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Performance monitoring that supports ongoing behavioral adjustments is often examined in the context of either choice confidence
for perceptual decisions (i.e., “did I get it right?”) or reward expectation for reward-based decisions (i.e., “what reward will I
receive?”). However, our understanding of how the brain encodes these distinct evaluative signals remains limited because they
are easily conflated, particularly in commonly used two-alternative tasks with symmetric rewards for correct choices. Previously
we used a motion-discrimination task with asymmetric rewards to identify neural substrates of forming reward-biased perceptual
decisions in the caudate nucleus (part of the striatum in the basal ganglia) and the frontal eye field (FEF, in prefrontal cortex). Here
we leveraged this task design to partially decouple estimates of accuracy and reward expectation and examine their impacts on sub-
sequent decisions and their representations in those two brain areas. We identified distinguishable representations of these two eval-
uative signals in individual caudate and FEF neurons, with regional differences in their distribution patterns and time courses. We
observed that well-trained monkeys (both sexes) used both evaluative signals, infrequently but consistently, to adjust their subse-
quent decisions. We found further that these behavioral adjustments had reliable relationships with the neural representations of
both evaluative signals in caudate, but not FEF. These results suggest that the cortico-striatal decision network may use diverse eval-
uative signals to monitor and adjust decision-making behaviors, adding to our understanding of the different roles that the FEF and
caudate nucleus play in a diversity of decision-related computations.
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Significance Statement

Effective decision-making often requires the evaluation of current decisions to guide adjustment of future decisions. We used
a behavioral task with separate manipulations of visual evidence uncertainty and reward size to disentangle two types of eval-
uative signals with theoretical importance: accuracy and reward expectation. We found that well-trained monkeys used these
signals infrequently but consistently to adjust subsequent decisions. Neurons in the caudate nucleus in the basal ganglia and
frontal eye field (FEF) in the prefrontal cortex encoded both types of evaluative signals, with substantial regional differences.
Caudate activity, but not FEF activity, was linked to the monkeys’ decision adjustments. These results suggest different
involvements of these two regions in decision evaluation and adjustment.

Introduction
Effective learning can depend on comparisons between expected
and experienced outcomes (Sutton and Barto, 1998). These expec-
tations have been studied under terms such as confidence, choice
uncertainty, choice accuracy, and reward expectation. For percep-
tual decisions based on unreliable or noisy sensory evidence, these
expectations typically involve the assessment that a choice is correct
given the evidence (Kiani et al., 2014). This assessment can support
adaptive strategies in changing environments and account for other
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forms of sequential behavioral adjustments including post-error
slowing (Yu and Dayan, 2005; Nassar et al., 2012; Purcell and
Kiani, 2016). For reward- or value-based decisions, reward expec-
tation is the expected benefit (and/or cost) given a choice. This
expectation is a critical component of reinforcement learning and
is commonly used to evaluate value-based decisions (Sutton and
Barto, 1998; Samejima et al., 2005; Daw and Doya, 2006; Rangel
et al., 2008; Schultz, 2015). In more complex behavioral contexts,
confidence, accuracy expectation, and reward expectation may
become intertwined (Locke et al., 2020; Caziot and Mamassian,
2021).

Neural signals consistent with either of these forms of expecta-
tion have been reported in many brain regions, including the cau-
date nucleus of the basal ganglia and the frontal cortex (Kawagoe et
al., 1998; Schultz, 1998; Roesch and Olson, 2003; Padoa-Schioppa
and Assad, 2006; Kepecs et al., 2008; Lau and Glimcher, 2008;
Kiani and Shadlen, 2009; Basten et al., 2010; Ding and Gold,
2010; Nomoto et al., 2010; Kennerley et al., 2011; Middlebrooks
and Sommer, 2012; Teichert et al., 2014; Yanike and Ferrera,
2014a; Hebart et al., 2016; So and Stuphorn, 2016; Lak et al.,
2017, 2020b). However, our understanding of the neural represen-
tations of these evaluative signals has been limited by the fact that
these quantities are easily conflated under conditions in which they
are typically examined. For example, for value-based decision tasks,
choice confidence can be based on a comparison of reward expec-
tations for the chosen versus the unchosen options. Likewise, for
many perceptual decision tasks, the reward expectation for the cho-
sen option is the product of accuracy and the magnitude of reward
associated with a correct choice. When the reward magnitude is
fixed, choice confidence, accuracy expectation, and reward expec-
tation are all perfectly correlated.

Given these confounds, only a few studies have used task
manipulations that were effective at identifying distinguishable
neural representations of these quantities. For example, one
study identified distinct neural representations of choice confi-
dence and reward expectation in the rat orbitofrontal cortex
(OFC), along with reward expectation-modulated activity in
striatum-projecting OFC neurons (Hirokawa et al., 2019).
Another study identified representations of choice confidence
but not reward expectation in the supplemental eye field (So
and Stuphorn, 2016). To advance our understanding of how
the brain implements decision evaluation, we focused here on
two quantities: (1) accuracy expectation, which estimates the
probability of a choice being correct; and (2) reward expectation,
which estimates the expected value of a choice (i.e., the product of
accuracy expectation and expected reward size). We examined if
and how accuracy expectation and reward expectation have dis-
tinguishable representations in two brain areas that play key roles
in both value-based and perceptual decision-making, the caudate
and frontal eye field (FEF).

We leveraged a behavioral task with separate manipulations of
evidence strength and reward-choice associations (Fig. 1A) to
uncouple the estimated accuracy expectation and reward expecta-
tion, thus allowing us to differentiate neural representations of the
two quantities at the single-neuron level in the caudate and FEF.
We previously showed that neurons in these two areas play similar,
but distinguishable, computational roles in forming these decisions
that require balancing uncertain sensory evidence with
asymmetric-reward expectations (Fan et al., 2020). Here we show
that these regions may also play similar, but distinguishable, roles
in monitoring current decisions and adjusting future decisions,
by keeping track of both accuracy expectation and reward expecta-
tion and using those signals to guide subsequent behavior.

Materials and Methods
Experimental design and statistical analyses
The data sets for the present study were obtained from three monkeys
(two males and one female) and identical to those reported previously
(Fan et al., 2020). The original report focused on neural activity during
decision formation (i.e., after motion onset and before the saccadic
response). The present study focused on neural activity around saccade
onset that can encode evaluation of the decision. Details of subjects, the
behavioral task, data acquisition, and fitting with a drift-diffusion model
(DDM) with collapsing bounds can be found in three previous reports
(Fan et al., 2018, 2020; Doi et al., 2020) and are summarized here. All
training, surgery, and experimental procedures were performed in accor-
dance with the NIH's Guide for the Care of Use of Laboratory Animals
and were approved by the University of Pennsylvania Institutional
Animal Care and Use Committee (protocol #804726).

The numbers of neurons for each animal are reported in Results.
Statistical tests related to neural and behavioral analyses are detailed in
“Neural data analysis” and “Measurement of sequential effects” subsections,
respectively, with controls for multiple comparisons when applicable.

Behavioral task, data acquisition, and model fitting
Briefly, a trial began with presentation of a central fixation point
(Fig. 1A). Once the monkey acquired and maintained fixation on this
point, two choice targets were presented to indicate the two motion
directions to be discriminated. After a random delay, the fixation point
was dimmed, and a random-dot kinematogram was shown (“motion
onset”) with randomly interleaved motion direction andmotion strength
(coherence). The monkey reported the perceived motion direction by
making a self-timed saccade to the corresponding choice target. Two
asymmetric-reward contexts were alternated in a block design. In the
Right-LR blocks, the rightward choice was paired with a large juice
reward (LR). In the Left-LR blocks, the leftward choice was paired
with the large reward. The other choice was paired with a small juice
reward. The reward context for the current block was signaled to the
monkey at the first trial. Three monkeys were extensively trained on
this task. Single-unit recordings were obtained in the FEF and caudate
nucleus (in separate sessions) while monkeys performed the task.
DDM model fitting was performed, separately for each session, using
the maximum a posteriori estimate method and prior distributions sui-
table for human and monkey subjects (Wiecki et al., 2013). The same
fitting results were reported previously (Fan et al., 2020).

Computation of accuracy expectation and reward expectation
Following previous literature (Kiani and Shadlen, 2009), we defined
accuracy expectation as the estimation of accuracy on average given
the current choice and decision time (DT), as follows:

Accuracy expectation

=
P(Correct|Right, DT) Right target is chosen at DT
P(Correct|Left, DT) Left target is chosen at DT

{
, (1)

where DT is the decision time that equals RT minus non-DT (estimated
from DDM fits). The right-hand side was computed by marginalizing
over all possible coherences. For example, Right choices (Fig. 2) can be
represented as follows:

P(Correct|Right, DT)

=
∑
Cohi

[P(Correct|Right, DT, Cohi)P(Cohi|Right, DT)]

=
∑
Cohi

P(Correct|Right, DT, Cohi)P(Right, DT|Cohi)P(Cohi)
P(Right, DT)

=
∑
Cohi

P(Correct|Right, DT, Cohi)P(Right, DT|Cohi)P(Cohi)∑
Cohi

[P(Right, DT|Cohi)P(Cohi)]

, (2)

where Cohi is signed coherence (± for rightward and leftward motion)
and, by task design, as follows:
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P(Correct|Right, DT, Cohi) =
1 if Cohi . 0
0.5 if Cohi = 0
0 if Cohi , 0

⎧⎨
⎩ . (3)

In our task design, each coherence had an equal chance of appearance,
except that Coh=0 happened twice as often as the other coherences:

P(coh) =

1
(num. of Cohs + 1)

if Coh = 0

2
(num. of Cohs + 1)

if Coh = 0

⎧⎪⎪⎨
⎪⎪⎩

. (4)

In some sessions, Coh=0 was not included. In those sessions:

P(Coh) =
1

num. of Cohs
. (5)

P(Right, DT|Cohi)was obtained by numerical simulation of the DDM
using the best-fitting parameters. For each coherence, we obtained the

probability of the decision variable (DV) attaining a value x at time t,
pdfDV (t) = P(DV(t) = x |Cohi), using the best-fitting DDM parameters
of each session and reward context.

P(Right, DT|Cohi) =
∫1
upper bound

P(DV(t) = x |Cohi)dx. (6)

Similarly,

P(Left, DT|Cohi) =
∫lower bound
−1

P(DV(t) = x|Cohi)dx. (7)

After obtaining an estimate of accuracy expectation,

Reward Expectation

= Accuracy Expectation× Reward size associated with the choice. (8)

To standardize across sessions with different juice volumes, we
normalized reward size by the volume of the smaller reward for each

Figure 1. Task design and example performance. A, Monkeys reported the perceived direction of a random-dot motion stimulus with a saccade to one of the two choice targets. The motion
stimulus was turned off upon detection of saccade. Correct trials were rewarded based on the reward context. Error trials were not rewarded. Reward context was alternated between blocks of
trials, signaled to the monkey at the beginning of a block, and kept constant within a block. Multiple levels of motion coherences and two directions were pseudorandomly interleaved within a
block. B, Psychometric (top) and chronometric (bottom) functions for an example session. Black and gray symbols represent data from blocks with different reward contexts, as indicated in the
top panel. Triangles and circles represent data for left and right choices. C, D, Estimated accuracy expectation (C) and reward expectation (D) for the example session in B. In the left panels, values
were grouped by motion coherence and averaged across decision times. In the right panels, values were grouped by decision time quantiles and averaged over coherence levels, with triangles
and circles representing left and right choices, respectively.
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session. That is, for each session the small reward was assigned a
reward size of 1, and the large reward was assigned a value equal to
the large–small reward ratio.

Neural data analysis
We focused on neural activity between 200 ms before saccade onset (i.e.,
near decision commitment) and 400 ms after saccade onset (i.e., before
feedback delivery).

Joint modulations by reward size, DT, and coherence. For each single
unit, we computed the average firing rates in three task epochs: (1) a
pre-saccade 100 ms window beginning at 100 ms before saccade onset,
(2) a peri-saccade 300 ms window beginning at 100 ms before saccade
onset, and (3) a post-saccade 400 ms window beginning at saccade
onset (all epochs end before reward delivery). For each unit and epoch,
we performed two multiple linear regressions (Eqs. 9, 10), focusing on
coherence and RT dependencies, respectively, and including only cor-
rect trials.

Spike count = b0 + bChoice × IChoice + bRewCont × IRewCont
+ bRewSize × IRewSize + bCoh−Contra × IContra
× Coh + bCoh−Ipsi × IIpsi × Coh + bRewCoh−Contra

× IContra × IRewSize × Coh + bRewCoh−Ipsi

× IIpsi × IRewSize × Coh (9)

Spike count = b0 + bChoice × IChoice + bRewCont × IRewCont
+ bRewSize × IRewSize + bRT−Contra × IContra × RT

+ bRT−Ipsi × IIpsi × RT + bRewRT−Contra × IContra

× IRewSize ×RT + bRewRT−Ipsi × IIpsi × IRewSize × RT

(10)

In both Equations 9 and 10, Coh is the unsigned motion coherence; RT is
the normalized reaction time (mean-subtracted values, with the mean val-
ues measured for the corresponding reward context-choice combinations).

Figure 2. Computing accuracy expectation. A, General framework for computing accuracy expectation. For a given set of DDM parameters fitted to monkeys’ choice and RT data, the prob-
ability density function of the DV can be derived for a given time and coherence level: pdfDV(t). In this example, the likelihood of reaching a Right choice at time t is the area under the pdfDV(t)
curve (red patch) beyond the Right Bound. The likelihoods are used to compute the posterior belief of the stimulus state (i.e., signed coherence). Using the mapping between signed coherence
and correct choice, the posterior belief is converted to the probability of being correct and marginalized over coherence to compute accuracy expectation. B, C, Illustration of how
asymmetric-reward contexts can influence posterior belief (B) and accuracy expectation (C). For the illustrations, five coherence levels (0, ±0.2, and ±0.4) and the average DDM parameters,
separately for the two reward contexts, from all caudate recordings were used.
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IChoice =
1 if choice to contralateral/up target

−1 if choice to ipsilateral/down target

{
(11)

IRewCont

=
1 if contralateral/up target is paired with large reward
−1 if ipsilateral/down target is paired with large reward

{
(12)

IRewSize =
1 if a large reward is expected for the choice
−1 if a mall reward is expected for the choice

{
(13)

IContra =
1, if choice to contralateral/up target
0, if choice to ipsilateral/down target

{
(14)

IIpsi =
0 if choice to contralateral/up target
1 if choice to ipsilateral/down target

{
(15)

The signs of bRewSize, bCoh−Contra and bRT−Contra (or bRewSize, bCoh−Ipsi and

bRT−Ipsi) were used to create the 8 categories of joint modulations in

Figure 6. Chi-square tests were used to assess whether the proportion
of the 8 categories were the same (criterion: p= 0.05/12, correcting for
the 12 comparisons).

Correlation between neural activity and evaluative signals. For each
neuron, we measured the average firing rates in 300 ms time windows
with 10 ms steps. For each time window, we performed two partial
(Spearman) correlations: (1) between firing rates and accuracy expecta-
tion while removing the effect of reward expectation, and (2) between
firing rates and reward expectation while removing the effect of accuracy
expectation. Significance was assessed at p= 0.05. Chi-square tests were
performed to compare fractions of significant modulation at each time
window between conditions, with corrections for multiple comparisons.
We report here the results based on data from correct trials only. Similar
results were obtained including all trials (not shown).

We tested the effects of two potential confounds. First, because accu-
racy expectation and reward expectation are both affected by reward
biases, it is possible that reward context modulation alone may cause
measurable correlations between firing rate and accuracy expectation
or reward expectation. To minimize such a possibility, we imposed an
additional criterion that modulation by accuracy expectation or reward
expectation must be accompanied by modulation by DT. For each
time window and choice, we computed the correlation between firing
rates and DT for the two reward contexts separately and jointly. We con-
sidered a significant modulation by DT to be present if any of the three
correlation coefficients were non-zero (p < 0.05).

Second, we assessed whether a subjective reward ratio, different from
the actual ratio of juice volume, may provide a more accurate measure-
ment of reward expectation and significantly affect the prevalence of
reward expectation modulation of neural activity. We computed new
reward expectation with reward ratio ranging from 1 to 2.5 and opera-
tionally defined the “best” reward ratio as the value associated with the
largest correlation between firing rate and reward expectation (Fig. 8).

Measurement of sequential effects. We measured how monkeys’
choice and RT may be influenced by evaluative signals from the previous
trial. To measure sequential effects on choice, we performed logistic
regressions using the following function:

log
PStay

1− PStay
= b0 + bCoh × Cohsame + bprevError × IprevError

+ bprevLR × IprevLR + bprevAccuracy × prevAccuracy

+ bprevRewExp × prevRewExp + bprevAccuracy×prevError

× prevAccuracy × IprevError + bprevRewExp×prevError

× prevRewExp× IprevError

(16)

where PStay is the probability of choosing the same option as previous
trial; Cohsame is the signed coherence of current trials (± for motion
towards the same/opposite direction as the previous choice direction);
and prevAccuracy and prevRewExp are the z-scored accuracy expectation
value and reward expectation value, respectively, in the previous trial.

IprevError =
1 previous choice is error
0 previous choice is correct

{
(17)

IprevLR =
1 previous trial received large reward
−1 previous trial received small reward

{
(18)

bprevAccuracy . 0 implies that themonkeywasmore likely to repeat the same

choice after a high-accuracy trial.bprevRewExp . 0 implies that that themon-

key was more likely to repeat the same choice after a high-reward expecta-
tion trial. bprevAccuracy×prevError . 0 and bprevRewexp×prevError . 0. imply that

the evaluative signal-dependent effects were stronger after an error trial.
To measure sequential effects on RT, we performed multiple linear

regressions using the following function:

RT =a0 +aChoice × IRight +aRewSize × IRewSize +aRewCont

× IRewcont +aCorrect × ICorrect +aChoice×Correct × IRight
× ICorrect +aRewSize×Correct × IRewSize × ICorrect
+aRewCont×Correct × IRewcont × ICorrect +aCoh

×Coh+aCoh×Choice ×Coh× IRight +aCoh×RewSize

×Coh× IRewSize +aCoh×Rewcont ×Coh× IRewCont +aCoh×Correct

×Coh× ICorrect +aCoh×Choice×Correct ×Coh× IRight
× ICorrect +aCoh×RewSize×Correct ×Coh× IRewSize × ICorrect
+aCoh×Rewcont×Correct ×Coh× IRewCont × ICorrect
+bStay × IStay +bprevLR × IprevLR +bStay×prevLR × IStay × IprevLR

+bprevError × IprevError +bStay×prevError × IStay × IprevError

+bprevAccuracy×prevCorrect × prevAccuracy× IprevCorrrect

+bprevAccuracy×Stay×prevCorrect × prevAccuracy× IStay

× IprevCorrect +bprevAccuracy×prevError × prevAccuracy× IprevError

+bprevAccuracy×Stay×prevError × prevAccuracy× IStay × IprevError

+bprevRewexp×prevCorrect × prevRewexp× IprevCorrrect

+bprevRewexp×Stay×prevCorrect × prevRewexp× IStay × IprevCorrect

+bprevRewexp×prevError × prevRewexp× IprevError

+bprevRewexp×Stay×prevError × prevRewexp× IStay × IprevError

(19)

where Coh is the unsigned motion coherence in the current trials (posi-
tive for both directions); prevAccuracy, prevRewExp are defined the same
way as in Equation 16. IprevError and IprevLR are defined the same way as in
Equations 17 and 18.

IRight =
1 right choice in current trial
−1 left choice in current trial

{
(20)

IRewSize =
1 current choice is to large− reward direction
−1 current choice is to small − reward direction

{
(21)

IRewCont

=
1 current trial in the contralater − large reward blocks
−1 current trial in the ipsilateral − large reward blcoks

{

(22)
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ICorrect =
1 current choice is correct
−1 current choice is incorrect

{
(23)

IStay =
1 current choice = previous choice
−1 current choice = previous choice

{
(24)

IprevCorrect =
1 previous choice is correct
0 previous choice is error

{
(25)

bStay . 0 implies that the monkey tended to slow down when repeating
the same choice. bprevLR . 0 implies that the monkey tended to slow
down after a large-reward trial. bStay×prevLR . 0 implies that the monkey
slowed down even more when repeating a choice that resulted in a large
reward. bprevError . 0 implies that the monkey slowed down after an
error trial. bStay×prevError . 0 implies that the monkey slowed down
even more when repeating a previously incorrect choice.
bprevAccuracy×prevCorrect . 0 implies that the monkey tended to slow
down after a high-accuracy correct trial, regardless of the saccade direc-
tion. bprevAccuracy×Stay×prevCorrect . 0 implies that the above slow-down
effect was stronger if the monkey also repeated the same choice.
Similar interpretations apply with beta coefficients associated with error
trials (bprevAccuracy×prevError and bprevAccuracy×Stay×prevError) and reward
expectation parameters (bprevRewExp×prevCorrect , bprevRewExp×Stay×prevCorrect ,
bprevRewexp×prevError , and bprevRewexp×Stay×prevError).

For the choice data, the logistic regression was fitted via generalized
linear model assuming Binomial distribution for the response variable.
Each session data was fitted separately. To reduce the possibility of
over-fitting, we used two methods of regularization: Elastic Net and
LASSO regressions. Operationally, the fits were obtained using lassoglm
function in MATLAB, setting the alpha parameter to 1 and 0.5 for
LASSO and Elastic Net regressions, respectively. For each fitting, a
fivefold cross validation was performed, and the coefficients were chosen
as the ones corresponding to the minimum cross-validation error plus
one standard error.

We assessed whether it was more likely to encounter evaluative
signal-related modulation in neurons recorded in sessions with sequen-
tial effects, using Chi-square test with a criterion of p= 0.05 (Fig. 11B). To
assess the relationship between neural modulation by accuracy expecta-
tion and sequential effects related to accuracy expectation, we performed
a linear regression for all neurons:

Corr(neural, Accuracy|RewExp) � kstay × bprevAccuracy + kstay−err

× bprevAccuracy×prevError .

We applied this linear regression in sliding windows and used ttest to
assess significant non-zero regression coefficients
(p < 0.05, magenta dots in Fig. 11C,D). A similar regression was per-
formed for reward expectation-related neural and sequential effects.

Corr(neural, RewExp|Accuracy)
� kstay × bprevRewExp + kstay−err × bprevRewExp×prevError. (26)

Results
We trained three monkeys to perform a response-time (RT),
asymmetric-reward, random-dot visual motion direction-
discrimination saccade task (Fig. 1A; Fan et al., 2018). The mon-
keys made saccades to indicate their judgments about the global
motion direction of a motion stimulus. Motion direction and
strength were varied across trials, and reward context (Fig. 1,
table below the timeline) was varied in blocks of trials. As we doc-
umented previously, the three monkeys showed consistent beha-
vioral strategies such that their choice and response time (RT)

depended on both the reward context and motion strength
(Fig. 1B), and their reward-biased decision strategy can be cap-
tured with a combination of drift-rate and bound biases in a
DDM framework (Fan et al., 2018; Doi et al., 2020). Here we
re-analyzed behavioral and neural data from 140 sessions with
caudate recordings (n= 17, 45, and 70 from monkey A, C, and
F, respectively) and, separately, 149 sessions with FEF recordings
(n= 75, 23, and 33 from monkey A, C, and F, respectively).

Post-decision accuracy expectation and reward expectation
exhibit distinct relationships with reward size, DT, and
coherence
We computed accuracy expectation and reward expectation (val-
ues for an example session are shown in Fig. 1C) by adapting
methods used by others (see Fig. 2A and Materials and
Methods for details; Kiani and Shadlen, 2009; Fetsch et al.,
2014; Kiani et al., 2014). Briefly, we computed accuracy expecta-
tion as the estimated probability that the monkey made a correct
choice, as follows. First, we estimated the monkey's decision pro-
cess by fitting their choice and RT data to a DDM and used these
fits to obtain the likelihood of each stimulus state (i.e., signed
coherence) given a choice and the RT associated with that choice.
We then computed the (posterior) belief of a stimulus state from
the likelihood values and priors, using Bayes’ rule. Finally, we
converted the belief into the probability of a correct choice and
marginalized this probability over states (signed coherence) to
obtain the subjective assessment of the probability that the cur-
rent choice is correct. We then computed reward expectation
as the product of accuracy expectation and the reward size asso-
ciated with the choice.

As shown previously, accuracy expectation and reward expec-
tation for this kind of task both depend on stimulus strength
(motion coherence) and DT (Fig. 2C; Kiani and Shadlen, 2009;
Fetsch et al., 2014). Moreover, because the monkeys in our study
showed different choice and RT behaviors for the two reward
contexts, the fitted DDM parameters differed between reward
contexts, giving rise to additional dependencies on the interac-
tions among reward size, DT, and coherence. That is, because
the likelihoods of stimulus states for the same DT and choice
differed between when a large and a small reward was expected,
the resulting belief of stimulus state and accuracy expectation
also depended on reward context in non-linear, DT- and
coherence-dependent manners (Fig. 2B,C). For these reasons,
we computed both quantities separately for each reward context
in each session.

The similarities and differences between accuracy expectation
and reward expectation are best illustrated by considering their
relationships with reward size, DT, and coherence. For the exam-
ple session in Figure 1C, accuracy expectation tended to be higher
for smaller reward (purple relative to orange in both panels),
shorter DT (left panel), and higher coherence (right panel). In
contrast, reward expectation tended to be higher for larger
reward, shorter DT, and higher coherence (Fig. 1D). Consistent
with these illustrations, these measures of accuracy expectation
and reward expectation were no longer perfectly correlated
(e.g., because they were affected differently by reward magni-
tude), but could still be partially correlated (e.g., because both
tended to decrease with increasing DT and increase with coher-
ence) across all sessions (Fig. 3A). The exact correlation coeffi-
cient depended on experimental parameters, such as the ratio
between large and small rewards, and the monkey’ performance
(Fig. 3B,D). For example, the correlation coefficient tended to
decrease, sometimes reaching negative values, with increasing
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reward ratios (Fig. 3B). The correlation also tended to decrease
when the monkey was more biased by reward contexts
(Fig. 3C). The dependency patterns were more complex for
DDM parameters (Fig. 3D) because multiple parameters can
interact to alter likelihood estimation. Most critically, their corre-
lation was significantly <1 (Wilcoxon signed-rank test, p < 0.05/6
for all the monkeys and brain areas), which allowed us to probe
their potentially different relationships to neural activity and
behavior, as detailed below.

Accuracy expectation and reward expectation are reflected in
post-decision activity of FEF and caudate neurons
Previously, we reported in passing that a substantial proportion
of neurons in both caudate and FEF exhibited post-decision
activity patterns that were modulated by a combination of
reward, DT, and coherence (Doi et al., 2020; Fan et al., 2020).
Above we showed that these three factors also jointly modulate
accuracy expectation and reward expectation. Therefore, we
examined whether and how post-decision activity in the caudate
and FEF represent accuracy expectation, reward expectation, or
both.

The example caudate neuron depicted in Figure 4A–C exhib-
ited modulation patterns that resembled accuracy expectation.
Specifically, the neuron was more active when decisions were
to the small reward option, decision times were short, and coher-
ence was high (Fig. 3B,C bottom panels), similar to accuracy
expectation estimated from the monkey's behavior in this session
(Fig. 4B,C bottom panels). The neuron depicted in Figure 4D–F
exhibited modulation patterns that resembled the negative of
accuracy expectation: the neuron was more active when the deci-
sions were to the large-reward option, decision times were long,
and coherence was low. Accuracy expectation for this session fol-
lowed the opposite patterns. In contrast, the example caudate
neuron depicted Figure 4G–I exhibited modulation patterns
that resembled reward expectation. Specifically, the neuron was
more active when reward size and coherence were high and
less active with increasing decision times. The neuron depicted
in Figure 4J–L showed the opposite activity pattern, resembling
the negative of reward expectation. Similar examples and sub-
populations were found in FEF (Fig. 5).

These neural modulation patterns did not emerge from a ran-
dom mix of reward, DT, and coherence sensitivity but instead
reflected a robust representation of evaluative signals. We exam-
ined neural activity in three peri-decision epochs: pre-, peri-, and
post-saccade (−100 to 0 ms, −100 to 200 ms, and 0 to 400 ms
from saccade onset, respectively). For each epoch, we counted
the number of neurons showing one of eight possible combinations
of modulation by the three factors (positive or negative coefficients
in multiple linear regressions defined by Eqs. 9, 10). Figure 6 doc-
uments the distributions of neurons in these eight categories, with
red and blue fractions representing neurons with modulation pat-
terns consistent with accuracy expectation and reward expectation,
respectively. For almost all combinations of brain region, epoch,
and choice identity, the distributions were not uniform across the
eight categories (blue asterisks: Chi-square test p<0.05/12), arguing
against a random mixture of sensitivity in the population. Rather,
the majority of neurons showed modulation patterns consistent
with evaluative signals (red/blue vs. gray). These results suggest
that substantial portions of FEF and caudate neurons encode either
accuracy expectation or reward expectation.

To assess more directly the relationship between neural activ-
ity and these evaluative signals, we computed two partial corre-
lations between firing rate and each quantity, while accounting
for the other. We chose the Spearman correlation to capture
any non-linear, but monotonic, relationship. We used partial
correlations to account for the potential confound of non-zero
correlations between the model-derived measures of accuracy
expectation and reward expectations that we found for many ses-
sions (Fig. 3A). We observed significant non-zero partial correla-
tion coefficients between accuracy expectation or reward
expectation and the activity of many caudate and FEF neurons
(p < 0.05). Some of these neurons showed reliable choice selectiv-
ity in their activity around saccade onset, as tested previously

Figure 3. Decoupling of accuracy expectation and reward expectation. A, Distributions of
the Spearman correlation coefficients between accuracy expectation and reward expectation
in all recording sessions. Filled circle: correlation is different from zero for the individual ses-
sion (p< 0.05). Note that correlation coefficients were below 1 for all sessions. B, The cor-
relation coefficient depended on the ratio between large and small rewards. Each line depicts
the coefficients from simulated results using different reward ratios for each session. Each dot
depicts the actual coefficient and reward ratio from the given session. Colors indicate the
results from the three monkeys. C, The correlation coefficient (simulated for a fixed reward
ratio of 1.5) covaried with the degree to which the reward asymmetry biased choices in indi-
vidual sessions (points). D, The correlation coefficient (simulated for a fixed reward ratio of
1.5) covaried with estimated reward biases in drift-rate and relative bound heights in a DDM
framework. Reward biases in drift rates and relative bound heights were estimated from the
same DDM fits that were used to calculate accuracy expectation.
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Figure 4. Example caudate neurons encoding accuracy expectation or reward expectation. A, Average firing rates of a caudate neuron around saccade onset for one choice, grouped by reward
size and coherence (left) or decision time (right). Green bar: the time window used for neural activity measurements in B and C. B, Comparison of the average firing rate (top row) and average
accuracy expectation (bottom row) for the neuron in A, as a function of motion coherence (left column), decision time (right column, divided into quintiles), and reward size (orange/purple). Note
the correspondence between the modulation patterns for neural activity and accuracy expectation. C, Same format as B, except showing values for individual trials and without binning decision
times. Lines: linear regression, separately for the two reward conditions. D–F, Another example neuron, in which the modulation patterns for neural activity and accuracy expectation were in
opposite directions. Same format as A–C. G–I, Example neuron, in which the modulation patterns for neural activity corresponded to those for reward expectation. Same format as A–C. J–L,
Example neuron, in which the modulation patterns for neural activity and reward expectation were in opposite directions. Same format as A–C.
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using multiple linear regression (100 ms before saccade onset to
200 ms after) (Fan et al., 2020), whereas others did not. The
within-trial time courses of these correlation coefficients for neu-
rons in each brain area separated by their choice selectivity are
shown in Figure 7.

Accuracy expectation and reward expectation are represented
differently in caudate and FEF populations
Previously, we reported differences between caudate and
FEF populations in their involvement related to decision
formation (Ding and Gold, 2010, 2012a; Fan et al., 2020).

Figure 5. Example FEF neurons encoding accuracy expectation or reward expectation. Same format as Figure 4.
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Here we assessed whether and how these regions also differ in
their involvement related to decision evaluation. We observed
several regional differences in the distributions of partial cor-
relation coefficients. First, modulation by evaluative signals
showed different choice dependencies for the two regions. In
the choice-selective caudate subpopulation, modulation by
reward expectation appeared more often in trials ending
with the neurons’ preferred choices (Fig. 8A, second panel).
In the other caudate subpopulation, modulation by reward
expectation appeared more often in trials ending with the ipsi-
lateral choice (Fig. 8E, second panel). In both FEF subpopula-
tions, the prevalence of accuracy expectation or reward
expectation modulation did not depend on choice (Fig. 8B,F,
first two columns).

Second, the relative prevalence of modulation by the two
evaluative signals differed for the two regions. In the caudate,
the fraction appeared higher for accuracy expectation throughout

the peri-saccade period, although this difference reached signifi-
cance only in a short time window for the subpopulation without
choice selectivity (Fig. 8A,E, third column). In the FEF, the
fractions of neurons showing either accuracy expectation or
reward expectation modulation were similar (Fig. 8B,F, third
column).

Third, modulation by evaluative signals was generally more
common for caudate neurons (Fig. 8C,G). Modulation by accu-
racy expectation was more prevalent in caudate than FEF, for
the preferred choice in choice-selective neurons and contralateral
choice in other neurons. Modulation by reward expectation was
also more prevalent in caudate for the preferred choice in choice-
selective neurons.

Fourth, the dominant signs of the partial correlation coeffi-
cients (positive/negative values imply that neural activity
increased/decreased with increasing accuracy expectation or
reward expectation) differed between the two regions. For

Figure 6. Distribution of modulation patterns in caudate and FEF neurons. Each pie chart shows the distribution of eight possible modulation combinations by reward size, decision time, and
coherence, based on the signs of the regression coefficients from the linear regressions defined in Equations 9 and 10. All neurons were included in this analysis regardless of significance of
regression coefficients. “Accuracy +”: negative coefficient for reward size and decision time, positive for coherence. “Accuracy −”: positive for reward size and decision time, negative for
coherence. “Reward expectation +”: negative for decision time, positive for reward size and coherence. “Reward expectation −”: positive for decision time, negative for reward size and coher-
ence. Activity in FEF and caudate neurons and the three epochs were analyzed separately. Star: the distribution differed significantly from uniform (Chi-square test, p< 0.05/12).

10 • J. Neurosci., January 10, 2024 • 44(2):e0902232023 Fan et al. • Evaluative Signals in Caudate and FEF



neurons with choice-selective activity, the coefficients for accu-
racy expectation were primarily negative before saccade onset
and positive afterward for FEF (Fig. 8D, top row). The opposite

time course was observed for caudate neurons. The time course
of the sign for reward expectation modulation was similar for
the two regions for the preferred choice, with quantitative

Figure 7. Partial correlation coefficients for evaluative signals. A, Results from neurons with choice-selective activity around saccade onset. Top: correlation coefficients between firing rates
and accuracy expectation, after accounting for the effect of reward expectation. Bottom: correlation coefficients between firing rates and reward expectation, after accounting for the effect of
accuracy expectation. Neurons are sorted by the onset of the significant non-zero coefficient and sign of the coefficient, separately for the preferred and null choices. Each pixel shows the result
for average firing rates computed in a 300 ms running window (10 ms step). B, Results from neurons without choice-selective activity around saccade onset. Same format as A, except that
activity was grouped by contralateral and ipsilateral choices.
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differences in the actual fractions (Fig. 8D, bottom row). For the
null choice, both regions showed roughly equal distribution of
positive and negative modulation before diverging around sac-
cade onset. Because only a small number of FEF neurons showed
no choice selectivity and evaluative signal modulation, we could
not reliably compare their sign distributions with those of cau-
date neurons.

Note that for these comparisons, we imposed an additional
criterion that neurons encoding evaluative signals must be also
sensitive to DT. We used this criterion to filter out neurons
that simply encoded reward context or reward size alone in a
way that might appear to be modulated by either evaluative
signal. Removing this filter did not qualitatively change the
patterns described above. For example, caudate representations

Figure 8. Fractions of significant non-zero partial correlation coefficients. A–D, Results for neurons with choice-selective activity around saccade onset. A, B, comparisons of the prevalence of
modulation between the preferred and null choice trials and between accuracy expectation and reward expectation for the preferred choice, in the caudate (A) and FEF samples (B), respectively.
Dashed lines indicate chance level. C, Comparisons of the prevalence of modulation by accuracy expectation (top) and reward expectation (bottom) between FEF and caudate samples. The bar on
top of the curves shows the time points (in 12 bins) with significant differences between the two samples (color indicates the region with the larger fraction; Chi-square test p< 0.05/12). For
these comparisons, only neurons showing modulation by decision time were included to avoid counting neurons with pure reward context or reward size modulation. D, Comparisons of the
prevalence of positive partial correlation coefficients between FEF and caudate samples for the preferred and null choices separately. Same format as C. Only neurons with significant non-zero
coefficients were included and time bins with fewer than six of such neurons were excluded. E–G, Results for neurons without choice-selective activity around saccade onset. Same format as A–C.
Note that the small size of FEF subpopulation without choice selectivity precluded the comparison with the corresponding caudate subpopulation for modulation signs.
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of accuracy expectation and reward expectation remained more
prevalent than FEF representations (compare Figs. 8C, 9C).

Our finding of a relatively high prevalence of signals encoding
accuracy expectation versus reward expectation comes with a
potential caveat: the above analyses assumed that reward expec-
tation was based on the objective reward asymmetry, but the
monkeys might have had different subjective preferences (e.g.,
when we doubled the juice reward, a given monkey in a given ses-
sionmight have preferred it less or more than twice as much).We
conducted additional analyses to show that our results were
robust to any (unknown) variability in their subjective reward
ratios. Specifically, for each monkey and session, we identified
the subjective reward ratio that would maximize the correlation
between neural activity and reward expectation (examples are
shown in Fig. 9A). This procedure thus provides an upper bound
on our estimate of the number of neurons that encode reward
expectation. Across neurons and three task epochs (pre-saccade,
peri-saccade, and post-saccade), the estimated best reward ratio
was often close to 1 (Fig. 9B), which is consistent with our finding
that many neurons were sensitive to accuracy expectation (which
is equivalent to a reward ratio of 1). More generally, this new
analysis did not change the greater prevalence of neurons encod-
ing accuracy expectation versus reward expectation representa-
tion in the caudate population, nor the greater prevalence of
neurons encoding accuracy expectation in caudate versus FEF

populations (Fig. 9C). Together, these results suggest that the
two regions encode evaluative signals differently.

Accuracy expectation and reward expectation differently
influence subsequent decisions
To assess the behavioral relevance of these neural representations
of evaluative signals in caudate and FEF, we next characterized
how these signals related to the trial-to-trial adjustments the
monkeys made in their choice and RT behavior. All three mon-
keys were well trained on the task and therefore made choices
whose accuracy and speed could be well accounted-for via the
DDM; that is, they were based primarily on a decision process
that combined the accumulated sensory evidence on the current
trial with certain reward context-dependent biases (Fan et al.,
2018; Doi et al., 2020). Nevertheless, the monkeys occasionally
adjusted their behavior from trial to trial based on evaluations
of the previous choice. We assessed these potential sequential
effects using (1) logistic regression testing for effects on staying
or switching on the subsequent choice (Eq. 16) and (2) linear
regression testing for effects on speeding up or slowing down
the subsequent decision (Eq. 20). To account for the possibility
that the monkeys’ sequential adjustments were a result of
simpler outcome-driven (i.e., reinforcement learning-like)
effects than the complex accuracy expectation- or reward
expectation-driven effects, we also included regressors for

Figure 9. The observed regional differences were not due to estimation errors for the subjective reward ratio. A, Illustration of the identification of the best reward ratio (triangles) in the
correlation function between firing rates and reward expectation values calculated with different reward ratios. Dashed lines: the actual ratio in juice volume. The eight traces correspond to the
eight example neurons in Figures 4 and 5, respectively. B, Scatterplots of the best and actual reward ratios estimated using firing rates in pre-saccade, peri-saccade, and post-saccade epochs for
all sessions. Note that the best reward ratio is expected to be near one for activity modulated only by accuracy expectation. C, Comparisons between results using the actual reward ratios and the
fractions measured using best reward ratios (circles: caudate samples, triangles: FEF samples) for the three epochs. For both types of reward ratio, neuron counts did not require additional
modulation by decision time. Filled symbols: significant regional difference (Chi-square test, p< 0.05). Note that the same patterns of regional difference remained.
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whether the previous trial was correct and whether the monkey
received a large reward. We used Elastic Net regularization to
reduce overparameterization.

Even though the monkeys were well trained, we still observed
sequential effects driven by accuracy expectation, and/or reward
expectation, or both in many sessions. As shown in Figure 10A,
all three monkeys showed sequential effects on choice in above-
chance fractions of sessions. Sequential effects on RT were less
frequent and more variable across monkeys and for caudate
and FEF recording sessions. Specifically, the monkeys showed
consistent tendencies to repeat the same choice after receiving
a large reward or after a high-reward expectation trial (especially
if the high-reward expectation was followed by an error out-
come) (Fig. 10B, second, fourth, and sixth columns, respectively).

In contrast, they tended to switch to the other choice after a high-
accuracy expectation trial (third column). Their responses to an
error outcome alone or with the accuracy expectation interaction
varied across monkeys and sessions and may also depend on
their overall experience on the task (first and fifth columns,
respectively). The sequential effects based on previous large
reward, accuracy expectation, and reward expectation were espe-
cially robust when we used Lasso regression as an alternative
regularization method (Table 1).

These behavioral results suggested that the monkeys made
online adjustments to their decision behavior based on accuracy
expectation and/or reward expectation on the previous trial. The
adjustments were in opposite directions after high-accuracy
expectation and high-reward expectation trials.

Figure 10. Monkeys showed opposite sequential effects that were based on accuracy expectation or reward expectation in the previous trial. A, Fractions of sessions with non-zero beta
coefficients for sequential effects on choice and RT, based on Elastic Net regressions defined in Equations 16 and 20. Coefficients that showed above-chance (0.05) fractions across all monkeys and
recording sites are indicated with blue text labels. B, Distributions of the non-zero beta coefficients for the common effects (blue labels) identified in A. Colors indicate sessions from the three
monkeys. Triangle: median value; Filled triangle: the median value is significantly different from zero (Wilcoxon signed-rank test, p< 0.05). Note that the sequential effects differed in signs for
accuracy expectation and reward expectation.
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Neural representations of evaluative signals were related
differently to the monkeys’ sequential behavioral effects for
caudate and FEF neurons
To test whether and how the neural representations of evaluative
signals were related to the monkeys’ sequential behavioral adjust-
ments, we performed two tests. First, we reasoned that such a
relationship would predict that neural representations of an eval-
uative signal would be more likely to occur in sessions in which
the monkeys showed evaluative signal-dependent sequential
effects. We defined such sessions by the presence of non-zero
beta coefficients in Elastic Net regressions for sequential effects
on either choice or RT. We measured the prevalence of neural
representation of evaluative signals by counting, for each time
bin, the number of neurons showing significant non-zero partial
correlation coefficients (Fig. 11A,B). During caudate recording
sessions, neural modulation by accuracy expectation was more
likely when the monkeys used accuracy expectation to guide
sequential behavioral adjustments (Fig. 11A,B, first column).
A qualitatively similar, but quantitatively much weaker, effect
was observed for reward expectation (second column). During
FEF recording sessions, the probability of encountering modula-
tions by either accuracy expectation or reward expectation was
similar regardless of whether monkeys made accuracy expecta-
tion or reward expectation-dependent sequential adjustments
(third and fourth columns).

Second, we tested whether the coefficient of neural modula-
tion was correlated with the coefficients of sequential effects
across sessions. We used a linear regression, with the neural cor-
relation coefficient (as in Fig. 10A) as the dependent variable and
the corresponding sequential effect coefficients (as in Fig. 9) as
the regressors. We found that, in the caudate population, neural
modulation by accuracy expectation before saccade onset was
related positively to whether the monkeys tended to repeat the
same choice with a high-accuracy expectation on the previous
trial (Fig. 10C, first column). Neural modulation by accuracy
expectation after saccade onset was related negatively to whether
the monkeys tended to repeat the high-accuracy expectation, but
wrong, choice on the previous trial (Fig. 11D, first column). The
post-saccade modulation by reward expectation was related pos-
itively to the monkeys’ tendency to repeat a choice with a high-
reward expectation on the previous trial (Fig. 11C, second col-
umn). The same relations were observed in an alternative linear

regression analysis that included all coefficients for sequential
effects (i.e., both choice and RT). These results suggest that the
contributions of post-decision, pre-feedback caudate representa-
tion of accuracy expectation to future decision adjustments
depended on the correct/error feedback. The different time
courses of the regression coefficients for accuracy expectation
and reward expectation (compare Fig. 11C first and second col-
umns) also implied that the neural representations of these two
evaluative signals might be involved in different computations
for future decision adjustments. We did not observe any signifi-
cant relationship for the FEF population (Fig. 11C,D, third and
fourth columns).

Discussion
Accuracy expectation and reward expectation are both important
quantities for evaluating a decision after it has occurred, but their
distinct roles are not well understood because they are perfectly
correlated in many commonly used decision tasks. We addressed
this challenge by manipulating sensory uncertainty and reward
sizes to partially decorrelate and therefore identify distinguish-
able representations of these two conceptually distinct quantities.
We focused on post-decision activity in previously recorded FEF
and caudate neurons (Doi et al., 2020; Fan et al., 2020) and
observed that: (1) accuracy expectation and reward expectation
were represented in both brain regions; (2) these representations
were more prevalent in caudate than FEF neurons, especially for
accuracy expectation; (3) the monkeys used accuracy expectation
and reward expectation from the previous trial to adjust their
decision on the current trial; and (4) these behavioral adjust-
ments were more closely linked to evaluative signals represented
in caudate than in FEF. These results provide new perspectives
on previously reported cognitive signals in post-decision FEF
and caudate activity and further demonstrate functional differ-
ences between these two regions in decision evaluation and
adjustment.

Previous studies have shown that post-decision FEF and cau-
date neural activity are sensitive to various cognitive signals,
including choice value (Kawagoe et al., 1998; Lau and
Glimcher, 2008; Seo et al., 2012), task difficulty (Ding and
Gold, 2010, 2012a; Teichert et al., 2014), confidence
(Middlebrooks and Sommer, 2012; Yanike and Ferrera, 2014a),
and accuracy-related risk (Yanike and Ferrera, 2014b). There
are two common hypotheses regarding the diverse modulation
patterns. One hypothesis is that these different signals reflect
the same underlying computations but are expressed differently
under different task contexts. Our results, using a single task
design, argue against this simple hypothesis by demonstrating
that neural representations of at least two conceptually distinct
signals co-exist in two brain regions that are well known to be
involved in decision making. Extrapolating from these results,
it seems likely that even more diverse types of evaluative signals
are present in the decision network, which includes other cortical
areas, midbrain dopamine neurons, and superior colliculus
(Kepecs et al., 2008; Kiani and Shadlen, 2009; Zariwala et al.,
2013; So and Stuphorn, 2016; Lak et al., 2017, 2020a,b;
Odegaard et al., 2018; Hirokawa et al., 2019). In principle, these
signals can be flexibly employed to adapt a decision-maker's
strategy to diverse decision goals. For example, the
accuracy-related signals can be more readily used to maximize
accuracy, detect a change in environments (Yu and Dayan,
2005; Nassar et al., 2012), implement multi-stage decisions
(van den Berg et al., 2016; Desender et al., 2019a), or seek

Table 1. Regression results for common sequential effects

Elastic net Lasso

Median p-value Median p-value

Caudate sessions
Stay (Err) −0.020 0.2815
Stay (LargeRew) 0.406 <0.0001 0.417 <0.0001
Stay (Accuracy) −1.018 <0.0001 −0.838 <0.0001
Stay (RewExp) 0.516 <0.0001 0.409 <0.0001
Stay (Accuracy × Err) −0.045 0.0726
Stay (RewExp × Err) 0.074 0.0318

FEF sessions
Stay (Err) 0.131 <0.0001
Stay (LargeRew) 0.291 <0.0001 0.359 <0.0001
Stay (Accuracy) −0.922 <0.0001 −1.298 <0.0001
Stay (RewExp) 0.703 <0.0001 0.592 <0.0001
Stay (Accuracy × Err) −0.019 0.6378
Stay (RewExp × Err) 0.078 0.0048

Median values were from sessions with non-zero values for each regression coefficient; p-values were raw values
from Wilcoxon signed-rank test performed on the non-zero coefficients.
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more information (Desender et al., 2019b). In contrast, reward
expectation/risk-related signals can be more readily used to max-
imize reward rate (Bogacz, 2007; Feng et al., 2009; Simen et al.,
2009; Fan et al., 2018) and for implementing reinforcement
learning algorithms (Sutton and Barto, 1998). The other

hypothesis is that some patterns reflect precursor quantities
that are not directly relevant to behavior. For example, the accu-
racy signal in caudate neurons may be used to compute reward
expectation in loco but does not directly affect the monkeys’
behaviors. Arguing against this hypothesis, the monkeys’

Figure 11. Caudate activity is more closely linked to the monkeys’ sequential adjustments. A, First column: heatmaps of correlation coefficients between firing rates and accuracy expectation,
after accounting for the effect of reward expectation, for caudate neurons recorded in sessions with accuracy expectation-dependent sequential effects (top) and other caudate neurons (bottom).
For neurons showing significant correlation for both choices, the average coefficient was plotted. For neurons showing significant correlation for only one choice, the significant coefficient was
plotted. Second column, heatmaps for correlation coefficient between firing rates and reward expectation, after accounting for the effect of accuracy expectation, for caudate neurons recorded in
sessions with reward expectation-dependent sequential effects (top) and other caudate neurons (bottom). Third and fourth columns: heatmaps for FEF neurons. Same format as the first two
columns. B, Comparison of the fractions of neurons showing significant correlation coefficients for sessions with and without the corresponding evaluative signal-dependent sequential effects.
Horizontal bar indicates time bins in which the two fractions are significantly different (Chi-square test, p< 0.05). C, D, Regression coefficients measuring the relationship between neural
modulation by an evaluative signal and sequential effects that depended on that evaluative signal (Eqs. 25, 26, for accuracy expectation and reward expectation, respectively). C: kstay values;
D: kstay−err values. Values that significantly differed from zero were plotted in magenta (t test, p< 0.05).
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sequential adjustments were linked to both accuracy and reward
expectation signals in caudate. In addition, generalizing from a
rodent study of OFC neurons (Hirokawa et al., 2019), the caudate
may receive already-computed reward expectation signals from
the cortex and thus does not need to encode accuracy expectation
unless it is functionally relevant.

Given the extensive projection from the FEF to the caudate, it
is not surprising that the two regions share many functional sim-
ilarities, particularly for decision-making. For example, we and
others have shown previously that both the FEF and caudate
carry information related to decision formation, such as uncer-
tain sensory evidence (Kim and Shadlen, 1999; Ding and Gold,
2010, 2012a; Ding, 2015), values for potential outcomes
(Kawagoe et al., 1998; Lauwereyns et al., 2002b,a; Roesch and
Olson, 2003; Samejima et al., 2005; Ding and Hikosaka, 2006;
Lau and Glimcher, 2008), and the combination of them in com-
plex decisions (Fan et al., 2020). The pre-decision activity in both
regions is linked causally to decision behavior (Moore and Fallah,
2001; Ding and Gold, 2012b; Santacruz et al., 2017; Bollimunta et
al., 2018; Doi et al., 2020). The similarity also extends to decision
evaluation, as we show here that both regions carry information
about accuracy expectation and reward expectation.

Despite these similarities, it is also clear that the caudate is not
simply a relay station for FEF output. There are many notable
regional differences even when the two regions are compared on
the same task and in the same animals. For example, for a simple
saccade task with reward manipulations, reward expectation-
related information tends to be multiplexed with choice-selective
activity in FEF, whereas it is encoded directly by a subset of caudate
neurons (Ding and Hikosaka, 2006). FEF and caudate activity
encoding reward context information also shows different tempo-
ral dynamics (Ding, 2015). For a visualmotion-discrimination task,
pre-decision FEF activity reflects motion evidence accumulation
until a threshold level that is related to decision commitment,
whereas caudate activity follows evidence accumulation only in
the earlier phase of decision process (Ding and Gold, 2010,
2012a; Ding, 2015). For the asymmetric-reward motion-
discrimination task used here, FEF activity is more directly linked
to monkeys’ reward biases in evidence accumulation (Fan et al.,
2020). Our new results document additional regional differences
in decision evaluation and adjustment. Specifically, the greater
prevalence of accuracy expectation signals in caudate activity and
the closer link between caudate activity and the monkeys’ sequen-
tial behavioral adjustments support the idea that the caudate is
more directly involved in tuning the decision process. This idea
is further supported by previous observations that post-action cau-
date microstimulation can gradually bias RTs of a specific saccade
(Nakamura and Hikosaka, 2006; Williams and Eskandar, 2006)
and that caudate microstimulation during decision formation
induces behavioral effects that mimics the monkeys’ voluntary
reward bias strategies (Doi et al., 2020).

Further arguing against a direct relay scheme, the direct excit-
atory FEF→caudate projection contradicts the opposite direc-
tions of how accuracy expectation-related encoding in FEF and
caudate neurons evolves over the course of a trial (Fig. 8D).
The “sign flip” may be mediated by striatal inhibitory interneu-
rons. Because these neurons are sparse relative to the striatal pro-
jection neurons that we recorded, future recordings using
cell-type-specific sampling techniques are needed to determine
the involvement of striatal interneurons in decision-related com-
putations. The “sign flip” may also reflect additional sources of
evaluative signals to the caudate. For example, the supplementary
eye field has projection fields in the caudate that overlap with

those of FEF, and its neural activity is mostly negatively correlated
with confidence on a value-based decision task (Parthasarathy et
al., 1992; So and Stuphorn, 2016). Striatum-projecting OFC neu-
rons may provide a negative reward expectation signal to caudate
(Hirokawa et al., 2019).

The present results and our previous documentation of pre-
decision activity in FEF and caudate neurons, indicate that
both regions are involved in both the formation and evaluation
of decisions. We did not observe any relationship between activ-
ity related to decision formation and evaluation at the single-
neuron level. For example, neurons with and withoutmodulation
in their pre-decision activity (during motion viewing) were sim-
ilarly likely to show modulation by evaluative signals in their
post-decision activity. The sign of a neuron's post-decision mod-
ulation by accuracy expectation or reward expectation also
appeared unrelated to its pre-decision (during motion viewing)
modulation by choice, reward context, or motion coherence.
These results suggest that overlapping neural substrates may
mediate decision formation and evaluation.

For our study, we used mathematically-derived estimates of
accuracy expectation and reward expectation. Our results show
that these quantities relate to both behavior and neural activity,
lending credence to our premise that these quantities are a useful
starting point for understanding how the brain uses expectations
to evaluate and adjust behavior. Nevertheless, how the quantities
we computed relate to the actual quantities used in the brain
remains a challenging question. Amajor hurdle is the lack of a par-
adigm that can distinguish different forms of evaluative signals and
are amenable to neurophysiological studies. For example, monkeys
can be trained on post-decision wager tasks, but it is difficult to
ensure that the wagers are based strictly on accuracy or reward
expectation. Human subjects may be instructed carefully to report
accuracy expectation, reward expectation, or choice confidence, but
invasive neural recordings in normal subjects are unethical. The
advancement of intracranial recordings in certain patient popula-
tions may offer unprecedented opportunities to understand how
decision evaluation is implemented in the human brain.

In summary, we used a task design with independent manip-
ulations of sensory evidence and reward associations to decouple
accuracy and reward expectations. We found that a substantial
fraction of caudate and FEF neurons encode these two different
evaluative signals in their post-decision activity, but with regional
differences in their prevalence, time course, and associations with
behavior. These results highlight the diversity of signals and brain
regions that contribute to how decisions are formed, evaluated,
and adjusted to achieve particular goals.
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