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Abstract

Cryogenic electron microscopy is widely used in structural biology, but its resolution is often 

limited by the dynamics of the macromolecule. Here, we developed a refinement protocol based 

on Gaussian mixture models that integrates particle orientation and conformation estimation and 

improves the alignment for flexible domains of protein structures. We demonstrated this protocol 

on multiple datasets, resulting in improved resolution and resolvability, locally and globally, by 

visual and quantitative measures.

Single particle cryogenic electron microscopy (CryoEM) leverages information from 

multiple independent observations of the same protein at different orientations to 

reconstruct its 3D structure. This method can determine rigid protein structures at 

atomic resolution1-4, and the number of CryoEM structures in the Protein Data Bank 

continues to rise. To reconstruct the 3D structure, the orientation of 2D particle images 

are determined computationally by iteratively searching for the optimal pose (rotation-

translation parameters) that maximizes the similarity between each particle image and the 

projection of the 3D density map5,6.

To estimate the pose of particles, algorithms assume that the 2D images represent 

observations of the same 3D structure at different orientations. However, the compositional 

or conformational heterogeneity of the macromolecule can make the assumption invalid 

and limit the CryoEM map resolution. Various computational methods have been developed 

to overcome the limitation. Focused and multibody refinement addresses heterogeneity by 

refining particle orientation for individual domains after density subtraction, but artifacts 

from masking and subtraction can affect the alignment accuracy7. Machine learning-based 

manifold embedding methods have been proposed to learn the conformational variations 

among particle images8,9. However, it remains challenging to obtain high-resolution 
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reconstructions for the flexible regions, because of the limited number of particles at 

the exact same conformation along a continuous movement trajectory. While the learned 

conformational changes can sometimes be used to generate deformed structures with 

improved features10,11, they differ from direct reconstruction from particles, which are free 

from deformation artifacts and may contain features absent in the consensus map.

Recently, we developed a protocol that uses Gaussian mixture models (GMMs) for structure 

representation, and extract protein movement trajectories from the particles with deep neural 

networks (DNN)12. Instead of using voxel maps, GMMs represent protein structures as 

the sum of Gaussian functions, which is a natural way to depict molecular models. To 

further improve the resolution and resolvability of the map and model, here we expand 

the GMM-based refinement workflow to optimizes both the poses and conformations of 

particles (Extended Data Fig.1). Using this technique, the information of conformational 

heterogeneity can be converted to the particles poses, to better resolve domains undergoing 

large-scale continuous movement.

For GMM-based orientation refinement, the protocol starts with a homogeneous refinement 

and uses existing pose estimations provided by voxel-based methods using software such as 

Relion5, EMAN26, and CryoSparc13. To prevent overfitting, the “gold-standard” even/odd 

particle split is kept throughout the entire process, and two GMMs are independently built 

from the two half sets. In each iteration, the pose of particles is locally refined using a 

gradient-based optimizer14, and 3D reconstructions are computed from the particle images 

with new orientations using direct Fourier inversion onto a voxel grid. The resolution of 

reconstructions is measured by Fourier shell correlation (FSC) between the two voxel-based 

half maps. The usage of GMM offers multiple advantages. First, compared to the voxel 

maps, the GMMs require only ~1% of variables to represent the same structure15, which 

reduces the computational cost and increases the observation/variable ratio. Second, as 

we use Gaussian coordinates to generate projection images, no interpolation is needed 

throughout the alignment. Third, since central Gaussian coordinates are located on protein 

densities, the GMM essentially provides a tight mask around the molecule without creating 

artifacts in real or Fourier space. Finally, because the GMM is a continuous function in 3D, 

the optimization can take advantage of accurate gradients calculated using deep learning 

packages16. All these features are particularly helpful for retrieving high resolution signal, 

without the artifacts from interpolation and masking, which can have a strong impact on 

alignment accuracy.

Next, we implement GMM-based focused refinement. With GMMs, we can adjust not only 

the amplitude, but also the width of Gaussian functions within a region, which represents the 

local resolvability. By increasing the width of the GMM references outside the region, the 

alignment focuses on high-resolution features within the region, while still being constrained 

by the low-resolution information from the rest of the structure. Furthermore, we can use 

a patch-by-patch refinement strategy to improve the resolvability of the entire protein. That 

is, we segment the full GMM into multiple patches, focus refine each individual one, then 

merge the results together into a final composite map.
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Finally, we integrate the pose estimation with the previously developed heterogeneity 

analysis12. The process starts from the DNN-based heterogeneity analysis using the 

orientation assignment from the GMM-based consensus refinement. After the heterogeneity 

analysis, the trained decoder outputs one GMM for each point from the latent space, 

corresponding to the conformation of that particle. While the overall movement within a 

protein can be complex, we assume that within a small enough local region, the structure 

moves as a rigid body. Therefore, we can change the frame of reference to focus the 

alignment on the target region. For each particle, we optimize the pose to minimize the 

difference within the region between the GMM of the conformational state of that particle, 

and the neutral state GMM (i.e., GMM derived from the consensus refinement) at the initial 

orientation. Reconstruction of all particles at the new orientation will have better-resolved 

features at the target region and smeared-out densities in the rest of the structure. A few 

rounds of focused refinement are then performed starting from this Euler angle assignment 

to further improve the resolvability of that region.

To demonstrate the performance of the method, we tested it on three public datasets with 

assigned particle orientations provided by the authors. In all examples, the same particles, 

masking, and structure sharpening were used, to ensure the only difference between the 

results comes from the orientation assignment.

Our first test was of a GPCR dataset from EMPIAR-10786, which was initially determined 

at 3.3Å resolution using multiple software with global and focused refinement17. The 

structure was improved to 2.5Å after GMM-based patch-by-patch refinement. As a measure 

of resolvability, average Q-score18 improved from 0.60 to 0.67. The GMM-based refinement 

led to improved real space features across the entire map. At the nanobody, β-strands are 

better separated and previously unmodeled broken density becomes connected. Along the 

ECL at the opposite side of the protein, we also observed better backbone connectivity and 

side chain density (Fig.1A-D, Extended Data Fig.2, Supplementary Video 1).

Next, we demonstrated focused refinement on a SARS-COV2 spike dataset 

(EMPIAR-10492)19. In this dataset, the central parts of the spike are well resolved, whereas 

the upper parts, including the RBD and the NTD are more flexible. Here, we improved 

“gold-standard” resolution from 3.8Å to 3.1Å, and the average Q-score from 0.47 to 0.53. 

The refinement also greatly improved features at the flexible domains. Strands in β-sheets 

become clearly separable, and side chains become visible in the refined structure (Fig.1E-H, 

Extended Data Fig.3, Supplementary Video 2).

Finally, we showed the integration with the DNN-based heterogeneity analysis using 

an ABC transporter dataset (EMPIAR-10374)20. This structure contains rigid TMDs, 

flexible NBDs, and Fabs that are undergoing large-scale movement and are blurred out 

in the consensus map. The global “gold-standard” resolution is 3.2Å, but the Fab is 

only determined at 5-10Å resolution locally. The GMM-based refinement increased global 

resolution to 2.8Å. Focused refinement improved the resolvability of the NBD, but its 

improvement on the Fab was suboptimal. So, we ran the DNN-based heterogeneity analysis 

focusing on one of the Fabs, which showed a continuous tilting movement of as much 

as 14Å. Then, the conformations of particles were converted to the change of pose at 
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that region, and a few rounds of focused refinement were subsequently performed. The 

refinement yielded clear high-resolution features at the Fab, including separable β-strands 

and visible side chains. Combining with patch-by-patch refinement results for the rest of 

the protein, the overall resolution reached 2.5Å (Fig.2, Extended Data Fig.4, Supplementary 

Videos 3-4).

In summary, by refining particle poses using GMMs instead of voxel maps as references, we 

obtain reconstructions with higher “gold-standard” resolution and better resolved real-space 

features. The use of GMMs also makes it easier to focus the alignment on local regions, 

and by segmenting the GMM into patches and focusing on every patch individually, we 

can further improve the resolution and resolvability of features throughout the structure. 

Combined with the DNN-based heterogeneity analysis, information of conformational 

changes can be converted to particle poses of the target domain, leading to greatly improved 

features at the highly flexible protein domains that undergo large-scale continuous motion. 

In addition to the near-atomic resolution structures, the GMM-based refinement also shows 

unambiguous improvement for structures initially determined at medium resolution (see 

Methods and Extended Data Fig.8). The method is compatible with most CryoEM software 

packages and shows superior performance on a wide range of proteins.

Methods

Introduction

The basic concepts of GMMs, as well as the architecture and training process of the DNNs, 

have been described in our previous publications12,15. In this section, we briefly explain the 

basic concepts of the method, but it is recommended to refer to the previous papers for more 

details.

To represent the structure of proteins, we use a GMM, which is a sum of Gaussian functions 

in real space, x̄ ∈ R3. Each Gaussian function is represented by five parameters: amplitude 

Aj, width σj, and the 3D center coordinates c̄j.

M(x̄) = ∑
j = 1

N
Aje− ∣ x̄ − c̄j ∣ 2

2σj
2

To generate 2D projections of a GMM, we project the coordinates of each Gaussian 

function using the rotation matrix R, and directly generate the 2D image using the Gaussian 

parameters. Since we only project coordinates, no interpolation is involved in the process. A 

projection of the GMM in t̄ ∈ R2 is simply:

P (t̄ ) = ∑
j = 1

N
Aje− ∣ t̄ − Rc̄j ∣ 2

2σj
2
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To compare projections of the GMM and particle images, we use the Fourier ring correlation 

(FRC) as loss function. The FRC between the Fourier transform of the GMM projection 

and a CryoEM particle image, is the average of the correlation coefficients over Fourier 

rings. Since each ring is independently normalized, the FRC is insensitive to filtering of 

images. So long as the CTF phases have been correctly flipped, CTF amplitude correction 

can be ignored. During the pose and conformation estimation, the FRC will be maximized 

for an individual particle when the GMM best agrees with the underlying particle density 

irrespective of CTF.

The optimization of GMMs is performed using DNNs. To build a GMM that matches a 

given voxel-based density map, we make projections of the density map, and train the DNNs 

to adjust the parameters of the GMM so its projections match the projection of the given 

density map at the same orientations. The DNN used here is a densely connected network 

with three layers. Details about the DNN architecture and training procedure can be found 

in the previous paper12. While the DNN can be trained from scratch, when initial locations 

of Gaussian coordinates are provided, it can also be pre-trained so the coordinates of the 

Gaussian functions in the GMM match the given 3D locations. The full GMM can then be 

optimized to match the density map using the initial coordinates as a starting point.

For heterogeneity analysis, a pair of DNNs, one encoder and one decoder, is built from 

the particles. The encoder takes the information of each particle and maps it to a latent 

space representing the conformational state of the particle. The decoder network then 

takes the coordinates in the latent space and produces a GMM at the corresponding 

conformation. While we always use the densely connected network for the encoder, multiple 

DNN architectures for the decoder have been established12,15, and users can choose the 

architecture using command line options. By default, and in examples shown in this 

paper, we use the hierarchical GMM described previously15. The small GMM used in the 

hierarchical DNN contains 32 Gaussian functions, which is used to drive the movement of 

the full GMM in the first round of training. The location of Gaussian functions in the small 

GMM is determined by K-means clustering of the full GMM. Details on the DNN design 

and training procedure can be found in the previous paper15.

Construction of Gaussian model

The first step in constructing the GMM is to determine the number of Gaussians (N) 

needed. The recent improvement of the GMM implementation makes it possible to represent 

the macromolecule with tens of thousands of Gaussian functions within the capability of 

modern GPUs15. So, when the sequence is known and the target resolution is 3Å or higher, 

it is convenient to simply set N to be the number of non-H atoms in the molecule. In our 

experience, small changes (10%) of N does not have a clear impact on the result of the 

refinement. For reconstruction at lower resolution, we also provide tools to automatically 

estimate the necessary number of Gaussian based on the size of protein and target resolution. 

In this approach, we build many GMMs of variable N from the same given density map, and 

determine the optimal N empirically. The goal here is to have the average nearest neighbor 

distance between Gaussian functions of the GMM match the value of the target resolution. 

Since resolution can be defined as the minimum distance that two Gaussian functions can 
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be separated, this approach can provide a good estimation of N to generate a GMM that 

represents the target structure.

With a given number of Gaussian, there are two ways to initialize the location of Gaussian 

functions in the GMM. First, when an existing molecular model is available, we can take the 

coordinates from the PDB file, and seed one Gaussian per non-H atom. To avoid overfitting, 

the coordinates of each Gaussian in the GMM is randomized at the determined “gold-

standard” resolution before being used as references for the even/odd subsets. Alternatively, 

the initial location of Gaussian functions can be determined by clustering voxels in the given 

density map with values above a given threshold using the K-means algorithm. Empirically, 

the two initialization methods cause little difference in the results of particle orientation 

refinement. In our experiments, the two methods yield overlapping FSC curves and virtually 

identical real space features after the refinement.

However, there are some potential points of concern with both these initialization methods. 

Seeding the GMM with a molecular model can lead to incomplete connectivity of 

polypeptide if the given atomic model was derived initially from a poorly resolved density 

map and thus did not account for all the densities. Seeding the GMM using the clustering 

method can lead to under-representation of the target molecule when there is significant 

non-target density in the reconstruction, e.g., lipid density in a membrane protein. This can 

be solved by either masking the density out before seeding the GMM, or increasing the 

number of Gaussian in the model.

In all examples shown in the paper, to avoid model bias, the GMMs were initialized 

directly from the voxel map, without the information from the existing PDB model. After 

initializing the coordinates of Gaussian functions, we initialize the amplitude and width 

for each Gaussian as constant values. The GMM is then optimized to match the voxel 

density map, using the same DNN-based procedure described in our previous paper12. All 

parameters, including coordinates, amplitude, and width are optimized at this step to match 

the GMM to the consensus density map. The optimization takes 40 epochs by default with 

a learning rate 10−6. After the optimization step, the output GMM typically has an average 

FSC greater than 0.9 at the target resolution range (Extended Data Fig.5).

Global particle orientation refinement

For the GMM-based global particle orientation refinement, we start from an existing 

homogeneous refinement and use the pose estimations provided by voxel-based methods. 

The protocol refines the orientation of each particle by aligning it to a GMM reference, and 

generates voxel-based density maps by reconstructing the particles at their new orientation. 

Conceptually, the GMM-based global orientation refinement protocol is similar to any 

classical voxel-based particle refinement protocol, in which particles are aligned to reference 

structures iteratively. The main difference here is that GMMs, instead of voxel-based density 

maps, are used as alignment references.

If the initial particle orientation assignment is performed using the voxel-based EMAN2 

refinement6, it can be directly used for the GMM-based refinement. Otherwise, the particles 

and orientations can also be imported from other software5,13. When importing the particles, 
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we read the initial splitting of the even/odd subset from the previous refinement, and keep 

the two subsets of particles separate throughout the refinement process. In addition to the 

orientation assignment, when the alignment is imported from other packages, we also read 

the existing CTF information from the star files, and flip the phase of particles according to 

the CTF during the import.

After all particles are imported, we reconstruct one voxel-based density map for each half 

set of particles, and build one GMM to match each of the half map. The GMMs are 

then used as references for the local orientation optimization of the corresponding half set 

of particles. To refine the orientation of particles, we use a gradient based optimization 

algorithm14 to find the best Euler angles and translation for each particle, so that the FRC 

between the particle image and the projection of the GMM is maximized. The optimization 

takes 10 iterations per particle, with a learning rate of 10−3. Since the particles are phase-

flipped during import, and the FRC is normalized by the Fourier ring, we do not consider 

any effect of CTF in the comparison. Because the GMM is a continuous function in 3D, 

the orientation optimization can be performed using a gradient-based optimizer, where the 

gradient is computed by the automatic differentiation in TensorFlow.

After orientation refinement, one 3D density map is reconstructed from each half set of 

particles using the newly determined Euler angles. The “gold-standard” FSC curves are 

computed from the voxel-based density maps at the end of each iteration, and the maps are 

low-pass filtered according to the measured resolution. Finally, a new GMM is built from 

each half map, which is used as reference for the next iteration of refinement.

Focused refinement

The process of focused refinement, as well as the patch-by-patch refinement described 

below, is similar to global orientation refinement, with the addition of applying a mask to 

the GMM before the alignment process. This mask helps to focus the refinement on specific 

regions of interest.

The mask for focused refinement can be defined by the user to concentrate on particular 

areas, or can be generated automatically in a patch-by-patch refinement procedure. In each 

iteration of focused refinement, the mask is applied to the width of the Gaussian in the 

GMM. For a mask with values between 0 and 1, the width (σj
′) of a Gaussian function 

centered at (x, y, z) is calculated using the expression:

σj
′ = σj ∕ (0.25 + 0.75 Mx, y, z)

Here, σj is the original width of the Gaussian, and Mx, y, z represents the value of the given 

mask at the corresponding point. It's important to note that the width of the Gaussian 

is increased outside the mask, as larger width corresponds to lower local resolution, not 

necessarily lower density. This contrasts with an amplitude mask, which decreases the 

Gaussian amplitude outside the mask. The masking operation is applied only to Gaussian 

functions whose centers fall outside the mask. This ensures that the resulting GMM still has 

soft boundaries, even if the given mask has sharp edges. The width mask is applied to the 
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GMM after it has been trained to match the reconstructed 3D density map at each iteration. 

This focused refinement process allows for the refinement of orientations in specific regions 

of interest, providing higher-resolution details in those areas.

Patch-by-patch refinement

In patch-by-patch refinement, we segment the full GMM into multiple patches, and perform 

focus refinement on each individual patch by increasing the Gaussian width of all the 

other patches. The results of focused refinement are then merged together to form a final 

composite map, which will have better resolved features throughout the entire structure.

To perform patch-by-patch alignment, we first divide the GMM into multiple patches using 

the K-means clustering algorithm. The number of patches (K) is determined empirically, 

and is set to 8 by default. In theory, the selection of the number should be based on the 

dynamics within the system, which is unknown before actually performing the refinement. If 

the number is set to 1, the process will become the same as global particle pose refinement. 

Increasing the number of patches leads to smaller target regions in each focused refinement, 

which can often result in improved resolution. However, the higher bound of the patch 

number is constrained by the computational power and the size of the protein. The focused 

refinement is on average as fast as the global orientation refinement, but it takes K times 

longer to run the patch-by-patch refinement with K patches. Additionally, if patches are too 

small, there may not be enough features within a patch for the alignment. In practice, to 

avoid aligning to noise, we always keep the size of a patch larger than a single α-helix or 

β-sheet. In our tests, the default number of K always yields an improvement of resolution 

and resolvability local features. To determine the best number of patches for a specific 

dataset, it is recommended to run multiple tests and decide empirically the number based on 

the results.

After segmenting the GMM into clusters, we create a soft spherical mask for each cluster 

of Gaussian functions that covers the center of all Gaussian coordinates in the cluster. Each 

mask is centered at the center of its corresponding GMM cluster, and the radius of the sphere 

is set to be the distance of the farthest Gaussian coordinate in that cluster from the cluster 

center. A five pixel soft falloff is added to each spherical mask, and adjacent masks have 

overlapping boundaries (Extended Data Fig.7).

For each patch, three iterations of focused refinement are performed using the corresponding 

spherical mask. After all focused refinement finishes, we combine the final voxel map 

reconstructions from each patch to form a composite, voxel-base, density map. This is done 

through weighted averaging using the patch masks:

Mapcomposite = ∑
i = 1

K
Maski ⋅ Mapi ∕ ∑

i = 1

K
Maski

Here K is the number of patches, Maski is the spherical mask of each patch, and Mapi is 

the unmasked and unfiltered voxel-based reconstruction from the focused refinement of that 
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patch. One Mapcomposite is generated from each half set of particles, and a final “gold-standard” 

FSC curve is calculated from the two composite half maps.

Conformation to pose conversion

The conformation of particles is estimated by the GMM and DNN-based heterogeneity 

analysis12,15. After the analysis, the trained encoder network can output one set of 

coordinates for each particle image in the latent space, and the decoder network generates 

the GMM at the corresponding conformation based on the latent space coordinates. To 

convert the conformation of each particle to a change of pose, we first generate one GMM 

for each particle using the trained decoder. Then, to estimate the new particle pose under a 

given mask of the target region, for each particle, we search for a new angle that minimizes:

RMSD( (Project(GMMneutral , θinit) − Project(GMMconf , θnew)) ⋅ mask)

Here, Project(GMM, θ) makes the projection of a 3D GMM to 2D at the Euler angle θ. 

GMMneutral is the GMM built from the consensus refinement, and GMMconf is the GMM at the 

conformation of that particle. θinit is the initial pose assignment of the particle, and θnew is the 

new pose to be optimized. The region of focus is specified by mask, which is a vector with 

length of the number of Gaussian functions in the GMM. The maski is 1 if the ith Gaussian 

falls within the target region, and 0 if outside the region. Root Mean Square Deviation 

(RMSD) is used to measure the difference between the two GMMs. The optimization is 

done using the Adam optimizer through TensorFlow14, starting from the initially assigned 

angle for each particle (θnew = θinit). For each particle, the optimization takes 30 iterations, and 

a learning rate of 10−3 is used.

As described in our previous work12, at the beginning of the heterogeneity analysis, the 

decoder is pre-trained so that an input of zero vector will lead to an output of the GMM 

fitted to the consensus reconstruction. Therefore, the origin of the latent space from the 

heterogeneity analysis always corresponds to the conformation of the neutral GMM. By 

aligning the target region of the GMM at any conformational state to the GMM at the origin, 

we essentially transform the frame of reference to the target domain. That is, we switch from 

a system with a rigid core and a moving domain, to a frame of reference that the target 

domain is staying still, whereas the rest parts of the protein are moving. By reconstructing 

the particles at the new orientation, we can obtain a structure that is well resolved at the 

target domain and smeared out everywhere else.

After reconstructing the particles at the new orientation, we perform multiple iterations of 

focused refinement with the same mask. To avoid overfitting, the heterogeneity analysis is 

done for the even/odd particle subsets independently, with one pair of encoder-decoders built 

for each subset. While the latent spaces produced by the two encoders do not necessarily 

match, as long as the two neutral state GMMs are aligned to each other, the reconstructions 

of particles at the converted pose will still be aligned. Since we finalize the result using 

focused refinement, the structure from the conformation to orientation conversion can be 

simply treated as one single patch in the patch-by-patch refinement, so it can be merged with 
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the results from all other patches and produce the final composite map with better features 

globally.

Maintaining “gold-standard” validation

To avoid overfitting, the entire process of GMM-based refinement and heterogeneity 

analysis is carefully designed to follow the “gold-standard” validation. From the beginning 

of the workflow, the two subsets of particles, as well as the corresponding reconstructions 

and GMMs are kept separate from each other in every step of the protocol.

When importing the initial alignment from other software packages, we preserve the 

even/odd split of particles from the upstream analysis. The initial half maps are generated 

by reconstructing particles of the corresponding half set at their given orientation. Two 

consensus GMMs are built from the two half maps independently, in order to make sure no 

bias from original reconstruction is introduced.

For the global orientation and focused refinement, the same “gold-standard” protocol is 

followed as any voxel-based refinement routine. Two GMMs are always built independently 

from the half maps, and they are only used as reference for the orientation search of 

particles from the corresponding half set. After alignment, 3D voxel maps are reconstructed 

from particles at the new orientation, and FSC curves are calculated from those voxel 

reconstructions. All FSC curves, except for the map-model FSC in Extended Data Fig.5, are 

“gold-standard” FSC curves between the two voxel-based half maps reconstructed from the 

particles.

In patch-by-patch alignment, for each patch, we use the same soft, spherical mask for both 

subsets of particles, so that the structures from individual focused refinement of the two 

subsets are comparable, and the “gold-standard” FSC can be computed. During each focused 

refinement, each particle is only aligned to its corresponding half map, and the resolution 

is measured by comparing the focused refinement results of the two half sets of particles 

using the same patch mask. After focused refinement of all patches finishes, we generate one 

composite map from each half set of particles, and the final FSC is computed from the two 

composite maps.

For the heterogeneity analysis, to make sure we do not introduce model bias and over-

estimate resolution, we build one pair of encoder-decoder DNNs completely independently 

for each half set of particles. Here, to be absolutely sure we are not introducing model 

bias, we follow a stricter version of the “gold-standard” validation than many of the typical 

CryoEM data processing procedures. In most CryoEM data analysis, the heterogeneity of 

the entire dataset is analyzed using classification21 or manifold method22 before splitting 

the dataset to two halves and performing the “gold-standard” refinement. By doing 

heterogeneity analysis independently on two half sets and still reaching higher resolution, 

we show that the two subsets of particles not only agree on the consensus structure, but also 

share the same pattern of dynamics.
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Structure comparison

For each dataset, we start from importing the extracted particle sets from EMPIAR 

provided by the authors. First, CTF correction is done by phase flipping each particle 

according to the information in the corresponding metadata (Relion star file)5. The Euler 

angles, 2D translation, and the “gold-standard” subset assignment of the particles are also 

extracted from the metadata, to use as the starting point of the GMM-based refinement. 

3D reconstruction is performed using direct Fourier inversion from the particles at their 

assigned orientations. To ensure the conversion is correct, a script is also provided that can 

convert the Euler angle GMM-based refinement back to the star file. The metadata can then 

be converted to the format of CryoSPARC or other software using the Pyem package23. 

Reconstructions in the other software packages using the GMM-refined Euler angles also 

show improved FSC curves and real space features.

Compared to voxel-based refinement results, the global GMM-based orientation refinement 

changes the Euler angle assignment of the particles by 2-3 degrees on average, and the 

translation change is often less than one pixel. From the GMM-based global orientation 

refinement to focused refinement of individual domains, the orientation assignment change 

would depend on the flexibility of that domain. For example, in the focused refinement of 

the transmembrane part of the GPCR, the Euler angle assignment of particles changes 3.7 

degrees on average (Extended Data Fig.6).

One soft mask is created for each dataset and used for the “gold-standard” FSC calculation. 

To avoid masking induced artifacts when comparing the FSC measurement, masks used here 

are often not as tight as the ones used in the original publications, leading to slightly lower 

resolution numbers than reported. However, real space features are essentially identical since 

the maps are filtered by their gold-standard resolution locally.

To ensure the real space features between different maps are comparable, we use the same 

sharpening method for all datasets. For each structure, we simulate a density map from 

the corresponding molecular model provided by the authors at 2Å, then compute the radial 

Fourier amplitude profile of the simulated map. The amplitude profile is used to sharpen the 

reconstructions before they are low-pass filtered to the determined resolution.

The final density maps are low-pass filtered to their gold-standard resolution locally using 

the method implemented in EMAN224. The corresponding molecular model from the 

original publication is fitted to the density map, and automated real space refinement 

protocol from Phenix is used to optimize the model to fit into the refined map locally25. 

Finally, Q-score is computed using the real space refined model and the map, and the 

averaged Q-score per residue, smoothed over a 11 residue window18, is reported in the 

figures. For the local feature comparison, we choose regions with the largest difference 

between the Q-score from the initial and refined reconstructions. Display of 3D volumes is 

done in UCSF Chimera and ChimeraX 26,27.

Detail on datasets

For the GPCR dataset, we use picked particles of the P-Neurokinin Receptor G protein 

complexes from EMPIAR-1078617. Specifically, the reconstruction and final Euler angle 
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assignment of the SP-NK1R-miniGs399 is used. The dataset includes 288,659 particles with 

a pixel size of 0.86Å. According to the original publication, the orientation assignment uses 

a combination of Relion, CryoSPARC and CisTEM. It is worth noting that the original 

structure is also the result of a final round of focused refinement, which targets the substrate 

binding region. After the GMM based refinement, we improve features on both the region 

targeted by the focused refinement, as well as domains at the other end of the protein. 

The GMM is seeded on the protein density only, excluding the lipid shell, and the FSC is 

evaluated using a larger soft mask that includes both the protein and lipid density. 7374 

Gaussian functions are included in the GMM, which is the number of non-H atoms in 

the corresponding molecular model. The “gold-standard” resolution of the initial structure 

was 3.3Å, which was improved to 2.8Å after the GMM-based global refinement, and 2.5Å 

after patch-by-patch refinement. The molecular model (PDB: 7RMH) corresponding to the 

EMPIAR entry was fitted into the density map using Phenix real space refinement against 

the final density map from the patch-by-patch refinement.

For the dataset of SARS-COV2, we use picked particles from EMPIAR-1049219, which 

includes 29,180 particles with their corresponding metadata. The original Euler angle 

assignment was performed using Relion. Here, since the resolution is lower, we use a 

GMM of 17,000 Gaussian functions. The number of Gaussian is estimated so that the GMM 

matches the density map at the target resolution range. The pixel size of the particles is 

1.061Å, and the structure is determined with c3 symmetry. The symmetry is expanded 

to c1 for the focused refinement by duplicating each particle three times at the three 

symmetrical orientations, and the mask for the refinement covers the target domain of one 

asymmetrical unit. To generate the final composite map, we reimpose the c3 symmetry to 

the focused refinement results by weighted average, using the focus masks as weights, then 

merge the maps from different focused refinement together using the same technique. The 

“gold-standard” resolution of the initial structure was 3.8Å, which was improved to 3.4Å 

after the GMM-based global refinement, and 3.1Å after patch-by-patch refinement. The 

molecular model (PDB: 6ZWV) was fitted into the density map using Phenix real space 

refinement against the result of patch-by-patch refinement.

The ABC transporter dataset comes from EMPIAR-1037420, a human ABCG2 transporter 

with inhibitor MZ29 and 5D3-Fab. The dataset contains 284,831 particles with a pixel size 

of 0.84Å, and the initial orientation is determined using a combination of CryoSPARC 

and Relion. The GMM includes 15,174 Gaussian functions, the same as the number of 

non-H atoms in the corresponding molecular model. The Euler angles from Refine3d_C2 are 

used as the initial particle orientation assignment, and the refinement is performed with c2 

symmetry. Similar to the SARS-COV2 dataset, the symmetry is expanded for heterogeneity 

analysis and focused refinement, then reimposed to generate the final composite map. 

The GMM-DNN based heterogeneity analysis is performed focusing on the Fab, using 

a hierarchical GMM15 and target 5Å resolution. The molecular models of different 

conformations (shown in Fig.2B) are generated by morphing the neutral state molecular 

model (PDB: 6ETI) using the decoder trained from the particles. Since the C-domain of 

the Fab is not modeled in the original publication, we use an existing Fab structure (PDB: 

7FAB), rigid-body fitted to the density map, then optimized to match the final composite 

map using Phenix real space refinement. The length of the movement trajectory is measured 
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at the residue with the longest movement distance, specifically 205K of the heavy chain. The 

average Q-score improves from 0.62 to 0.63 after the GMM-based global refinement, and 

0.65 after we merge the patches together. Note that the resolvability of the Fab C-domain 

is not computed resulting in the absence of the Q-score in Extended Data Fig.4, due to the 

difficulty of fitting the molecular model into the original density map reliably to make a fair 

comparison.

Performance of GMM-based refinement at medium resolution

In the three examples above, we have already shown that the GMM-based refinement can 

improve the global “gold-standard” resolution of the entire protein when the initial structure 

was solved at 3-4Å resolution. In the example of the ABC transporter, we also showed that 

the GMM-based heterogeneity analysis and refinement can improve the local resolution of 

the Fab domain, which was initially at 5Å or lower resolution due to its high flexibility. In 

this section, we test the GMM-based refinement on datasets with lower global resolution, to 

answer the question whether the GMM-based method still improves the result when there 

is no high-resolution feature such as side chain densities in the initial reconstruction. To 

demonstrate the performance of the GMM-based refinement at lower resolution, we create 

small subsets of the GPCR and SARS-COV2 datasets, and compare the results of voxel and 

GMM-based refinement (Extended Data Fig.8).

In the GPCR dataset, we randomly selected 6,000 particles from the full dataset (3,000 

from each half set) for the refinement. Using the small subset of particles, we performed 

“gold-standard” refinement from scratch using the voxel-based single particle refinement 

protocol in EMAN228. The high resolution reconstruction was phase randomized to 10Å and 

used as the reference for the refinement. The final structure reached the global resolution 

of 4.5Å with 6,000 particles, according to the “gold-standard” FSC curve. After the voxel-

based refinement, we continued to perform the GMM-based global and patch-by-patch 

refinement on the same dataset. The GMMs were built directly from the half maps from 

the voxel-based refinement, using the same protocol described for the processing of the 

full dataset. The number of Gaussians is estimated to be 7,000 from the density map. The 

GMM-based global refinement improved the “gold-standard” resolution to 4.0Å, and the 

patch-by-patch refinement further improved the resolution to 3.9Å with 6,000 particles. 

From the reconstructed maps, the GMM-based refinement also shows clear improvement 

of real space structural features. At the transmembrane domain, side chain densities start 

to show up from the previously smooth α-helices, and the strains in the β-sheets becomes 

separable at the lower part of the protein.

The processing of the small subset from the SARS-COV2 spike protein dataset follows 

the same protocol. 6000 particles were randomly selected from the full dataset for 

the refinement. The initial voxel-based refinement reached 6.2Å according to the “gold-

standard” FSC curve. Similarly, the GMMs were built from the half maps, and the number 

of Gaussian is set to 12,000, which is directly estimated from the density map. The 

GMM-based global refinement improved the “gold-standard” resolution to 5.3Å, and the 

patch-by-patch refinement further improved the resolution to 4.6Å. Improvement of real 

space features can also be seen in the reconstructions after the GMM-based refinement, 
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as the helical pitch starts to show up at the bundle of α-helices at the center of the spike 

protein.

Clearly, in both datasets, the resolution is limited by the number of particles. By improving 

the resolution of the refinement from the small subsets, we show that the GMM-based 

refinement is applicable to a wide resolution range, and does not require the presence of 

high-resolution features, e.g., side chains, in the initial reconstructions.

Computational resource consumption

The alignment protocol is implemented using Tensorflow16, and runs on GPUs with CUDA 

capability. In our tests, for the refinement of 400,000 particles with box size of 196 pixels 

and targeting 3Å resolution, one iteration of refinement takes ~2 hours on a Nvidia RTX 

A5000 GPU. For all examples shown in the paper, five iterations of refinement are sufficient 

to reach convergence by the FSC measurement. I.e., the “gold-standard” FSC curves do 

not show clear improvement from the 4th to the 5th iteration. Focused refinement has 

virtually the same time and resource cost as the refinement of the full protein, and the time 

consumption of patch-by-patch alignment is N times the focused refinement, where N is the 

number of patches.

During the refinement of the GPCR dataset, which uses a GMM of 7374 Gaussian functions 

and a box size of 240, the peak GPU memory use is 8.7GB. In contrast, the peak memory 

usage during the refinement of the ABC transporter, which uses a GMM with 15,174 

Gaussian functions and particles with box size of 256 pixels, is 17.1GB. Note that the GPU 

memory usage is roughly linear to the batch size used during the refinement, i.e., the number 

of particles loaded into the GPU memory at the same time, which is set to 16 by default and 

can be adjusted by users. Different from the training of DNNs, here the pose of each particle 

is independent, and we do not need to consider the statistical power for each batch, so this 

number can be adjusted to balance the speed and GPU memory consumption. I.e., using a 

batch size of 8 will save about half of the GPU memory in exchange for longer runtime, but 

the refinement results will not be affected.

The CPU memory consumption during the refinement is also adjustable. By default, 20,000 

particles are loaded into the CPU memory each time through the process, which can be 

changed through program options. However, unlike the batch size that affects the parallelism 

in GPUs, loading fewer particles into the CPU each time reduces the CPU memory cost but 

does not significantly slow down the process.

Interpretation of FSC curves

During the comparison of the structures, it is worth noting that the patch-by-patch 

refinement sometimes contributes less than expected to the global “gold-standard” FSC 

curves. For example, in the SARS-COV2 spike example (Extended Data Fig.3), the patch-

by-patch refinement is performed on the top of the GMM-based global alignment, and 

improves the structure in virtually every aspect. This includes better local resolution 

throughout the protein, equal or higher Q-score for every residue, and improved real 

space features. However, the improvement of the overall FSC from the patch-by-patch 

refinement is relatively small, particularly when compared to the improvement from the 
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original orientation assignment to the result from the global GMM-based refinement. To 

solve the puzzle, we use a simple simulated example to demonstrate the impact of the 

structural flexibility on the FSC curves.

Here, we generate simulated CryoEM density maps using the molecular model of β-

galactosidase (PDB: 6CVM)29. To simulate the structural flexibility, we randomize the 

coordinates of each atom within a local region before turning the model into a density map. 

This is done by shifting each atom toward a random direction for a given distance, which 

essentially controls the local resolution around the atom. For each of the even/odd subset, we 

generate 10 maps with randomized coordinates, and average them together to produce the 

map for the half set. Gaussian noise is added to the half maps so that the average SNR is 0.5. 

The “gold-standard” FSC is then computed between the results of the two half sets, without 

masking or other post processing steps. For two out of the four subunits of β-galactosidase, 

we consider them the rigid “core” of the protein and introduce only small shifts, so the 

local resolution is ~3Å. For the other two subunits, we randomize the atom coordinates at 

different scales to simulate the impact of local structure flexibility. In the first example (blue 

in Extended Data Fig.9), we randomize the atom coordinates so the local resolution at the 

two flexible subunits is ~15Å, whereas in the second example (red), the local resolution at 

the same two subunits is ~7Å. Obviously, the two structures are essentially the same at the 

two rigid subunits, and the second structure is much better resolved than the first one at the 

two flexible subunits. However, the first structure shows a slightly better FSC curve, despite 

its worse resolvability and local resolution.

A simple explanation of the phenomenon is that the real space signal at different subunits 

is weighted differently in the overall FSC curves, since the FSC is computed in the Fourier 

space. In the first structure, while the flexible subunits are poorly resolved, the average voxel 

intensity of the two subunits are also much lower compared to the two rigid ones, since 

structures of different “conformations” are averaged together. As a result, these two subunits 

carry a very low weight in the FSC curve, and the structure can achieve a “gold-standard” 

resolution of 3Å despite having half of the map only resolved at 15Å. In the second 

example, while the resolvability of the flexible subunits is considerably improved compared 

to the first structure, it is still not as good as the rigid subunits. However, the two flexible 

subunits now have higher voxel intensity, due to the fact that they are better resolved, thus a 

higher weight in the overall FSC curve. This means, the high resolution parts of the density 

map now weigh less in the calculation of FSC, leading to a slightly lower curve than the first 

example.

In summary, this simulated example suggests that the resolvability improvement of local 

flexible domains does not necessarily lead to the improvement of the overall FSC. To have 

a better measurement of the quality of a CryoEM density map, it is necessary to combine 

metrics including the global FSC, local resolution, local resolvability measurement such as 

the Q-score, as well as the real space features.
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Extended Data

Extended Data Figure 1. Workflow diagram for GMM-based particle orientation and 
conformation refinement.
Each block represents one step of processing, and the arrows indicate the sequence of 

the processes. The right side, DNN-based heterogeneity analysis is optional and is only 

recommended when large scale movement is present in the system. The result of the DNN-

based refinement focusing on one region can be treated as one patch and merged into the 

patch-by-patch refinement results from the main workflow.
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Extended Data Figure 2. 
Detailed results of the GPCR dataset (EMPIAR-10786). (A) “Gold-standard” FSC curves of 

the reconstruction using initial orientation (gray), global GMM-based refinement (yellow) 

and patch-by-patch refinement (pink). (B) Q-score comparison of the three corresponding 

maps. (C-D) Overall structure of the three reconstructions, colored by local resolution, and 

comparison of local real space features. The cyan boxes in C highlight the location of 

features in the corresponding columns shown in D.
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Extended Data Figure 3. Detailed results of the SARS-COV2 dataset (EMPIAR-10492).
(A) “Gold-standard” FSC curves of the reconstruction using initial orientation (gray), 

global GMM-based refinement (yellow) and patch-by-patch refinement (pink). (B) Q-

score comparison of the three corresponding maps. (C-D) Overall structure of the three 

reconstructions, colored by local resolution, and comparison of local real space features. The 

cyan boxes in C highlight the location of features in the corresponding columns shown in D.
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Extended Data Figure 4. Detailed results of the ABC transporter dataset (EMPIAR-10374).
(A) “Gold-standard” FSC curves of the reconstruction using initial orientation (gray), 

global GMM-based refinement (yellow) and patch-by-patch refinement (pink). (B) Q-

score comparison of the three corresponding maps. (C-D) Overall structure of the three 

reconstructions, colored by local resolution, and comparison of local real space features. The 

cyan boxes in C highlight the location of features in the corresponding columns shown in D.
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Extended Data Figure 5. Visualization of GMMs.
(A) Reconstruction of the GPCR using the voxel map representation, determined at 3.3Å 

resolution. 6x106 floating point values are required to represent the structure. (B) GMM 

representation of the A, shown in isosurface view. 5x104 floating point values are used to 

represent the structure. (C) FSC curve between A and B. The two structures are virtually 

identical up to 3.3Å. (D) Visualization of the GMM from B using 3D scatter plot. Each point 

is colored by the amplitude of the Gaussian function and the size of the points correspond to 

the width of Gaussian functions. (E) Overlay of the coordinates of Gaussian functions in the 

corresponding density map.
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Extended Data Figure 6. Orientation and translation change before and after GMM-based 
refinement.
(A) Histogram of particle orientation assignment change after the GMM-based global 

refinement. Mean=2.34, std=1.37 degrees. (B) Histogram of particle translation change after 

the GMM-based global refinement. Mean=0.66, std=0.46 pixels. (C) Histogram of particle 

orientation assignment change after the GMM-based focused refinement. Mean=3.74, 

std=1.76 degrees. (D) Histogram of particle translation change after the GMM-based global 

refinement. Mean=0.89, std=0.62 pixels.
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Extended Data Figure 7. Diagram for the patch-by-patch refinement.
(A) Input density maps and GMMs from the global orientation refinement. (B) Scatter plot 

of Gaussian coordinates, colored by clustering result. (C) Soft masks for each cluster. Each 

mask is a sphere covering all Gaussian coordinates of the corresponding cluster, with a soft 

falloff. (D) Focused refinement results using the soft masks, colored by local resolution. 

Note that the same refinement process is done independently for the even/odd subsets of 

particles using the corresponding half map/GMM as reference. (E) Masked out density from 

the individual focused refinement result. (F) Final composite map generated by weighted 

averaging.
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Extended Data Figure 8. Performance of GMM-based refinement in datasets at lower resolution.
(A-C) Refinement of a small subset of the GPCR dataset. (D-F) Refinement of a small 

subset of the SARS-COV2 dataset. (A, D) “Gold-standard” FSC curves of the reconstruction 

using voxel-based refinement (gray), global GMM-based refinement (yellow) and patch-by-

patch refinement (pink). (B, E) Overall structure of the initial reconstruction and the final 

patch-by-patch refinement result, colored by local resolution. (C, F) Comparison of local 

features from the voxel-based, global GMM-based and patch-by-patch refinement.

Extended Data Figure 9. Impact of flexible domains on the global FSC curve.
(A) Simulated density map of β-galactosidase, with two rigid subunits at 2.5Å and two 

flexible ones resolved at 15Å. (B) Same simulated map as A, with the two flexible subunits 

resolved at 7Å. (C) Comparison of “gold-standard” FSC curves of the two structures. Blue - 

A, red - B.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Refinement of GPCR (EMPIAR-10786) and SARS-COV2 spike (EMPIAR-10492) datasets. 

(A) Reconstructions of the GPCR using original angle assignment (left) and after the 

patch-by-patch alignment (right), colored by local resolution. The yellow box highlights 

the region shown below. (B-D) Comparison of real space features, “gold-standard” FSC 

and Q-score between the original reconstruction (gray) and the patch-by-patch refinement 

(pink). (E) Reconstructions of the SARS-COV2 spike using original angle assignment (left) 

and after the focused refinement of RBD (right), colored by local resolution. The yellow 

box highlights the target domain for focused refinement. (F-H) Comparison of real space 

features, “gold-standard” FSC and Q-score of RBD between the original reconstruction 

(gray) and the patch-by-patch refinement (pink).
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Fig. 2. 
Refinement of the ABC transporter (EMPIAR-10374). (A) Reconstruction of the ABC 

transporter using original orientation assignment, colored by local resolution. (B) 

Continuous movement of the Fab shown in morphed molecular models. (C) Reconstruction 

of the ABC transporter after converting the movement trajectory to particle orientations, 

colored by local resolution. (D) Feature comparison at a β-sheet in the C-domain of Fab 

from the original structure (gray) and the structure after GMM-based refinement (pink).
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