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Abstract

Background: Out-of-hospital ventricular fibrillation (VF) cardiac arrest is a leading cause of 

death. Quantitative analysis of the VF electrocardiogram (ECG) can predict patient outcomes and 

could potentially enable a patient-specific, guided approach to resuscitation. However, VF analysis 

during resuscitation is confounded by cardiopulmonary resuscitation (CPR) artifact in the ECG, 

challenging continuous application to guide therapy throughout resuscitation. We therefore sought 

to design a method to predict VF shock outcomes during CPR.

Methods: Study data included 4577 5-second VF segments collected during and without CPR 

prior to defibrillation attempts in N=1151 arrest patients. Using training data (460 patients), an 

algorithm was designed to predict the VF shock outcomes of defibrillation success (return of 

organized ventricular rhythm) and functional survival (Cerebral Performance Category 1–2). The 

algorithm was designed with variable-frequency notch filters to reduce CPR artifact in the ECG 

based on real-time chest compression rate. Ten ECG features and three dichotomous patient 

characteristics were then developed to predict outcomes. These variables were combined using 

support vector machines and logistic regression. Algorithm performance was evaluated by area 

under the receiver operating characteristic curve (AUC) to predict outcomes in validation data 

(691 patients).
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Results: AUC (95% Confidence Interval) for predicting defibrillation success was 0.74 (0.71–

0.77) during CPR and 0.77 (0.74–0.79) without CPR. AUC for predicting functional survival was 

0.75 (0.72–0.78) during CPR and 0.76 (0.74–0.79) without CPR.

Conclusion: A novel algorithm predicted defibrillation success and functional survival during 

ongoing CPR following VF arrest, providing a potential proof-of-concept towards real-time 

guidance of resuscitation therapy.
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Introduction

Out-of-hospital cardiac arrest (OHCA) results in over 300,000 deaths each year in 

the United States.[1] OHCA is commonly caused by ventricular fibrillation (VF), 

an electrically-disorganized ventricular arrhythmia which causes ineffective mechanical 

contraction and circulatory collapse.[1,2] Current treatment protocol for VF OHCA includes 

high-quality cardiopulmonary resuscitation (CPR) briefly interrupted every two minutes 

for rhythm analysis and defibrillation shock but otherwise performed continuously until 

return of spontaneous circulation.[3,4] Overall survival from witnessed VF OHCA is 

approximately 30%, though there is a nearly ten-fold variability in survival across regional 

emergency medical services systems.[5,6] This range in outcomes suggest that VF OHCA 

is a potentially modifiable condition for which modifications to current protocols may be 

beneficial and merit exploration.

Observational studies have indicated that VF OHCA is a heterogeneous and dynamic 

entity, suggesting that the current uniform treatment approach may not optimally target case-

specific physiology.[2,7–9] VF resuscitation may instead benefit from a targeted strategy 

that delivers selected medication, defibrillation, and CPR with dosage, sequence, and timing 

tailored to the individual patient.[10–13] A challenge to such a strategy is accurate real-time 

assessment of patient status to guide their immediate treatment. However, there is now 

increasing evidence that real-time myocardial physiology during VF can be assessed using 

the electrocardiogram (ECG).[14,15] Specifically, VF ECG characteristics have been shown 

to predict the likelihood that a defibrillation shock will produce the near-term outcome 

of an organized rhythm and even the long-term clinical outcome of survival.[16–19] The 

application of such information to inform a patient-specific profile of medication, shock, and 

CPR care could dramatically alter our current ‘one-size-fits-all’ approach to resuscitation 

and its consequent outcome.

During active resuscitation, chest compression artifact during CPR obscures the ECG signal 

and can confound ECG analysis.[20–22] CPR would therefore need to be interrupted to 

allow accurate real-time estimation of physiologic status using VF ECG characteristics, but 

even brief CPR interruption undermines forward blood flow and reduces the likelihood of 

successful resuscitation.[23,24] Ideally, the ECG would be assessed continuously during 

CPR and used to inform time-sensitive treatment choices throughout resuscitation.[25,26] 
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Such a strategy could potentially enable real-time titration of CPR and medication based on 

a patient’s status, advancing an approach for VF treatment whereby CPR is interrupted only 

once a shock is likely to produce organized rhythm and survival.

Therefore, in the current investigation we sought to develop an algorithm to predict the 

short- and long-term outcomes of VF shock without requiring CPR interruption. The 

proposed algorithm could potentially provide the basis to inform patient-specific VF 

treatment decisions during resuscitation while supporting the best practice of high-quality 

continuous CPR.

Methods

Data

Study Design, Population, and Setting—The investigation was a cohort study of out-

of-hospital cardiac arrests presenting to emergency medical services (EMS) with an initial 

rhythm of VF from 2005–2015 in King County, WA (excluding Seattle) that had complete 

defibrillator recordings. The cohort included patients treated with Lifepak 12, Lifepak 15 

(Physio-Control, Redmond, WA), HeartStart FR3, and HeartStart MRx (Philips Healthcare, 

Bothell, WA) biphasic defibrillators. Patients were excluded if they were treated by a public 

access or police defibrillator prior to EMS arrival or were <18 years in age.

In accordance with applicable regulations, the Research Review Committee of King County 

Public Health and the Institutional Review Board at the University of Washington Human 

Subjects Division approved the study and waiver of informed consent.

Data Resource—The study system maintains a clinical registry that uses data resources 

including the dispatch recording, EMS written reports, hospital records, death certificates, 

and the defibrillator recording. These data sources are systematically abstracted to determine 

OHCA circumstances, patient demographics, prehospital care, and clinical outcomes. The 

registry is organized according to the Utstein template.[27]

Study Outcomes—We evaluated both short- and long-term patient outcomes. Short-term 

outcome was defibrillation success, defined as the return of an organized rhythm with 

distinct QRS complexes at a rate of >12 per minute after a defibrillation attempt (Figure 

1). Successful long-term outcome was survival with functional neurologic status, defined as 

survival to hospital discharge with a Cerebral Performance Category of 1 or 2.[28]

ECG Data—We sought to combine clinical and ECG characteristics to achieve prediction 

of patient outcomes. When available in continuous defibrillator recordings, we collected 

one 5-s VF ECG segment during chest compressions followed by an adjacent 5-s 

segment without compressions prior to a shock (Figure 1). ECG segments were collected 

concurrently with transthoracic impedance (TTI) to confirm CPR status.[29] ECG data were 

collected at sampling rates ranging from 125 – 250 Hz and TTI data were collected at rates 

ranging from 61 – 200 Hz. All signals sampled at rates lower than 250 Hz were resampled 

to 250 Hz (Supplementary Material A). Data and signal processing were performed with 

MATLAB 2018 (MathWorks, Natick, MA) and RStudio 1.1 (RStudio, Boston, MA).
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Algorithm Description

An overview of the proposed algorithm is shown in Figure 2.

ECG Filtering—During CPR, chest compression artifact in the ECG is generally 

concentrated near a fundamental frequency of approximately 2 Hz but can produce transient 

and harmonic artifacts up to 20 Hz.[20,30] Since VF commonly has a dominant frequency 

between 3–8 Hz which may overlap compression harmonic frequencies, ECG filtering to 

reduce chest compression artifact may also attenuate essential VF frequency content.[31] 

Therefore, in the current algorithm, filtered and unfiltered ECG signals were analyzed in 

parallel to take potential advantage of artifact reduction in filtered data as well as increased 

VF content in unfiltered data.

To apply filtering, ECGs were first bandpass-filtered using a 1–30 Hz 4th-order Butterworth 

filter to reduce drift, ventilation artifact, and high-frequency transient and power noise. If 

chest compressions were automatically detected in the corresponding TTI signal using a 

previously-validated compression detection method [29], the bandpass-filtered ECG was 

also processed with a variable-frequency notch filter to reduce CPR artifact. We designed 

the notch filter with a series of three 2nd-order Butterworth band-stop filters to reduce 

the fundamental and first two harmonic compression frequencies based on the real-time 

estimated chest compression rate (Figure 3, Supplementary Material A). All filters were 

applied with a forwards-backwards implementation for linear phase.

ECG Features—Prior studies have proposed quantitative measures of the VF ECG 

to assess myocardial metabolism and predict patient outcomes.[14,32] These measures 

quantify features such as VF amplitude and frequency.[32–38] However, such features are 

designed to analyze ECGs without CPR, and are thus confounded by chest compression 

artifact.[25,39] Prior investigation has also suggested that combinations of multiple features 

may improve prognostic performance versus using a single feature.[39,40]

We therefore designed ten novel features of the VF ECG to quantify characteristics 

associated with prognosis while remaining robust against potential chest compression 

artifact (Figure 4). Two features per domain were included from domains previously 

demonstrated to predict outcomes: ECG amplitude [33], entropy [41,42], scalogram energy 

[32,43], dominant frequency [34,35,44], and Fourier spectrum characteristics [45]. Features 

were each empirically designed with variable parameters to allow optimization for use 

during chest compressions, and were only retained if their performance on training data was 

significantly predictive of survival.

Specifically, to quantify ECG amplitude while remaining robust against low-frequency 

artifact and intermittent transient noise, Sliding Deviation and Sliding Peak were defined 

as the median of the absolute standard deviation and peak amplitudes, respectively, within 

variable-length time windows (Supplementary Material B). To quantify the entropy in 

the ECG scalogram while mitigating the effects of CPR artifact, Interfrequency Entropy 
and High-Frequency Entropy (Supplementary Material C) were defined as the median 

Shannon entropies of specific scalogram frequency bands. To describe the energy in 

the ECG scalogram while reducing confounding by CPR, the Shannon Energy and 
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Interfrequency Shannon Energy (Supplementary Material C) were defined as the median 

of Shannon-transformed magnitudes at each frequency band and at each time step in 

the scalogram, respectively, within variable frequency limits. To represent the dominant 

ventricular fibrillation frequency, Mean Maxima was defined as the average dominant 

scalogram frequency within variable frequency limits, while Maxima Fraction was defined 

as the proportion of time the dominant scalogram frequency exceeds a frequency threshold 

indicative of good prognosis (Supplementary Material D). Finally, as a measure of spectral 

variation and self-similarity in the short-time Fourier transform, the Short-Term Deviation 
was defined as the median of standard deviations at each time step, while Correlation 
Component was calculated using principal component analysis of correlations between 

frequency bands (Supplementary Material E).

Support Vector Machine—We used support vector machine classifiers to combine 

individual ECG features into a single continuous output.[46,47] The classifiers were of 

the form f(x) = ∑t = 1
T ytαtK xinput, xt + w0, where xinput  is an N−dimensional input of ECG 

features, αt are model parameters, w0 is a constant, and T  support vectors xt with associated 

class assignments yt ∈ − 1,1  are generated from training data. The selected gaussian kernel 

function K(a, b) = exp −γ∑j = 1
N aj − bj

2  represents similarity between arbitrary inputs a and b

given kernel size γ. Support vector machine output values f(x) were mapped to continuous 

probabilities using a sigmoid transformation of the form σ(f(x)) = 1 + eA0f(x) + A1 −1 given 

trained parameters A0 − 1.[48]

Dichotomous Patient Variables—We considered basic patient characteristics for use 

in the algorithm that would be available in a time-sensitive acute clinical setting.[49] Prior 

investigation has suggested a relationship between the interaction of age and sex with arrest 

outcome.[50,51] Therefore in the current investigation, we included the basic demographic 

characteristics of age (dichotomized at <60 years and denoted Age) and female sex (denoted 

Sex) as well as their interaction. Additionally, evidence indicates that short-term response 

to prior shock is associated with response to subsequent shocks.[9,52,53] Hence we also 

included whether the prior shock resulted in return of organized rhythm (denoted Prior 
ROR), when applicable. We assumed that automated inclusion of prior organized rhythm in 

a prognostic algorithm is feasible given recent advancements in rhythm classification during 

CPR.[26,54]

Logistic Model—We used logistic regression to generate a probability of good prognosis 

for each 5-s input segment (Figure 2). The logistic model incorporated the variables 

described above to predict outcome of VF shock, and was of the form:

P =
g β0 + β1 SV M + β2 Age + β3 Sex + β4 Age × Sex if sℎock = 1

g β0 + β1 SV M + β2 Age + β3 Sex + β4 Age × Sex + β5 Prior ROR otherwise

where P  represents the probability of successful outcome, the logistic function 

g(z) = 1
1 + e−z , sℎock represents the current shock cycle number, SV M is the output from 
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the support vector machine, Age, Sex, and Prior ROR are dichotomous patient characteristic 

variables, and β0 − 5 are the logistic model parameters.

Training of Features and Models—We used training data to develop and optimize the 

proposed algorithm (Figure 5). To optimize the ten novel ECG features for use on both 

filtered and unfiltered ECGs, we selected parameters (such as frequency limits and sliding 

window size) to maximize the area under the receiver operating characteristic curve (AUC) 

on training data for each feature. We then trained a support vector machine to combine all 

20 ECG features calculated in parallel from filtered and unfiltered ECGs. Support vector 

machine kernel size and box constraint hyperparameters were selected by performing a 

grid search of 5-fold cross-validation error versus hyperparameter values on training data. 

In order to improve support vector machine generalizability, we intentionally underfit the 

parameters by allowing increased kernel size and reduced box constraint during grid search 

while maintaining a cross-validation error within an empirically-defined tolerance of the 

absolute minimum error (see Supplementary Material F).[39] The support vector machine 

output and dichotomous patient characteristics were combined to predict patient outcome 

using a logistic model which was trained using maximum likelihood estimation on the 

training data. Individual predictors for the logistic model were characterized by univariate 

odds ratios.

The algorithm was designed to operate during different CPR states (i.e. with and without 

chest compressions) and to predict multiple patient outcomes (i.e. defibrillation success and 

functional survival). Therefore, four versions of the algorithm were trained depending on 

CPR state and predicted outcome, each with a separate ECG feature parameter set, support 

vector machine model, and logistic model.

Algorithm Performance

We sought to assess the algorithm’s prognostic performance and determine whether 

prediction of patient outcomes using the algorithm was greater versus leading VF prognostic 

methods described in prior investigations. For comparison against the current algorithm, 

we selected the best-performing method from a recent comprehensive benchmark of VF 

waveform measures, denoted the SVM24 method.[39] SVM24 was calculated as described 

in prior study as the support vector machine combination of 24 previously-described features 

of the ECG. For further comparison against the current algorithm, we also selected a method 

well-validated in literature, the Amplitude Spectrum Area (AMSA).[55] We selected a 

version of AMSA from recent study calculated as the frequency-weighted sum of discrete 

Fourier transform magnitudes from 1–26 Hz.[56]

Algorithm performance was characterized using validation data. We compared AUC values 

for prediction of short-term and long-term patient outcomes, both with and without CPR 

artifact, for the current algorithm versus SVM24 and AMSA using the DeLong method.[57] 

An alpha of 0.05 (adjusted for eight comparisons to 0.0063 using the Bonferroni correction) 

was used to determine the statistical significance of AUC differences. Confidence intervals 

for AUC values were calculated by stratified bootstrapping.
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We sought to further illustrate potential of the proposed algorithm to monitor patient 

prognostic status and predict likelihood of positive outcomes in the presence of CPR artifact. 

Using validation data, we grouped the predicted outputs during chest compressions into four 

equally-spaced probability quartiles. To evaluate the algorithm’s ability to stratify patients 

into these four different prognostic groups, we compared the predicted rates of positive 

outcome versus true rates of positive outcome within each probability quartile.

Results

The study cohort was comprised of 1151 patients divided randomly into 40% training 

(N=460) and 60% validation (N=691) groups (Table 1). There were 868 and 991 training 

ECG segments collected with and without chest compressions, respectively, and 1264 and 

1454 validation ECG segments with and without chest compressions, respectively. There 

were more ECG segments collected without compressions primarily because in some cases 

there was not a full 5-s period of CPR between defibrillator electrode placement and initial 

shock.

Of the individual predictors used in the logistic model, univariate odds ratios for SV M
and Prior ROR were significantly predictive of the short-term outcome of return of rhythm. 

Likewise, univariate odds ratios for SV M, Prior ROR, Age, and the interaction of Age and 

Sex were significantly predictive of the long-term outcome of functional survival (Table 2).

Without CPR, the algorithm predicted both short-term and long-term outcomes (Table 

3, Figure 6). Compared to the prior published methods of AMSA and SVM24 without 

CPR on validation data, the algorithm achieved significantly greater prediction of the 

short-term outcome of return of rhythm: AUC was 0.77 for the current algorithm versus 

0.74 for AMSA (p<0.001 for difference) and 0.75 for SVM24 (p=0.005 for difference). 

The algorithm also achieved significantly greater prediction of the long-term outcome 

of functional survival versus AMSA but not SVM24: AUC was 0.76 for the current 

algorithm versus 0.74 for AMSA (p<0.001 for difference) and 0.75 for SVM24 (p=0.21 

for difference).

The algorithm also predicted outcomes in the presence of CPR artifact (Table 3, Figure 

6). Compared to AMSA and SVM24 during CPR on validation data, the algorithm 

achieved significantly greater prediction of return of rhythm: AUC was 0.74 for the current 

algorithm versus 0.66 for AMSA (p<0.001 for difference) and 0.70 for SVM24 (p<0.001 

for difference). The algorithm also achieved significantly greater prediction of functional 

survival versus AMSA but not SVM24: AUC was 0.75 for the current algorithm versus 0.70 

for AMSA (p<0.001 for difference) and 0.75 for SVM24 (p=0.60 for difference).

During CPR, the true rates of successful outcomes were similar to those predicted by 

the algorithm (Figure 7). For example, the group of n=501 validation samples with low 

predicted probabilities of survival in the lowest quartile (0–0.25) had a true observed 

survival outcome rate within this range (0.18), and the group n=92 samples with predicted 

probabilities of survival within the highest quartile (0.75–1) had a true survival outcome rate 

within this range (0.82).
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Discussion

Summary

In this retrospective cohort investigation of VF OHCA, a novel algorithm applied with 

and without ongoing CPR demonstrated improved prediction of the short-term outcome of 

defibrillation success compared to leading prior methods. Prediction of functional survival 

was also similar to the best-performing prior method. These results suggest that the current 

algorithm is an iterative step forward towards the goal of uninterrupted monitoring of patient 

physiologic status to enable a patient-specific approach to resuscitation.

Background

During VF, the myocardium is in a metabolically-demanding state concurrent with a 

complete interruption of coronary blood flow. These conditions rapidly deplete myocardial 

high-energy phosphate concentrations, reducing action potential conduction velocity 

and contractile function.[14,58,59] Successful restoration of organized rhythm following 

defibrillation therefore becomes increasingly unlikely as VF persists over time.[60–62] 

However, during resuscitation, sustained high-quality CPR can counteract the effects of 

prolonged VF and improve myocardial amenability to defibrillation by partially restoring 

coronary blood flow.[7,61,63] Therefore, rather than prioritizing early defibrillation, patients 

with a metabolically-compromised myocardium may instead benefit from a period of CPR 

to improve the myocardial substrate before a shock.[11,12] However, attempts to prioritize 

CPR using presumed myocardial status (e.g. based on EMS response time) have shown 

only a marginal survival benefit.[64] Instead there may be greater potential to improve VF 

OHCA survival by tailoring resuscitation therapy based on a direct assessment of patient 

physiology.

Measures of the VF ECG waveform predict defibrillation outcomes, are associated with 

myocardial metabolic substrate concentrations, and change dynamically to reflect patient 

response to alterations in treatment.[14,59,65–67] VF ECG waveform measures have 

thus been proposed as a means to provide real-time prioritization of shock versus CPR 

throughout resuscitation.[16–18] However, as with most ECG-based algorithms, these 

measures have been designed to analyze ECGs free of chest compression artifact.[20] 

This characteristic limits their application to few intermittent assessments that interrupt 

CPR, challenging the potential of such measures to continuously monitor patient status.[25] 

Indeed, recent prospective clinical investigation of a VF waveform measure applied during a 

singular CPR interruption prior to shock did not demonstrate a significant benefit to survival.

[67] Ideally, prognostic evaluation would instead be performed continuously during CPR 

throughout resuscitation. Such uninterrupted evaluation could provide a continuous measure 

of patient myocardial status and trajectory during VF, potentially enabling real-time titration 

of CPR and medication to achieve the best possible defibrillation outcome.[10,25]

Algorithm Performance

We therefore sought to design an algorithm to predict patient outcomes both during and 

without CPR, and to determine whether performance was improved compared to leading 

prior predictive methods. In recent investigation, we conducted a benchmark of existing 
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VF prognostic methods during CPR and identified a best-performing method (termed the 

SVM24) among the 27 previously-published approaches tested.[39] When compared to 

the SVM24 method, the current algorithm exhibited significantly-improved prediction of 

defibrillation success. However, performance for predicting functional survival was only 

marginally improved versus SVM24.

We also compared the current algorithm to a classical method – the AMSA – which has 

been well-validated in retrospective human studies and is currently undergoing prospective 

investigation for clinical application.[55,56,68,69] Compared to AMSA, the current study 

algorithm demonstrated a significant AUC increase on validation data both with and without 

CPR.

Algorithm Design

We hypothesize that the observed performance of the current algorithm was enabled 

primarily through three attributes which distinguish it from the SVM24 and AMSA 

methods: Parallel use of filtered and unfiltered ECGs, design and combination of ECG 

features, and inclusion of dichotomous patient characteristics.

First, the algorithm analyzed filtered and unfiltered ECGs in parallel. ECG filtering 

improved amplitude-based features susceptible to ECG fluctuations caused by chest 

compression artifact and high-frequency noise, such as the Sliding Peak feature. On the 

other hand, use of unfiltered ECG data was generally more suitable for time-frequency 

features, such as the Shannon Energy feature. During CPR, such time-frequency features 

may not require notch filtering at estimated compression frequencies due to an inherent 

ability to ignore lower-frequency CPR artifact using variable frequency cutoffs, and may 

also utilize high-frequency VF content indicative of good prognosis that might otherwise be 

attenuated by bandpass filtering.

Second, ECG features were designed to quantify multiple prognostic qualities of the 

VF waveform related to myocardial metabolic status, such as amplitude, entropy, high-

frequency energy, and dominant frequency.[32–38,46,47] This collection of ECG features 

was then combined using machine learning models trained to predict different resuscitation 

outcomes during each CPR state. We hypothesize that separately training models to predict 

specific outcomes during specific CPR states enabled improved performance over use of a 

single model for all conditions, since different VF waveform features are affected differently 

by CPR artifact and may also differ in their indication of specific resuscitation outcomes.

[22,62] For instance, with regards to the effects of CPR, VF energy as described by the 

Interfrequency Shannon Energy feature was most predictive during CPR when calculated 

from frequencies above 13 Hz (hence avoiding most lower-frequency compression artifact), 

but was most predictive without CPR when calculated from frequencies above 5 Hz (thus 

including increased VF frequency content). As another example with regards to specific 

resuscitation outcome, the amplitude-based feature Sliding Deviation was generally most 

predictive of defibrillation success, whereas the time-frequency feature Interfrequency 
Shannon Energy was generally most predictive of functional survival (Supplementary 

Material G). Thus, use of separately-trained features and models to predict different 

resuscitation outcomes during both CPR states may enable simultaneous prediction of 
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different outcomes, even in cases with disparate prognoses (e.g. positive short-term 

prognosis but negative long-term prognosis, such as in Figure 6c–d).

Third, use of dichotomized variables such as Prior ROR improved prognostic performance 

over that of the ECG alone, with an observed validation AUC increase (versus ECG-

only prediction) ranging from 0.01–0.04 overall depending on the predicted outcome 

(Supplementary Material G). Consistent with prior investigations, we observed a significant 

improvement in prognostic prediction by including response to prior shocks, and only a 

marginal improvement by including patient demographic variables.[50,52,53]

Clinical Implications

The current algorithm demonstrates potential to estimate probability of successful outcomes 

during CPR. These prognostic probabilities could potentially be used to monitor patient 

status and observe real-time effects from CPR and medications on the myocardial substrate 

during resuscitation. For instance, a prognostic indicator corresponding to the current 

predicted probability quartile (e.g. Figure 7) could be displayed to rescuers to inform 

real-time treatment decisions, such as determining when CPR and vasopressor medications 

have improved shock-resistant myocardium enough to enable successful defibrillation.[25] 

Therefore while prospective clinical investigation is required to determine how the current 

algorithm might actually be applied in practice, the results of the present study suggest 

potential to improve the current one-size-fits-all protocol for OHCA resuscitation by 

enabling a more patient-specific approach.

Limitations

The investigation used data collected from four different device models with unique 

hardware-based filtering bandwidths and sampling rates, which may reduce overall AUC 

for prognostic analysis when analyzed uniformly across devices.[39] However, the current 

results highlight the cross-platform applicability of the algorithm. While the algorithm 

outperformed prior methods, overall AUC was not optimal, hence the algorithm’s utility 

in clinical practice is uncertain. The algorithm incorporated dichotomous patient variables 

presumed available to rescuers, and would thus require rescuer input to evaluate prognosis. 

However, a reduced version of the algorithm based solely on the ECG was also significantly 

predictive of outcomes (Supplementary Material H). The results of the current study were 

retrospective, and the potential for improved patient care using a prognostic algorithm is 

hypothetical. Prospective evaluation in a clinical setting would ultimately be required to 

determine whether a prognostic algorithm could improve patient survival.

Conclusion

A novel prognostic algorithm demonstrated a significant improvement in prediction of 

defibrillation success versus best-performing published methods regardless of ongoing CPR. 

These results may support a more tailored, patient-specific approach to resuscitation that 

could potentially direct treatment based on a patient’s real-time prognostic status. Future 

investigation may seek to improve these prognostic methods by analyzing continuous ECG 
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data rather than isolated segments as in the current study, and by incorporating larger 

datasets to enable deep learning methods for development of improved ECG features.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Ventricular fibrillation measures predict cardiac arrest resuscitation outcomes

• Measures could be used to guide dosage and timing of resuscitation therapies

• During resuscitation, chest compressions reduce the accuracy of current 

measures

• We designed a method to predict resuscitation outcomes during chest 

compressions

• We observed improved prediction of defibrillation success versus current 

measures
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Figure 1. Examples of VF Segment Collection with and without CPR
(A) Example of adjacent 5-s VF ECG segments collected during CPR and without CPR 

prior to defibrillation shock. CPR is confirmed by chest compression oscillations in 

the concurrent impedance channel. Defibrillation success is confirmed by termination of 

VF and return of organized ventricular rhythm (QRS complexes) following shock. (B) 

Scalogram of VF during CPR illustrates dominant CPR fundamental at approximately 1.6 

Hz with transient compression artifacts extending to higher frequencies. (C) Scalogram 

of VF without CPR illustrates a relatively high dominant VF frequency (ranging from 

approximately 6–12 Hz in this example), which may suggest an energetic myocardial 

metabolic substrate amenable to defibrillation. (CPR = cardiopulmonary resuscitation, ECG 

= electrocardiogram, VF = ventricular fibrillation.)
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Figure 2. Algorithm Overview
The algorithm accepts a 5-s VF ECG input segment, a concurrent 5-s TTI input segment, 

and three dichotomous inputs. ECG features are calculated in parallel from filtered and 

unfiltered ECGs and incorporated with dichotomous variables to predict shock outcome. 

(CC = chest compressions, CPR = cardiopulmonary resuscitation, ECG = electrocardiogram, 

fcc = chest compression frequency, SVM = support vector machine, TTI = transthoracic 

impedance.)
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Figure 3. Filter Example
(A) Unfiltered VF ECG segment during chest compressions. (B) Compressions are detected 

in the concurrent transthoracic chest impedance signal. (C) Normalized spectrum of ECG 

during compressions, with compression fundamental and two harmonics visible. (D) 1–30 

Hz bandpass filter. (E) Notch filter series based on estimated compression fundamental 

frequency fcc. (F) Filtered ECG following bandpass and notch filtering. (G) Spectrum of 

filtered ECG confirms removal of the majority of compression fundamental and first two 

harmonics. (ECG = electrocardiogram, VF = ventricular fibrillation.)
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Figure 4. Examples of features from filtered ECGs with CPR versus without CPR
(A) Adjacent VF ECG segments after filtering with 1–30 Hz bandpass filter but prior to 

CPR detection and potential notch filtering. (B) When chest compressions are detected in 

the concurrent transthoracic impedance signal, a series of notch filters based on estimated 

compression rate fcc are applied to the ECG to attenuate the compression fundamental 

and first two harmonic frequencies. (C) VF ECGs with CPR versus without CPR after 

filtering. (D) Amplitude features are calculated from the absolute time-series of the ECG. 

(E) Time-frequency features are calculated from the Morlet wavelet-based scalogram of 

the ECG. (F) Dominant frequency features are calculated from the frequencies of greatest 
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magnitude in the wavelet scalogram. (G) Coarse STFT features are calculated from the 

STFT of the ECG calculated using non-overlapping box windows. (CPR = cardiopulmonary 

resuscitation, ECG = electrocardiogram, STFT = short-time Fourier transform, VF = 

ventricular fibrillation.)
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Figure 5: Training and Validation Procedure
The use of training and validation data for development and evaluation of the proposed 

method is illustrated. (ECG = electrocardiogram, SVM = support vector machine)
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Figure 6. Specific examples of predicted outcomes versus true outcomes
Selected VF ECG validation segment examples from six patients are displayed with 

algorithm-predicted probabilities for defibrillation success (return of organized rhythm 

following shock) and functional survival (survival with Cerebral Performance Category of 

1 or 2). VF examples with good prognosis (actual outcomes of successful defibrillation and 

functional survival) are shown without CPR (A) and during CPR (B). VF examples with 

mixed prognosis (actual outcomes of successful defibrillation but no functional survival) are 

shown in (C) without CPR and (D) during CPR. VF examples with poor prognosis (actual 

outcomes of unsuccessful defibrillation and no functional survival) are shown in (E) without 

CPR and (F) during CPR. (CPR = cardiopulmonary resuscitation, ECG = electrocardiogram, 

VF = ventricular fibrillation.)

Coult et al. Page 23

Comput Biol Med. Author manuscript; available in PMC 2024 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Predicted outcomes versus true outcomes
True rates of positive outcome are shown within each quartile of predicted probabilities 

of positive outcome, using validation data during CPR. (A) The true rates of defibrillation 

success were within the predicted probability quartiles for defibrillation success. (B) The 

true rates of functional survival were within to the predicted probability quartiles for 

functional survival. (n = number of validation segments within each predicted probability 

decile)
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Table 1:

Patient characteristics

Patients, n 1151

Female, n(%) 265(23.0)

Age, median (IQR) 61(52, 72)

Cardiac etiology, n(%) 1080(93.8)

Location, n(%)

 Home 707(61.4)

 Public 399(34.7)

 Nursing Home 45(3.9)

Arrest before EMS arrival, n(%) 1093(95.0)

Witnessed, n(%) 885(76.9)

Bystander cardiopulmonary resuscitation, n(%) 833(72.4)

EMS Response (minutes), median (IQR) 5(4, 6)

Total shocks, median (IQR) 3(2, 6)

Return of spontaneous circulation at end of EMS care, n(%) 817(71.0)

Admit to hospital, n(%) 810(70.4)

Survive to hospital discharge, n(%) 524(45.5)

Survive with cerebral performance category 1 or 2, n(%) 471(40.9)

(EMS = emergency medical services, IQR = interquartile range)
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Table 2:

Odds ratios for predictors in logistic model

Odds Ratios for Defibrillation Success Odds Ratios for Functional Survival

Training Validation Training Validation

Predictor −CPR +CPR −CPR +CPR −CPR +CPR −CPR +CPR

Age (<60) 1.0 (0.78–
1.3)

0.86 (0.66–
1.1)

1.1 (0.89–
1.4)

1.1 (0.84–
1.3)

1.7 (1.3–

2.2)*
1.8 (1.4–

2.2)*
1.8 (1.5–

2.3)*
1.7 (1.4–

2.2)*

Sex 
(Female)

1.2 (0.85–
1.6)

1.3 (0.89–
1.8)

1.3 (1.0–
1.7)

1.3 (1.0–
1.8)

1.0 (0.76–
1.4)

1.2 (0.87–
1.7)

1.1 (0.88–
1.4)

1.0 (0.80–
1.4)

Age × Sex 1.5 (0.9–
1.4)

1.2 (0.75–
2.0)

1.4 (1.0–
2.0)

1.5 (1.0–
2.2)

2.3 (1.5–

3.6)*
2.5 (1.6–

4.1)*
1.9 (1.4–

2.7)*
1.8 (1.2–
2.5)

Prior ROR 4.6 (3.2–

6.6)*
4.2 (3.0–

5.9)*
5.8 (4.2–

4.9)*
5.5 (4.1–

7.4)*
2.8 (2.0–

4.1)*
2.3 (1.6–

3.2)*
2.2 (1.7–

3.0)*
2.3 (1.7–

3.0)*

SVM 2.4 (2.0–

2.7)*
2.2 (1.8–

2.5)*
2.6 (2.3–

3.0)*
2.1 (1.9–

2.4)*
2.7 (2.3–

3.1)*
2.3 (2.0–

2.7)*
2.7 (2.4–

3.1)*
2.7 (2.3–

3.1)*

Univariate odds ratios (95% confidence interval) of successful outcome are presented for each predictor included in the final logistic regression 
model. Odds ratios for continuous variables are standardized. Prior ROR only includes segments prior to shocks 2–4. (−CPR = ECG segments 
without chest compressions, +CPR = ECG segments with chest compressions, Prior ROR = prior return of organized rhythm, SVM = support 
vector machine output).

*
univariate odds significantly greater than 1 after Bonferroni correction (p<0.0012)
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Table 3:

AUC values

AUC for Predicting Defibrillation Success AUC for Predicting Functional Survival

Training Validation Training Validation

−CPR +CPR −CPR +CPR −CPR +CPR −CPR +CPR

Study algorithm 0.76 (0.72–
0.79)

0.74 (0.71–
0.77)

0.77 (0.74–
0.79)

0.74 (0.71–
0.77)

0.78 (0.75–
0.81)

0.75 (0.72–
0.79)

0.76 (0.74–
0.79)

0.75 (0.72–
0.78)

SVM24 (Coult 
2019) [39]

0.72 (0.69–
0.75)

0.69 (0.65–
0.72)

0.75 (0.72–
0.77)

0.70 (0.67–
0.73)

0.75 (0.72–
0.78)

0.73 (0.70–
0.77)

0.75 (0.73–
0.78)

0.75 (0.72–
0.78)

AMSA1–26 Hz 

(Firoozabadi 
2013) [56]

0.71 (0.68–
0.74)

0.66 (0.62–
0.70)

0.74 (0.71–
0.76)

0.66 (0.63–
0.69)

0.74 (0.71–
0.77)

0.70 (0.66–
0.73)

0.74 (0.71–
0.76)

0.70 (0.67–
0.73)

AUC values (95% confidence interval) for prediction of patient outcomes are presented for training and validation datasets. (AMSA = amplitude 
spectrum area [56] method, AUC = area under the receiver operating characteristic curve, −CPR = ECG segments without chest compressions, 
+CPR = ECG segments with chest compressions, SVM24 = support vector machine combination of 24 previously-published features [39].)
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