolutions. Xception improves upon the
separable convolution by reversing the order of the
convolutions and including ReLU blocks after each
operation for non-linearity.58
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3.3 Evaluation metrics

To evaluate performance, various evaluation metrics
are employed with the Dice similarity coefficient (DSC)
being the most prevalent. The DSC is defined in Equa-
tion 1 as the overlap between the ground truth physician
contours and the predicted algorithmic volumes with
a value of 0 corresponding to no overlap and 1 cor-
responding to complete overlap. Mathematically, it is
defined as follows where VOLGT is the ground truth
volume and VOLPT is the predicted volume59:

DSC =
2|VILGT ∩ VOLPT|
|VILGT|+ |VOLPT| (1)

Additional metrics include the Hausdorff distance59

which measures the farthest distance between two
points of the ground truth and algorithmic volumes,
volume difference,60 which is simply the difference in
volumes,and the Jaccard Index,61 which is similar to the
DSC and measures the overlap between VOLPT and
VOLGT relative to their combined volumes. A discus-
sion of these metrics is found in Müller et al.62 However,
performance between datasets must be evaluated with
caution due to high inter-observer variation between
physicians and dataset quality.

3.4 Brain

Largely unaffected by patient motion and comprised
of detailed soft tissue structures, the brain is an ideal
site to benchmark segmentation performance for MRI
and represents the dominant category in MRI seg-
mentation research. Unique to brain MRI preprocessing
is skull stripping, where the skull and other non-brain
tissue are removed from the image. This can signif-
icantly improve results, especially for networks with
limited training data.63 Shown in Table 2, the major-
ity of the studies focus on segmenting different brain
tumors such as glioma,Glioblastoma Multiforme (GBM),
and metastases. A small minority of studies focuses
on OARs like the hippocampus. Advancements in brain
segmentation have come, in large part, from the yearly
Multimodal Brain Tumor Image Segmentation Bench-
mark (BraTS) challenge, which includes high quality
T1-weighted (T1W), T2-weighted (T2W), T1-contrast
(T1C), and T2 -Fluid-Attenuated Inversion Recovery
(FLAIR) sequences with the purpose of segmenting
the whole tumor (WT), tumor core (TC), and enhancing
tumor (ET) volumes. The WT is defined as the entire
spread of the tumor visible on MRI; The ET is the
inner core which shows significant contrast compared to
healthy brain tissue,and the TC is the entire core includ-
ing low contrast tissue. The most popular architectures
are DeepMedic, created for the BraTS challenge, and
U-Net.

Notable efforts in the BraTS challenge include Momin
et al achieving an exceptional WT dice score of
0.97 ± 0.03 with a Retina U-Net based model and
mutual enhancement strategy. In their model, Retina
U-Net finds a ROI and segments the tumor. This fea-
ture map is fed into the classification localization map
(CLM module) which further classifies the tumor into
subregions. The CLM shares the encoding path with
a segmentation module, so classification and segmen-
tation share information and are improved iteratively.64

Huang et al. focuses on correctly segmenting small
tumors. Based on DeepMedic, the method incorporates
a prior scan and custom loss function, the volume-level
sensitivity–specificity (VSS), which rates and signifi-
cantly improves the metastasis sensitivity and specificity
to segment small brain metastases.65 Another paper
improves small tumor detection by 2.5 times compared
to the standard dice loss by assigning a higher weight to
small tumors.66 Both Tian et al.67 and Ghaffari et al.68 uti-
lize transfer learning datasets to cope with limited data.
Ahmadi et al. achieves competitive results in the BraTS
challenge with a DSNN.34

3.5 Head and neck

The head and neck (H&N) region contains many small
structures, making high-resolution and high-contrast
imaging of great importance. MRI is especially pre-
ferred over CT imaging for patients with amalgam
dental fillings due to the metallic content that can
cause intense streaking artifacts on CT.69 In addition,
MRI is the standard of care for nasopharyngeal carci-
noma (NPC), leading to significant research attention
on auto-segmentation algorithms for H&N MR images
(Table 3). Other research efforts include segmenta-
tion of oropharyngeal cancer, glands, and lymph nodes
in the American Association of Physicists in Medicine
(AAPM)’s RT-MAC challenge,70 as well as multi-organ
segmentation.

Notable efforts include the two-stage multi-channel
Seqseg architecture for NPC segmentation.71 Seqseg
uses reinforcement learning to refine the position of
the bounding box, implements residual blocks, recur-
rent channel and region-wise attention, and a custom
loss function that emphasizes segmentation of the
edges of the tumor. Outierial et al.72 improves the dice
score by 0.10 with a two-stage approach compared to
single-state 3D U-Net for oropharyngeal cancer seg-
mentation. For multiparametric MRI (mp-MRI), Deng
et al.73 concludes that the union output from T1W and
T2W sequences has similar performance to T1C MRI,
suggesting that contrast may not be necessary for
NPC segmentation. Similarly, Wahid et al.74 finds that
T1W and T2W sequences significantly improve perfor-
mance, but dynamic contrast-enhanced MRI (DCE) and
diffusion-weighted imaging (DWI) have little effect. The
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first stage segments the OARs in low resolution to cre-
ate a bounding box, followed by U-Net segmenting the
ROI in high resolution. Jiang et al. segments the parotid
glands using T2W MRI and unpaired CT images with
ground truth contours. First, sMRI is generated from
the CT volumes using a GAN. In the second step, U-
Net generates probabilistic segmentation maps for both
the sMRI and MRI based on the CT ground truth con-
tours. These maps, along with sMRI and MRI data, are
then input into the organ attention discriminator,which is
designed to learn finer details during training, ultimately
producing the final segmentations.75

3.6 Abdomen, heart, and lung

In contrast to the brain, the abdomen is susceptible to
respiratory and digestive motion of the patient often
leading to poorly defined boundaries.While motion man-
agement techniques like patient breath-hold and not
eating or drinking before treatment can mitigate these
effects, the long acquisition time of MRI will inevitably
lead to errors. Often physicians must rely on anatom-
ical knowledge to deduce the boundaries of OARs.
This makes segmentation challenging for CNN-based
architectures, which build from local context. In addition,
registration errors make including multiple sequences
impractical. OARs segmented in the abdomen include
the liver, kidneys, stomach, bowel, and duodenum. The
liver and kidneys are not associated with digestion
and are relatively stable while the stomach, bowel,
and duodenum are considered unstable. The duode-
num is the most difficult for segmentation algorithms
due to its small size, low contrast, and variability in
shape. In addition, radiation induced duodenal toxicity
is often dose-limiting in dose escalation studies mak-
ing accurate segmentation of high importance.76 Similar
problems occur in the heart and lung because of their
periodic motion with the lung being particularly chal-
lenging since it is filled with low-signal air. However, MR
segmentation of cardiac subregions have shown grow-
ing interest as these are not visible on CT and have
different tolerances to radiation.77

The results are summarized in Table 4. Due to the
large number of organs segmented in several of these
studies, only the stomach and duodenum dice scores
are reported to establish how the algorithms handle
unstable organs. Zhang et al.78 generates a composite
image from the current slice,prior slice,and contour map
to predict the current segmentation with U-Net.Luximon
et al.78 takes a similar approach by having a physician
contour every 8th slice. These contours are then linearly
interpolated and improved upon with a 2D Dense U-Net.
The remaining studies do not require previous informa-
tion and struggle to segment the duodenum.Ding et al.79

improves upon a physician-defined acceptable contour
rate by up to 39% with an active contour model. Mor-

ris et al. segments heart substructures with a 2 channel
3D U-Net.80 Wang et al. segments lung tumors with
high accuracy relying on segmentation maps from pre-
vious weeks with the aim of adaptive radiation therapy
(ART).81 An addition study by the same group feeds the
features from the CNN into a GRU based RNN to pre-
dict tumor position over the next 3 weeks. Attention is
included to weigh the importance of the prior weeks’
segmentation maps.82

3.7 Pelvis

The anatomy of the pelvis allows both external
beam radiation therapy (EBRT) and brachytherapy
approaches for radiation therapy. Therefore, MRI seg-
mentation studies have proposed methods to contour
fiducial markers and catheters for cervical and prostate
therapy,as well as tumors and OARs.However,a current
challenge is that fiducials and catheters are designed
for CT and are not optimal for MRI segmentation. For
example, in prostate EBRT, gold fiducial markers local-
ize the prostate with high contrast and correct for motion.
However, metal does not emit a strong signal on MRI, so
fiducials on MRI are characterized by an absence of sig-
nal, which can be confused with calcifications. Despite
this, MRI is enabling treatments with higher tumor con-
formality. For instance, the gross tumor volume (GTV) of
prostate cancer is not well delineated on CT but is often
visible on MRI. In addition, the prostate apex is signifi-
cantly clearer on MRI.83 MRI-based focal boost radiation
therapy, in addition to a single dose level to the whole
prostate,escalates additional dose to the GTV to reduce
tumor recurrence.84,85

Table 5 shows relevant auto-segmentation tech-
niques applied to the pelvic region. Shaaer et al.86

segments catheters with a T1W and T2W MRI-based
U-Net model and takes advantage of catheter continuity
to refine the contours in post processing. Zabihollahy
et al.87 creates an uncertainty map of cervical tumors
by retraining the U-Net model with a randomly set
dropout layer. This technique is called Monte Carlo
Dropout (MCDO). Cao et al.23 takes pre-implant MRI
and post-implant CT as input channels to their network.
After preforming intra-observer variability analysis, they
achieve performance more similar to a specialist radi-
ation oncologist for cervical tumors in brachytherapy
than a non-specialist. Eidex et al.61 segments dominant
intraprostatic lesions (DILs) and the prostate for focal
boost radiation therapy with a Mask R-CNN based
architecture. Sensitivity is found to be an important
factor in evaluating model performance because weak
models can appear strong by missing difficult lesions
entirely. Figure 4 shows an example of automatic con-
tours of the prostate and DIL on T2w MRI which would
not be visible on CT. STRAINet88 realizes exceptional
performance by utilizing a GAN with stochastic residual
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F IGURE 4 Expert (red) versus proposed auto-segmented (green dashed) prostate and DIL contours on axial MRI. From left to right:
prostate manual and auto-segmented contours overlaid on MRI, and two DIL manual and auto-segmented contours overlaid on MRI. The upper
and lower rows are representative of two patients. Reprinted by permission from John Wiley and Sons: Medical Physics, MRI-based prostate
and dominant lesion segmentation using cascaded scoring convolutional neural network by Eidex et al.61 © 2022.

and atrous convolutions. In contrast with standard resid-
ual connections, each element of the input feature map
which does not undergo convolution has a 1% chance
of being set to zero. Singhrao et al.89 implements a
pix2pix architecture for fiducial detection achieving 96%
detection with the misses caused by calcifications.

4 IMAGE SYNTHESIS

Image synthesis is an exciting field of research, defined
as translating one imaging modality into another. Ben-
efits of synthesis include avoiding potential artifacts,
reducing patient cost and discomfort, and avoiding radi-
ation exposure.90 In addition,utilizing multiple modalities
introduces registration errors which can be avoided with
synthetic images. Current methods in MRgRT include
synthesis of sCT from MRI, sMRI from CT, and relative
proton stopping power images from MRI. Other areas
of synthesis research include creating higher resolution
MRI (super-resolution) and predicting organ displace-
ment based on periodic motion in 4D MRI.Segmentation
can also be thought of as a special case of synthe-

sis because the input MRI is translated into voxel-wise
masks which assume discrete values according to their
class. The distinction between synthesis and segmen-
tation is particularly muddied when the segmentation
ground truth is from a different imaging modality.91

4.1 Generative models

Synthesis architectures are fundamentally interchange-
able with segmentation architectures but have diverged
in practice. For example, U-Net, described in detail in
Section 3, is the predominant backbone in both areas.
However, synthesis models require that the entire image
be translated, so that they do not include two-stage
architectures and are dominated by generational adver-
sarial network (GAN)-based architectures. The GAN is
comprised of a CNN or self -attention-based generator
which generates synthetic images. The generator com-
petes with a discriminator which attempts to correctly
classify synthetic and real images. As the GAN trains, a
loss function is applied to the discriminator when it misla-
bels the image, whereas a loss function is applied to the
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generator when the discriminator is correct. The model
is ideally considered trained once the discriminator can
no longer correctly identify the synthetic images. Condi-
tional GANs (cGANs) expand on the standard GAN by
also inputting a vector with random values or additional
information into both the generator and discriminator.92

In the case of MRI, the values of the vector can cor-
respond to the MRI sequence type and clinical data to
account for differences in patient population and setup.
The CycleGAN adds an additional discriminator and
generator loop.93 For example, an MRI would be trans-
lated into a sCT. The sCT would then be translated into
a sMRI. Since the input is ultimately tested against itself,
this allows for training with unpaired data. The need
for co-registration is eliminated but requires significantly
more data to achieve comparable results with paired
training.

Despite their success,GANs can at times be unstable
during training and may encounter difficulties with com-
plex synthesis problems. One approach to enhancing
training performance and stability is the implementation
of the Wasserstein GAN (WGAN). Contrary to the dis-
criminator in traditional GANs, which classifies images
as either real or fake, the WGAN evaluates the prob-
ability distributions of the real and synthetic images
and calculates the Wasserstein distance,or the distance
between these distributions. The discriminator strives
to maximize this distance while the generator endeav-
ors to minimize it. Although not exclusive to WGANs,
spectral normalization is frequently incorporated to con-
strain the training weights of the discriminator, thereby
preventing gradient explosion.94 The Wasserstein GAN
with Gradient Penalty (WGAN-GP) further amends the
WGAN by adding a gradient penalty to the loss function,
which helps to stabilize training and improve the model’s
performance.95 Another innovative approach that claims
superior performance to the WGAN is the Relativistic
GAN (RGAN). The RGAN postulates that the genera-
tor should not only increase the likelihood of synthetic
images appearing realistic but also enhance the proba-
bility that real images appear fake to the discriminator.
Absent this condition, in the late stages of training with
a well-trained generator, the discriminator may conclude
that every image it encounters is real, contradicting the
a priori knowledge that half of the images are syn-
thetic. A standard GAN can be converted to a RGAN
by modifying its loss function.96

Diffusion models, another approach to synthesis, are
more recent entrants to the field. These models grad-
ually add and remove noise from the image to better
learn the latent space. The key advantage of diffusion
models is increased stability during training. Despite
these advantages, diffusion models are computation-
ally intensive since the noise is added in small steps
and the model must learn to reconstruct the images
at varying noise levels.97 Given their promising per-
formance and stability, diffusion models represent an

exciting avenue for future exploration in MRgRT applica-
tions and achieve state-of -the-art performance in many
computer vision tasks.

4.2 Evaluation metrics

To evaluate image synthesis performance, various met-
rics are used to compare voxel values between the
ground truth and synthesized volume. The most com-
mon metric is the mean absolute error (MAE),98,99 which
is reported in Tables 6 and 7 if available. The MAE is
defined below in Equation 2, where xi and yi are the
corresponding voxel values of the ground truth and syn-
thesized volume, respectively, and n is the number of
voxels.

MAE =

n∑
i=1

|yi− xi
|

n
(2)

For sCT studies, the MAE is typically reported in
Hounsfield units (HU) but can also be dimensionless if
reported with normalized units. In contrast, MRI inten-
sity is only relative and not in definitive units like CT, so
MAE is less clinically meaningful than other metrics for
MRI synthesis studies. Therefore, peak signal to noise
ratio (PSNR) is preferentially reported.100 Other com-
mon metrics in literature are the mean error,101 which
forgoes the absolute value in MAE, the mean squared
error (MSE),102 which substitutes absolute value for the
square,and the Structural Similarity Index (SSIM),which
varies from −1 to 1 where −1 represents extremely dis-
similar images and 1 represents identical images.103

A full discussion of these metrics can be found in
Necasova et al.104 Since sCT is primarily intended for
treatment planning, dosimetric quantities which mea-
sure the deviation between CT- and sCT-derived plans
are often reported. One of the most common metrics is
gamma analysis. Repurposed as a metric to compare
treatment plan dose to actual dose on LINACs, gamma
analysis looks at each point on the dose distribution and
evaluates if the acceptance criteria are met. The Ameri-
can Association of Physicists in Medicine (AAPM) Task
Group 119 recommends a low dose threshold of 10%,
meaning that points, which receive less than 10% of the
maximum dose are excluded from the calculation.Other
metrics include the mean dose difference and the min-
imum dose delivered to 95% of the clinical treatment
volume (D95) difference.

4.3 MRI-based synthetic CT

MRI-based sCT is the most extensively researched and
influential application of synthesis models in radiation
therapy. While MR images provide excellent soft tissue
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contrast, they do not contain the necessary attenua-
tion information for dose calculation that is embedded
in CT images. Owing to this limitation, CT has tradition-
ally been the workhorse for treatment planning while
MRI has been relegated to diagnostic applications.How-
ever, CT suffers from lower soft tissue contrast and
imparts a non-negligible radiation dose, especially for
patients receiving standard fractionated image guided
radiation therapy (IGRT). In addition, metallic materials
found in dental work and implants can lead to severe
artifacts in CT, reducing the quality of the treatment plan.
By augmenting CT with sCT, these problems can be
avoided.Furthermore,according to the “As Low As Rea-
sonably Achievable”(ALARA) principle, the replacement
of CT with sCT for an MRI only workflow could be jus-
tified with its high accuracy, especially in radiosensitive
populations like pediatric patients.105,106

The primary challenge to sCT methods is the accurate
reconstruction of bone and air, due to their low pro-
ton density and weak signal. This can make it difficult
for sCT to distinguish between the two, leading to large
errors. In addition, further complicating the issue is that
bone makes up a small fraction of the patient volume
in radiation therapy tasks or applications which is sim-
ilar to the “small tumor problem” seen in segmentation.
Other issues that can arise include small training sets,
misalignment between CT and MRI, and causes of high
imaging variability such as intestinal gas.

Calculation of dose distribution using MRI-based sCT
can be enhanced by replacing traditional Monte Carlo
simulation (MC) techniques with deep learning. MC
accurately predicts the dose distribution based on phys-
ical principles, including the electron return effect (ERE),
which adds additional dose to boundaries with differ-
ent proton densities in the presence of a magnetic
field. However, the technique can be extremely slow,
as it relies on randomly generating paths of tens of
thousands of particles. The higher number of particles
reduces dosimetric uncertainty. This problem is partic-
ularly noticeable in proton therapy, where MC or pencil
beam algorithm (PBA) calculations can take several min-
utes on a CPU,and it can take hours to optimize a single
treatment plan.107 As a result, compromises must be
made in clinical practice between dosimetric uncertainty,
MC run time, and treatment plan optimization. Deep
learning methods show exceptional potential to improve
upon MC dose calculation models. Once trained, deep
learning algorithms take only a few seconds to synthe-
size a dose distribution. In addition, they can be trained
on extremely high accuracy MC generated dose distri-
butions that would be impractical in everyday clinical
practice.

Sampling notable MRI-based sCT works for photon
radiation therapy, several take advantage of cGANs
to include additional information. Liu et al. improve
upon the CycleGAN by including a dense block, which
captures structural and textural information and better

handles local mismatches between MRI and ground
truth CT images. In addition, a compound loss function
with adversarial and distance losses improves boundary
sharpness. An example patient is shown in Figure 5.108

A conditional CycleGAN in Boni et al. passes in MR
manufacturer information and achieves good results
despite using unpaired data and different centers for
their training and test sets.109 Many studies also exper-
iment with multiple sequences. Massa et al. train a
U-Net with Inception-V3 blocks on 1.5T T1W, T2W,
T1C, and FLAIR sequences separately and finds no
statistical difference.110 However, Koike et al. use mul-
tiple MR sequences for sCT generation employing a
cGAN to provide better image quality and dose distri-
bution results compared with those from only a single
T1W sequence.111 Dinkla et al. find that sCT removes
dental artifacts.112 Reaungamornrat et al. decompose
features into modality specific and modality invariant
spaces between high- and low-resolution Dixon MRI
with the Huber distance. In addition, separable convo-
lutions are used to reduce parameters, and a relativistic
loss function is applied to improve training stability.113

Finally, Zhao et al. represent the first MRI-based sCT
paper to implement a hybrid transformer-CNN architec-
ture outperforming other state-of -the-art methods.Their
method implements a conditional GAN. The generator
consists of CNN blocks in the shallow layers to capture
local context and save computational resources, while
transformers are used in deeper layers to provide better
global context.114

4.4 Synthetic CT for proton radiation
therapy

Generating sCTs from MRI for the purposes of proton
therapy is not fundamentally different from the process
for photon therapy.However,proton therapy takes advan-
tage of the Bragg peak,which concentrates the radiation
in a small region to spare healthy tissue. While this is
beneficial, this puts a tighter constraint on sCT errors.
Another difference is that sCT images must first be con-
verted to relative proton stopping power maps before
they can be used in treatment planning. Therefore,
directly generating synthetic proton relative stopping
power (sRPSP) maps instead of sCT would be ideal.
Boron therapy is a form of targeted radiation therapy in
which boronated compounds are delivered to the site of
the tumor and irradiated with neutrons.The boron under-
goes a fission reaction, releasing alpha particles that
kill the tumor cells. However, the targeting mechanism
typically relies on targeting cancer cells’ high metabolic
rate.Epidermal tissue that also has a high metabolic rate
uptakes boron, making skin dose an important concern
in boron therapy. Therefore, methods for generating sCT
images for boron therapy should emphasize accurate
reconstruction around the skin.
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F IGURE 5 Traverse, sagittal, and coronal images of a representative patient. MRI, CT, and sCT images and the HU difference map between
CT and sCT are presented. The CT (solid line) and sCT (dashed line) voxel-based HU profiles of the traverse images are compared in the
lowermost panel. Reprinted by permission from British Journal of Radiology, MRI-based treatment planning for liver stereotactic body
radiotherapy: validation of a deep learning-based synthetic CT generation method by Liu et al.108© 2019.

Shown in Table 7, many methods show high dosi-
metric accuracy for proton therapy. Liu et al develops
a conditional cycleGAN to synthesize both high and
lower energy CT.115 Wang et al. create the first syn-
thetic relative proton stopping power maps from MRI
with a cycleGAN and loss function to take advantage
of paired data. Their method achieves an excellent
MAE of 42 ± 13 HU, but struggles with dosimetric
accuracy.6 Maspero et al. achieve a 2%/2 mm gamma
pass rate above 99% for proton therapy by averag-
ing predictions from three separate GANs trained on
axial,sagittal,and coronal views,respectively.116 Replac-
ing traditional MC dose calculation methods, Tsekas
et al.generate VMAT (volumetric modulated arc therapy)
dose distributions in static positions with sCT.117 Finally,
SARU, a self -attention Res-UNet, lowers skin dose for

boron therapy, achieving better results than the pix2pix
method.118

4.5 CT and CBCT-based synthetic MRI

Generating sMRI from CT leverages MRI’s high soft
tissue contrast for improved segmentation accuracy and
pathology detection for CT-only treatment planning. In
addition, the ground truth x-ray attenuation information
is maintained compared to an MRI-only workflow. Cone
beam CT (CBCT) is primarily used for patient position-
ing before each fraction of radiation therapy. Kilovoltage
(kV) and megavoltage (MV) energies are standard
in CBCT with kV images providing superior contrast
and MV images providing superior tissue penetration.
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F IGURE 6 Contours of segmented pelvic organs for two representative patients. Ground truth contours are overlaid onto CBCT. The
predicted contours of the proposed method are overlaid on CBCT and sMRI. Red arrows highlight regions in which CBCT and sMRI provide
complementary information for bony structure and soft tissue segmentation. Reprinted by permission from John Wiley and Sons: Medical
Physics, Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy by Fu et al.123 © 2020.

However, noise and artifacts can often reduce CBCT
image quality.119 Generating CBCT-based sMRI can
yield higher image quality and soft-tissue contrast while
also retaining CBCT’s fast acquisition speed. CT and
CBCTs’ rapid acquisition time can make it preferable
over MRI for patients with claustrophobia during the MR
simulation or for pediatric patients who would require
additional sedation. In addition, MRI is not suitable for
patients with metal implants such as pacemakers. How-
ever, sMRI is significantly more challenging to generate
compared to sCT. This is primarily due to the recovery
of soft tissue structures visible only in MRI. For this
reason, sMRI is often used to improve segmentation
results in CT and CBCT. However, some studies report
direct use of sMRI for segmentation.

The studies of CT and CBCT-based synthetic MRI
are summarized in Table 8. For CT-based sMRI, Dae
et al implements a cycleGAN for sMRI synthesis with
dense blocks in the generator. The sMRIs are input into
MS-RCNN improving segmentation performance.120 Lei
et al incorporates dual pyramid networks to extract fea-
tures from both sMRI and CT and includes attention
to achieve exceptional results.121 BPGAN synthesizes
both sMRI and sCT bidirectionally with a cycleGAN.
Pathological prior information, an edge retention loss,
and spectral normalization improve accuracy and train-
ing stability.122 Both CBCT-based sMRI studies, from
Emory’s Deep Biomedical Imaging Lab, significantly
improve CBCT segmentation results. In their first paper,
Lei et al generates sMRI with a CycleGAN, then inputs
this into an attention U-Net.8 Fu et al. makes additional
improvements by generating the segmentations with
inputs from both CBCT and sMRI and also including

additional pelvic structures. Example contours overlaid
onto CBCT and sMRI are shown in Figure 6.123

4.6 Intramodal MRI synthesis and
super resolution

It can be beneficial to synthesize MRI sequences from
other MRI sequences. Intra-modal applications include
generating synthetic contrast MRI to prevent the need
for injected contrast, super-resolution MRI to improve
image quality and reduce acquisition time,and synthetic
7T MRI due to its lack of widespread availability and
improve spatial resolution and contrast.124 To reduce
complexity and cost, a potential approach to radia-
tion therapy is to rotate the patient instead of using
a gantry. However, the patient’s organs deform under
gravity, requiring multiple MRIs at different angles for
MRgRT. MR images of patients rotated at different
angles can better enable gantry free radiation ther-
apy. In this section, synthesis studies which synthesize
other MRI sequences are discussed and summarized in
Table 9.

Preetha et al. synthesize T1C images with a multi-
channel T1W, T2W, and FLAIR MRI sequences using
the pix2pix architecture.12 Another study included a
A cycleGAN with a ResUNet generator to generate
lateral and supine MR images for gantry-free radiation
therapy.125 ResUNet is also implemented to generate
ADC uncertainty maps from ADC maps for prostate
cancer and mesothelioma.126 Studies designed explic-
itly for super-resolution include Chun et al. and Zhao
et al. In the former study, a U-Net based denoising
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autoencoder is trained to remove noise from clinical
MRI.11 The same architecture is employed in Kim et
al127 for real-time 3D MRI to increase spatial resolution.
In addition, dynamic keyhole imaging is formulated
to reduce acquisition time by only sampling central
k-space data associated with contrast. The peripheral
k-space data associated with edges is added from pre-
viously generated super-resolution images in the same
position.127 Zhao et al. make use of super-resolution
for brain tumor segmentation, increasing the dice score
from 0.724 to 0.786 with 4x super resolution images
generated from a GAN architecture. The generator has
low- and high-resolution paths and dense blocks.10

Often in clinical practice, the through place resolution
is increased to reduce the MRI scan time. Xie et al
achieves near perfect accuracy in recovering 1 from
3 mm through plane resolution by training parallel
CycleGANs, which predict the higher resolution coronal
and sagittal slices, respectively. These predictions are
then fused to create the final 3D prediction.128

5 RADIOMICS (CLASSIFICATION)

Unlike synthesis which maps one imaging modality
to another, radiomics extracts imaging data to classify
structures or to predict a value. Deep learning appli-
cations to MRI-based radiomics often achieve state-
of -the-art performance over hand-crafted methods in
detection and treatment outcome prediction tasks. Tra-
ditional radiomics algorithms apply various hand-crafted
matrices based on shape, intensity, texture, and imag-
ing filters to generate features. The majority of these
features have no predictive power, and would confuse
the model if all were directly implemented. Therefore,
an important step is feature reduction which screens
out features without statistical significance.Typically, this
is done with a regression such as analysis of vari-
ance (ANOVA),Least Absolute Shrinkage and Selection
Operator (LASSO), or ridge regression. Alternatively, a
CNN or other neural network can learn significant fea-
tures. The advantage of the deep learning approach is
that the network can learn any relevant features includ-
ing handcrafted ones. However, this assumes a large
enough dataset which can be problematic for small
medical datasets. Hand-crafted features have no such
constraint and are easily interpretable. It is often the
case that a hybrid approach including both hand-crafted
and deep learning features yields the highest perfor-
mance. Biometric data like tumor grade, patient age,
and biomarkers can also be included as features. Once
the significant features are found, supervised machine
learning algorithms like support vector machines, artifi-
cial neural networks, and random forests are employed
to make a prediction from these features. Recently,
CNNs like Xception and InceptionResNet,129 recurrent
neural networks with GRU and LSTM blocks, and trans-

formers have also found favor in this task, as introduced
in Section 3. Radiomics can also be done purely with
deep learning as it is done with segmentation and syn-
thesis. In this section, we divide the studies into those
detecting or classifying objects in the image and stud-
ies predicting a value such as the likelihood of distant
metastases, treatment response, and adverse effects.
While detection is traditionally under the purview of
segmentation, the architectures of detection methods
and the classification task are in common with other
radiomics methods, and so are discussed here.

While radiomics algorithms can excel on local
datasets, the main concern for MRI applications is the
generalizability of the methods.Variability in MR imaging
characteristics such as field strength, scanner manufac-
turer, pulse sequence, ROI or contour quality, and the
feature extraction method can result in different features
being significant.This variability can largely be mitigated
by normalizing the data to a reference MRI and including
data from multiple sources.130

5.1 Evaluation metrics

Classification accuracy is an appealing evaluation met-
ric due to its simplicity, but accuracy can be misleading
with unbalanced data. For example, if 90% of tumors
in the dataset are malignant, a model can achieve
90% accuracy by labeling every tumor as malignant.
Precision,131 the ratio of true positives to all examples
labeled as positive by the classifier,and recall,15 the ratio
of true positives to all actual positives, will also both dif-
fer if given imbalanced data. The F1 score132 is defined
in Equation 3, ranging from 0 to 1 and combining preci-
sion and recall to provide a single metric.A high F1 value
indicates both high precision and recall and is resilient
towards unbalanced data.

F1 = 2
Recall ∗ Precision
Recall + Precision

(3)

The most common evaluation metric resistant to
unbalanced data is the area under the curve (AUC) of
a receiver operating characteristics (ROC) curve.133–135

In a ROC curve, the x-axis represents the false posi-
tive (FP) rate, while the y-axis relates the true positive
(TP) rate. In addition, the ROC curve can be viewed as
a visual representation to help find the best trade-off
between sensitivity and specificity for the clinical appli-
cation by comparing one minus the specificity versus the
sensitivity of the model.The AUC value provides a mea-
surement for the overall performance of the model with a
value of 0.5 representing random chance and a value of
1 being perfect classification. If the AUC value is below
0.5, the classifier would simply need to invert its predic-
tions to achieve higher accuracy. It is important to note
that all these metrics are for binary classification but are
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commonly used in multi-class classification by compar-
ing a particular class with an amalgamation of every
other category. Finally, the concordance index (C-index)
measures how well a classifier predicts a sequence of
events and is most appropriate for prognostic models
which predict the timing of adverse effects, tumor recur-
rence,or patient survival times.The C-index ranges from
0 to 1 with a value of 1 being perfect prediction.136,137

A full discussion of evaluation metrics for classification
tasks is found in Hossin and Suliaman.138

5.2 Cancer detection and staging

Effectively detecting and classifying tumors is vital for
treatment planning. Deep learning detection methods
supersede segmentation algorithms when the tumors
are difficult to accurately segment or cannot easily be
distinguished from other structures. In addition, detec-
tion models can further improve segmentation results
by eliminating false positives. When applied to MRI,
detection studies also have the potential to differenti-
ate between cancer types and tumor stage to potentially
avoid unnecessary invasive procedures like biopsy.

As shown in Table 10, The majority of works in detec-
tion are for brain lesion classification. Chakrabarty et al.
attain exceptional results in differentiating between com-
mon types of brain tumors with a 3D CNN and outper-
forms traditional hand-crafted methods.133 Radiation-
induced cerebral microbleeds appear as small dark
spots in 7T time of flight magnetic resonance angiogra-
phy (TOF MRA) and can be difficult to distinguish from
look-a-like structures. Chen et al. utilize a 3D ResNet
model to differentiate between true cerebral microb-
leeds and mimicking structures with high accuracy.139

Finally, Gao et al. distinguish between radiation necrosis
and tumor recurrence for gliomas, significantly outper-
forming experienced neurosurgeons with a CNN.140

5.3 Treatment response

The decision to treat with radiation therapy is often
definitive.Since radiation dose will unavoidably be deliv-
ered to healthy tissue, treatment response and the
risk of adverse effects are heavily considered. Further
compounding the decision, dose to healthy tissue is
cumulative that is complicating any subsequent treat-
ments. In addition, unknown distant metastasis can
derail radiation therapy’s curative potential. Therefore,
predicting treatment response and adverse effects are
of high importance, and significant work has gone into
applying deep learning algorithms to prognostic models.

Diffusion-weighted imaging (DWI) has attracted
strong interest in studies which predict the outcome of
radiation therapy. DWI measures the diffusion of water
through tissue often yielding high contrast for tumors.

Cancers can be differentiated by altering DWI’s sensitiv-
ity to diffusion with the b value, in which higher b values
correspond to an increased sensitivity to diffusion. By
sampling at multiple b-values, the attenuation of the MR
signal can be measured locally in the form of apparent
diffusion coefficient (ADC) values. A drawback of DWI
is that the spatial resolution is often significantly worse
than T1W and T2W imaging.141 Unlike segmentation
and synthesis which require highly accurate structural
information, high spatial resolution is not necessary for
treatment outcome prediction, so the functional infor-
mation from DWI is most easily exploited in predictive
algorithms.

The majority of studies summarized in Table 11 seek
to predict treatment outcomes and tumor recurrence.
Zhu et al. take the interesting approach of concatenating
DWI histograms across twelve b values to create a “sig-
nature image.” A CNN is then applied to the signature
image to achieve exceptional performance in predicting
pathological complete response.14 Jing et al., in addi-
tion to MRI data includes clinical data like age, gender,
and tumor stage to improve predictive performance.142

Keek et al. achieves better results in predicting adverse
effects by combining hand-crafted radiomics and deep
learning features.15 Other notable papers include Huis-
man et al.,which uses an FCN suggesting that radiation
therapy accelerates brain aging by 2.78 times,143 Hua
et al., which predicts distant metastases with an AUC
of 0.88,144 and Jalalifar et al., which achieves excellent
results by feeding in clinical and deep learning features
into an LSTM model145 An additional study by Jalali-
far et al. finds the best performance for local treatment
response prediction using a hybrid CNN-transformer
architecture when compared to other methods.Residual
connections and algorithmic hyperparameter selection
further improve results.146

6 REAL-TIME AND 4D MRI

Real-time MRI during treatment has recently been made
possible in the clinical setting with the creation of
the MRI-LINAC. Popular models include the Viewray
MRIdian (ViewRay Inc, Oakwood, Ohio, USA) and the
Elekta Unity (Elekta AB, Stockholm). Electron return
effect (ERE), which increasing dose at boundaries with
differing proton densities such as the skin at an exter-
nal magnetic field, guides the architecture of these
models.147 At higher field strengths, the ERE becomes
more significant, but MR image quality increases. In
addition, a higher field strength can reduce the acqui-
sition time for real-time MRI. Therefore, a balance
must be struck. Both the Elekta Unity and Viewray
Mridian with 1.5T and 0.35T magnetic fields, respec-
tively, compromise by choosing lower field strengths
The Elekta Unity prioritizes image quality and real-
time tracking capabilities at the expense of a more
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severe ERE.148 The MRI-LINAC has enabled an excit-
ing new era of ART wherein anatomical changes and
changes to the tumor volume can be accurately dis-
cerned and optimized between treatment fractions. In
addition,unique to MRgRT, the position of the tumor can
be directly monitored during treatment, potentially lead-
ing to improved tumor conformality and improved patient
outcomes.149

Periodic respiratory and cardiac motion are common
sources of organ deformation and should be accounted
for optimal dose delivery to the PTV. Tracking these
motions is problematic with conventional MRI since
scans regularly take approximately 2 min per slice lead-
ing to a total typical scan time of 20–60 min.150 In
addition to motion restriction techniques like patient-
breath hold, cine MRI accounts for motion in real-time
by reducing acquisition times to 15 seconds or less.This
is achieved by only sampling one (2D) or more (3D)
slices with short repetition times, increasing slice thick-
ness, and undersampling. In addition, the MR signal is
sampled radially in k-space to reduce motion artifacts.
Capturing a 3D volume across multiple timesteps of
periodic motion is known as 4D MRI.151

Deep learning methods can further reduce acquisi-
tion time by reconstructing intensely undersampled cine
MRI slices. In addition to reconstructing from under-
sampled k-space MRI sequences, several approaches
further reduce acquisition time. In the first approach,
cine MRI and/or k-space trajectories are used to predict
the timestep of a previously taken 4D MRI. However,
this method requires a lengthy 4D MRI and does not
adapt to changes in the tumor volume over the course
of the treatment. Additional approaches include syn-
thesizing a larger volume than cine MRI slice captures
to reduce acquisition time, predicting the deformation
vector field (DVF) which relays real-time organ deforma-
tion information, or determining the 3D iso-probability
surfaces of the organ to stochastically determine
tumor position if real-time motion adaptation is not
possible.

Shown in Table 12, this category is experiencing rapid
growth with majority of papers being published within
the current year. Notable works include Gulamhussene
et al., which predict a 3D volume from 2D cine MRI or
a 4D volume from a sequence of 2D cine MR slices. A
simple U-Net, introduced in Section 3, is implemented to
reduce inference time. The performance degrades for
synthesized slices far away from the input slices but
achieves an exceptional target registration error.17 Nie
et al. instead uses autoregression and the LSTM time
series modeling to predict the diaphragm position and to
find the matching 4D MRI volume. Autoregression out-
performs an LSTM model which could be attributed to
a low number of patients.152 Patient motion is alterna-
tively predicted in Terpestra et al.by using undersampled
3D cine MRI to generate the DVF with a CNN with low
target registration error.153 Similarly, Romaguera et al.

predict liver deformation using a residual CNN and prior
2D cine MRI. This prediction is then input into a trans-
former network to predict the next slice.154 Driever et al.
simply segments the stomach with U-Net and constructs
iso-probability surfaces centered about the center of
mass to isolate respiratory motion. These probabil-
ity distributions can then be implemented in treatment
planning.155

7 OVERVIEW AND FUTURE
DIRECTIONS

Over the last 6 years, we have seen growing adop-
tion of MRgRT and the rapid development of powerful
deep learning techniques which encourage an effi-
cient, adaptive MRI only workflow. Shown in Figure 2,
powerful models which better exploit MRI’s 3D and long-
range context and generative learning continue to gain
research interest and be improved upon. In addition,
the MRI-LINAC has spawned the exciting new field of
real time MRI. In this section, we discuss the progress
of deep learning applications to MRgRT as well as
promising future trends of clinical interest.

In our literature search, we identify three overarching
trends for deep learning models in MRgRT:

(1) multimodal approaches—Methods which leverage
many different types of information such as different
MR sequences, clinical data, and synthetically gener-
ated information have demonstrated state-of -the art
results and often outperform models using only one
source of data. Following this trend, we anticipate that
data sources commonly applied to radiomics methods
like genomics data,156 biomarkers,142 and additional
imaging sources to have an increased role in other
MRgRT applications. Including synthetic data can also
enhance performance leading to the blurring of the
subfields of MRgRT (image segmentation, image syn-
thesis, radiomics, and real time MRI). For example,
studies achieved higher performance on CT segmen-
tation tasks by performing the contouring on sMRI
images.8 Therefore, it is foreseeable that future models
may consider information from all subfields for optimal
adaptive treatment planning.

(2) transformer models—Transformer models have
been proved to be powerful by directly learning global
relations in MRI but can become computationally expen-
sive. Currently a balance is often struck with hybrid
CNN-Transformer models in which convolutional layers
capture fine detail in early layers while transformers
capture global context in deeper layers.These may tran-
sition to purely transformer models as computational
resources and more efficient approaches are developed.
Attention mechanisms for multi-modal segmentation
and synthesis have improved upon multi-modal image
synthesis by preferentially weighting input channels with
stronger context. We predict that this success will be
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improved upon with transformers. An additional exciting
property of transformer models is that they first divide
images into a 1D input sequence of patches, so it triv-
ial to add additional patches to represent diverse data
sources.Along with recent computationally efficient mul-
timodal approaches,157 this feature makes transformers
a strong contender to effectively employ data from many
sources.

Finally, transformer models show promise in better
handling small tumor volumes. While state-of -the-art
CNN models first identify a ROI so that the network
can better focus on relevant features, transformers can
directly identify important regions of the image while still
considering long-range context.This emphasis on global
context may also help when significant motion blurring
or other artifacts prevent CNNs from learning meaning-
ful local features and a holistic understanding is required
to achieve accurate results.

(3) generative models—Generative models create
data and have proved especially powerful in image seg-
mentation and synthesis tasks. GANs and its variants
such as the WGAN-GP and CycleGAN have been the
dominant model in MRgRT applications but are difficult
to train and often suffer from instability.Although not rep-
resented in any publications at the time of this review,
diffusion models solve these issues and have achieved
state state-of -the art results in computer vision tasks.
We expect diffusion models to quickly gain interest for
MRgRT applications as these algorithms improve and
become less computationally intensive.

Alongside the development of novel algorithms,
breakthroughs in MRI technology and the clinical work-
flow will undoubtedly benefit from advanced deep
learning architectures. Image segmentation models mit-
igate tedious contouring and intra-observer variability.
This need will rise with the advent of the MRI-LINAC and
real-time MRI, as tracking tumor motion will necessitate
real-time contouring or prediction of the deformable vec-
tor field. In addition, the increased soft tissue contrast
of MRI has allowed for the differentiation of sub-
structures with differing radiation tolerances, requiring
additional contouring. Although already finding success
in a variety of tasks like generating sCT, sMRI, and
super-resolution,synthesis models are expected to con-
tinuously adapt to emerging technologies. For instance,
the image quality of MR-LINACs is comparably poor due
to lower field strengths necessary to mitigate the ERE
and could be enhanced with image synthesis models
based on high quality diagnostic scans. Furthermore,
7T MRI is gaining clinical interest due to its higher
resolution and image contrast, but scanners are not
widespread and may cause side effects like nausea.158

Image synthesis models could increase the quality of
existing 1.5T and 3T scanners in a similar fashion.
Finally, radiomics models might also find new applica-
tions in providing insights into treatment progress and
outcomes.159

8 CONCLUSION

New deep learning approaches to MRgRT are rapidly
improving state-of -the-art performance in segmenta-
tion, synthesis, radiomics, and real-time MRI. Trends
such as multimodal approaches, transformer models,
and generative models demonstrate great potential in
tackling current areas of research such as generat-
ing accurate x-ray attenuation information, the “small
tumor problem” in image segmentation, and generat-
ing high quality radiomics predictions. In addition, these
approaches pave the way to better integrate real time
MRI into the clinical workflow and improve image quality
at shorter acquisition times and lower field strengths.
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104. Nečasová T, Burgos N, Svoboda D. Chapter 25 - Validation and
evaluation metrics for medical and biomedical image synthesis.
In: Burgos N, Svoboda D, eds. Biomedical Image Synthesis and
Simulation. Academic Press; 2022:573-600. doi:10.1016/B978-
0-12-824349-7.00032-3

105. Ogbole GI. Radiation dose in paediatric computed tomography:
risks and benefits. Ann Ib Postgrad Med. 2010;8(2):118-126.

106. Wang T, Manohar N, Lei Y, et al. MRI-based treatment plan-
ning for brain stereotactic radiosurgery: dosimetric validation
of a learning-based pseudo-CT generation method [published
online ahead of print 20180814]. Med Dosim. 2019;44(3):199-
204.

107. Padilla-Cabal F, Georg D, Fuchs H. A pencil beam algorithm for
magnetic resonance image-guided proton therapy. Med Phys.
2018;45(5):2195-2204.

108. Liu Y,Lei Y,Wang T,et al.MRI-based treatment planning for liver
stereotactic body radiotherapy: validation of a deep learning-
based synthetic CT generation method [published online ahead
of print 20190620]. Br J Radiol. 2019;92(1100):20190067.

109. Brou Boni KND, Klein J, Gulyban A, Reynaert N, Pasquier D.
Improving generalization in MR-to-CT synthesis in radiotherapy
by using an augmented cycle generative adversarial network
with unpaired data [published online ahead of print 20210424].
Med Phys. 2021;48(6):3003-3010.

110. Massa HA, Johnson JM, McMillan AB. Comparison of deep
learning synthesis of synthetic CTs using clinical MRI inputs
[published online ahead of print 20201223]. Phys Med Biol.
2020;65(23).

111. Koike Y, Akino Y, Sumida I, et al. Feasibility of synthetic com-
puted tomography generated with an adversarial network for
multi-sequence magnetic resonance-based brain radiotherapy.
J Radiat Res. 2020;61(1):92-103.

112. Dinkla AM, Florkow MC, Maspero M, et al. Dosimetric evalua-
tion of synthetic CT for head and neck radiotherapy generated
by a patch-based three-dimensional convolutional neural net-
work [published online ahead of print 20190709]. Med Phys.
2019;46(9):4095-4104.

113. Reaungamornrat S, Sari H, Catana C, Kamen A. Multimodal
image synthesis based on disentanglement representations
of anatomical and modality specific features, learned using

https://doi.org/10.48550/ARXIV.1411.1784
https://doi.org/10.48550/ARXIV.1703.10593
https://doi.org/10.1016/B978-0-12-824349-7.00032-3
https://doi.org/10.1016/B978-0-12-824349-7.00032-3


EIDEX ET AL. 20 of 21

uncooperative relativistic GAN [published online ahead of print
20220611]. Med Image Anal. 2022;80:102514.

114. Zhao B, Cheng T, Zhang X, et al. CT synthesis from MR in
the pelvic area using Residual Transformer Conditional GAN
[published online ahead of print 20221129]. Comput Med
Imaging Graph. 2022;103:102150.

115. Liu R, Lei Y, Wang T, et al. Synthetic dual-energy CT for MRI-
only based proton therapy treatment planning using label-GAN
[published online ahead of print 20210309]. Phys Med Biol.
2021;66(6):065014.

116. Maspero M, Bentvelzen LG, Savenije MHF, et al. Deep learning-
based synthetic CT generation for paediatric brain MR-only
photon and proton radiotherapy [published online ahead of print
20200923]. Radiother Oncol. 2020;153:197-204.

117. Tsekas G, Bol GH, Raaymakers BW. Robust deep learning-
based forward dose calculations for VMAT on the 1.5T MR-linac
[published online ahead of print 20221118]. Phys Med Biol.
2022;67(22).

118. Zhao S, Geng C, Guo C, Tian F, Tang X. SARU: a self -attention
ResUNet to generate synthetic CT images for MR-only BNCT
treatment planning [published online ahead of print 20220921].
Med Phys. 2022. doi:10.1002/mp.15986

119. Srinivasan K, Mohammadi M, Shepherd J. Applications of linac-
mounted kilovoltage Cone-beam Computed Tomography in
modern radiation therapy: a review [published online ahead of
print 20140703]. Pol J Radiol. 2014;79:181-193.

120. Dai X, Lei Y, Wang T, et al. Automated delineation of
head and neck organs at risk using synthetic MRI-aided
mask scoring regional convolutional neural network [published
online ahead of print 20210818]. Med Phys. 2021;48(10):5862-
5873.

121. Lei Y, Wang T, Tian S, et al. Male pelvic CT multi-organ seg-
mentation using synthetic MRI-aided dual pyramid networks
[published online ahead of print 20210416]. Phys Med Biol.
2021;66(8).

122. Xu L, Zeng X, Zhang H, Li W, Lei J, Huang Z. BPGAN:
bidirectional CT-to-MRI prediction using multi-generative multi-
adversarial nets with spectral normalization and localization
[published online ahead of print 20200508]. Neural Netw.
2020;128:82-96.

123. Fu Y, Lei Y, Wang T, et al. Pelvic multi-organ segmentation on
cone-beam CT for prostate adaptive radiotherapy [published
online ahead of print 20200511]. Med Phys. 2020;47(8):3415-
3422.

124. Shaffer A, Kwok SS, Naik A, et al. Ultra-high-field MRI in the
diagnosis and management of gliomas: a systematic review
[published online ahead of print 20220405]. Front Neurol.
2022;13:857825.

125. Chen X, Cao Y, Zhang K, et al. Technical note: a method to syn-
thesize magnetic resonance images in different patient rotation
angles with deep learning for gantry-free radiotherapy [pub-
lished online ahead of print 20220922]. Med Phys. 2022. doi:10.
1002/mp.15981

126. Zormpas-Petridis K, Tunariu N, Collins DJ, Messiou C, Koh
DM, Blackledge MD. Deep-learned estimation of uncertainty
in measurements of apparent diffusion coefficient from whole-
body diffusion-weighted MRI [published online ahead of print
20220913]. Comput Biol Med. 2022;149:106091.

127. Kim T, Park JC, Gach HM, Chun J, Mutic S. Technical
Note: real-time 3D MRI in the presence of motion for MRI-
guided radiotherapy: 3D Dynamic keyhole imaging with super-
resolution [published online ahead of print 20190827]. Med
Phys. 2019;46(10):4631-4638.

128. Xie H, Lei Y, Wang T, et al. Synthesizing high-resolution
magnetic resonance imaging using parallel cycle-consistent
generative adversarial networks for fast magnetic resonance
imaging. Med Phys. 2022;49(1):357-369.

129. Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4,
Inception-ResNet and the Impact of Residual Connections on
Learning. 2016. doi:10.48550/ARXIV.1602.07261

130. Cui Y, Yin FF. Impact of image quality on radiomics applica-
tions [published online ahead of print 20220722].Phys Med Biol.
2022;67(15).

131. Bouget D,Pedersen A,Jakola AS,et al.Preoperative brain tumor
imaging: models and software for segmentation and standard-
ized reporting [published online ahead of print 20220727].Front
Neurol. 2022;13:932219.

132. Gustafsson CJ,Swärd J,Adalbjörnsson SI,Jakobsson A,Olsson
LE. Development and evaluation of a deep learning based
artificial intelligence for automatic identification of gold fidu-
cial markers in an MRI-only prostate radiotherapy workflow
[published online ahead of print 20201112]. Phys Med Biol.
2020;65(22):225011.

133. Chakrabarty S,Sotiras A,Milchenko M,LaMontagne P,Hileman
M, Marcus D. MRI-based identification and classification of
major intracranial tumor types by using a 3D convolutional
neural network: a retrospective multi-institutional analysis [pub-
lished online ahead of print 20210811]. Radiol Artif Intell.
2021;3(5):e200301.

134. Jalalifar SA, Soliman H, Sahgal A, Sadeghi-Naini A. Predicting
the outcome of radiotherapy in brain metastasis by integrating
the clinical and MRI-based deep learning features [published
online ahead of print 20220706]. Med Phys. 2022;49(11):7167-
7178.

135. Nunez-Gonzalez L, van Garderen KA, Smits M, et al. Pre-
contrast MAGiC in treated gliomas: a pilot study of quantitative
MRI [published online ahead of print 20221217]. Sci Rep.
2022;12(1):21820.

136. Harrell FE Jr, Lee KL, Califf RM, Pryor DB, Rosati RA. Regres-
sion modelling strategies for improved prognostic prediction.
Stat Med. 1984;3(2):143-152.

137. Longato E, Vettoretti M, Di Camillo B. A practical perspective on
the concordance index for the evaluation and selection of prog-
nostic time-to-event models.J Biomed Inform.2020;108:103496.

138. Hossin MMNS. A review on evaluation metrics for data clas-
sification evaluations. Int J Data Mining Knowledge Manage
Process. 2015;5:01-11.

139. Chen Y, Villanueva-Meyer JE, Morrison MA, Lupo JM. Toward
automatic detection of radiation-induced cerebral microb-
leeds using a 3D Deep Residual Network. J Digit Imaging.
2019;32(5):766-772.

140. Gao Y, Xiao X, Han B, et al. Deep learning methodology for
differentiating glioma recurrence from radiation necrosis using
multimodal magnetic resonance imaging: algorithm develop-
ment and validation [published online ahead of print 20201117].
JMIR Med Inform. 2020;8(11):e19805.

141. Messina C, Bignone R, Bruno A, et al. Diffusion-weighted imag-
ing in oncology: an update [published online ahead of print
20200608]. Cancers (Basel). 2020;12(6).

142. Jing B,Deng Y,Zhang T,et al.Deep learning for risk prediction in
patients with nasopharyngeal carcinoma using multi-parametric
MRIs [published online ahead of print 20200802]. Comput
Methods Programs Biomed. 2020;197:105684.

143. Huisman SI, van der Boog ATJ, Cialdella F, Verhoeff JJC, David
S. Quantifying the post-radiation accelerated brain aging rate in
glioma patients with deep learning [published online ahead of
print 20220810]. Radiother Oncol. 2022;175:18-25.

144. Hua HL,Deng YQ,Li S,et al.Deep learning for predicting distant
metastasis in patients with nasopharyngeal carcinoma based
on pre-radiotherapy magnetic resonance imaging [published
online ahead of print 20220919]. Comb Chem High Throughput
Screen. 2022. doi:10.2174/1386207325666220919091210

145. Jalalifar A, Soliman H, Sahgal A, Sadeghi-Naini A. A cascaded
deep-learning framework for segmentation of metastatic brain

https://doi.org/10.1002/mp.15986
https://doi.org/10.1002/mp.15981
https://doi.org/10.1002/mp.15981
https://doi.org/10.48550/ARXIV.1602.07261
https://doi.org/10.2174/1386207325666220919091210


21 of 21 EIDEX ET AL.

tumors before and after stereotactic radiation therapy(). Annu
Int Conf IEEE Eng Med Biol Soc. 2020;2020:1063-1066.

146. Jalalifar SA, Soliman H, Sahgal A, Sadeghi-Naini A. A self -
attention-guided 3D deep residual network with big transfer to
predict local failure in brain metastasis after radiotherapy using
multi-channel MRI [published online ahead of print 20221104].
IEEE J Transl Eng Health Med. 2023;11:13-22.

147. Xia W,Zhang K,Li M,et al. Impact of magnetic field on dose dis-
tribution in MR-Guided radiotherapy of head and neck cancer.
Front Oncol. 2020;10.

148. Rammohan N, Randall JW, Yadav P. History of technological
advancements towards MR-Linac: the future of image-guided
radiotherapy [published online ahead of print 20220812]. J Clin
Med. 2022;11(16).

149. Otazo R, Lambin P, Pignol J-P, et al. MRI-guided radiation
therapy: an emerging paradigm in adaptive radiation oncology.
Radiology. 2021;298(2):248-260.

150. Edelstein WA, Mahesh M, Carrino JA. MRI: time is dose–and
money and versatility. J Am Coll Radiol. 2010;7(8):650-652.

151. Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 4D flow
imaging with MRI. Cardiovasc Diagn Ther. 2014;4(2):173-192.

152. Nie X, Li G. Real-Time 2D MR Cine from Beam Eye’s View with
tumor-volume projection to ensure beam-to-tumor conformal-
ity for MR-guided radiotherapy of lung cancer [published online
ahead of print 20220629]. Front Oncol. 2022;12:898771.

153. Terpstra ML, Maspero M, Bruijnen T, Verhoeff JJC, Lagendijk
JJW, van den Berg CAT. Real-time 3D motion estimation
from undersampled MRI using multi-resolution neural net-
works [published online ahead of print 20211026]. Med Phys.
2021;48(11):6597-6613.

154. Romaguera LV, Plantefève R, Romero FP, Hébert F, Carrier
JF, Kadoury S. Prediction of in-plane organ deformation during
free-breathing radiotherapy via discriminative spatial trans-
former networks [published online ahead of print 20200613].
Med Image Anal. 2020;64:101754.

155. Driever T, Hulshof M, Bel A, Sonke JJ, van der Horst A. Quanti-
fying intrafractional gastric motion using auto-segmentation on

MRI: deformation and respiratory-induced displacement com-
pared [published online ahead of print 20221224]. J Appl Clin
Med Phys. 2022. doi:10.1002/acm2.13864:e13864

156. Li S, Zhou B. A review of radiomics and genomics applications
in cancers: the way towards precision medicine. Radiat Oncol.
2022;17(1):217.

157. Nagrani A, Yang S, Arnab A, Jansen A, Schmid C, Sun C.
Attention Bottlenecks for Multimodal Fusion.

158. Hoff MN, McKinney A, Shellock FG, et al. Safety considera-
tions of 7-T MRI in clinical practice.Radiology.2019;292(3):509-
518.

159. Du R, Lee VH, Yuan H, et al. Radiomics model to predict
early progression of nonmetastatic nasopharyngeal carcinoma
after intensity modulation radiation therapy: a multicenter study.
Radiol Artif Intell. 2019;1(4):e180075.

160. Kerkmeijer LGW, Maspero M, Meijer GJ, van der Voort van Zyp
JRN, de Boer HCJ, van den Berg CAT. Magnetic resonance
imaging only workflow for radiotherapy simulation and planning
in prostate cancer. Clin Oncol. 2018;30(11):692-701.

SUPPORTI NG I NFORMATI ON
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Eidex Z, Ding Y, Wang
J, et al. Deep learning in MRI-guided radiation
therapy: A systematic review. J Appl Clin Med
Phys. 2024;25:e14155.
https://doi.org/10.1002/acm2.14155

https://doi.org/10.1002/acm2.13864:e13864
https://doi.org/10.1002/acm2.14155

	Deep learning in MRI-guided radiation therapy: A systematic review
	Abstract
	1 | INTRODUCTION
	2 | LITERATURE SEARCH
	3 | IMAGE SEGMENTATION
	3.1 | Deep learning methods
	3.2 | Challenges in MRI
	3.3 | Evaluation metrics
	3.4 | Brain
	3.5 | Head and neck
	3.6 | Abdomen, heart, and lung
	3.7 | Pelvis

	4 | IMAGE SYNTHESIS
	4.1 | Generative models
	4.2 | Evaluation metrics
	4.3 | MRI-based synthetic CT
	4.4 | Synthetic CT for proton radiation therapy
	4.5 | CT and CBCT-based synthetic MRI
	4.6 | Intramodal MRI synthesis and super resolution

	5 | RADIOMICS (CLASSIFICATION)
	5.1 | Evaluation metrics
	5.2 | Cancer detection and staging
	5.3 | Treatment response

	6 | REAL-TIME AND 4D MRI
	7 | OVERVIEW AND FUTURE DIRECTIONS
	8 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


