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ABSTRACT

Germline pathogenic loss-of-function (pLOF) variants in DICER1 are associated with a pre-
disposition for a variety of solid neoplasms, including pleuropulmonary blastoma and Sertoli-
Leydig cell tumor (SLCT). The most common DICER1 pLOF variants include small insertions or
deletions leading to frameshifts, and base substitutions leading to nonsense codons or altered
splice sites. Larger deletions and pathogenic missense variants occur less frequently. Iden-
tifying these variants can trigger surveillance algorithmswith potential for early detection of
DICER1-related cancers and cascade testing of familymembers. However, some patients with
DICER1-associated tumors have no pLOF variants detected by germline or tumor testing.
Here, we present two patients with SLCT whose tumor sequencing showed only a somatic
missense DICER1 RNase IIIb variant. Conventional exon-directed germline sequencing
revealed no pLOF variants. Using a custom capture panel, we discovered novel intronic
variants, ENST00000343455.7: c.17521213A>G and c.1509116A>G, that appear to interfere
with normal splicing. We suggest that when no DICER1 pLOF variants or large deletions are
discovered in exonic regions despite strong clinical suspicion, intron sequencing and
splicing analysis should be performed.

Introduction

DICER1-related cancers in children and adolescents include a
wide array of rare tumor types, including Sertoli-Leydig cell
tumor (SLCT), pleuropulmonary blastoma (PPB), cystic
nephroma, thyroid carcinoma, and pineoblastoma.1-3 Most
DICER1-related tumors are characterized by a stereotypical
pattern of biallelic DICER1 alterations. One allele exhibits a
pathogenic loss-of-function (pLOF) variant, such as a
nonsense, frameshift, or splice-site variant, which can be
inherited in an autosomal dominant fashion or can arise de
novo.2-5 The other allele develops a missense variant in one
of six hotspot residues in the RNase IIIa or IIIb domains of
DICER1.2-6 These are usually confined to the tumor, although
individuals with somaticmosaicism for a hotspot variant can
also develop multiple lung cysts and other DICER1-related
conditions.2,7,8 In particular, SLCTs are the most common
type of ovarian sex-cord stromal tumor, and they tend to
arise in adolescents and young adult women. Their diagnosis
can sometimes be challenging, but SLCTs confirmed by
central pathologic review are nearly always associated with
DICER1 variants, especially when they arise in young children
or when their histology demonstrates moderate or poor
differentiation.9,10

Germline pLOF variants predispose patients to development
of DICER1-related tumors and are transmitted in an

autosomal dominant fashion.1 Such variants are estimated
to affect approximately 1 in 4,000 individuals.11 For these
patients, screening guidelines have been developed to de-
tect tumor development early, potentially before malignant
transformation or tumor progression.12 Patientsmay also be
predisposed to develop DICER1-related tumors when pLOF
variants occur somatically in a subset of cells, such as by
mosaicism. However, in a small number of patients with
DICER1-related tumors, no pLOF variant is found in
germline or tumor testing.2 In these cases, it may be unclear
whether to initiate surveillance for other DICER1-related
conditions and how to counsel the family about the risk to
relatives including siblings. Here, we present two cases of
DICER1-related cancers where conventional exon-based
sequencing failed to identify a pLOF variant. Using a
broader sequencing panel, we identified novel intronic
DICER1 pLOF variants that lead to premature termination in
both patients.

Methods

Institutional Review Board Approval

These studies were performed through the International
PPB/DICER1 Registry and approved by the Institutional Re-
view Boards at Children’s Minnesota, The University of
Texas Southwestern Medical Center, and the Geisinger
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Medical Center. Written informed consent for participation,
including publication, was obtained from each participant or
their guardian.

DICER1 Sequencing Panel Design and Sequencing

DNA was isolated from blood and tumor tissue using
DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany). DNA
was extracted from saliva using Oragene-Dx saliva col-
lection tubes and the companion prepIT L2P kit (DNA
Genotek, Ottawa, Canada). Libraries were then constructed
using the NEBNext Ultra II FS DNA Library Prep Kit for
Illumina (New England BioLabs, Ipswich, MA). Target
enrichment was performed using the Twist Hybridization
and Wash Kit with Amp Mix v2 (Twist Bioscience, South
San Francisco, CA) with a custom panel of hybridization
probes targeting the DICER1 gene. Hybridization probes
were designed to target a 92-kb region that includes the
DICER1 gene, with a 10-kb cushion on either side (chr14:
95076244-95168010, hg38). The custom panel contained a
total of 656 probes, 120 bp each (Twist Bioscience, South
San Francisco, CA). Sequencing was performed in two lanes
using the MiSeq v2 micro platform (Illumina, San Diego,
CA) at the UT Southwestern McDermott Next-Generation
Sequencing Core. Demultiplexed reads were aligned to the
reference genome (GRCh38) using BWA-MEM. Variants
were called using Genome Analysis ToolKit (v3.7), Platy-
pus, Samtools v1.4, and FreeBayes v0.9.7. Variants were
then annotated using SnpEff and SnpSift (4.3r). Annota-
tions of impact on DICER1 were based on transcript
ENST00000343455.7.

Splicing Analysis

Tumor RNA was prepared using the miRNeasy Mini kit
(Qiagen, Hilden, Germany). Reverse transcriptase PCR was
performed using RT2 HT First Strand Kit (Qiagen, Hilden,
Germany). RNA from the Wilms tumor cell line WiT49 was
used as a wild-type control. This cell line was a gift from
Sharon Plon’s laboratory. PCR was performed using GoTaq
G2 Flexi DNA Polymerase using the primers shown in
Appendix Table A1.

Annotated variants in DICER1were downloaded from ClinVar
on December 1, 2022. These were compared with pre-
computed SpliceAI scores downloaded from Illumina
BaseSpace on December 1, 2022. Those with SpliceAI scores
over 0.8 are shown in Appendix Table A2.

Biobank Cohort Analysis

UK Biobank (N 5 469,787) exome (field 23157) data were
used to explore two DICER1 intronic variants, c.1509116A>G
and c.17521213A>G. Phenotypes were evaluated using
diagnosis—International Classification of Diseases (ICD)-10
(field 41270), type of cancer, ICD-10 (field 40006), ICD-9
(field 400013), underlying cause of death (field 40001), and
cancer code, and self-reported (field 20001).

Results

Case 1

Wepreviously reported a 2-year-old boywith thoracic SLCT13

(Fig 1). His family history was strongly suspicious for an
inherited pathogenic DICER1 variant, as a paternal aunt and
paternal uncle had developed tumors known to be associated
withDICER1 as children (thyroid cancer and cystic nephroma,
respectively; Fig 1). DICER1 sequencing from the proband’s
SLCT revealed a hotspot variant (ENST00000343455.7:
c.5437G>A, p.E1813K). However, a pLOF variant was not
identified by tumor sequencing, conventional germline
DICER1 sequencing including deletion testing, or chromo-
somal microarray. We also performed germline whole-
exome sequencing and did not identify any pathogenic or
likely pathogenic variants consistentwith his clinical history.
A variant of unknown significance in SUFU was also detected
by clinical sequencing, although the patient and family
history were not indicative of SUFU-associated tumors, such
as basal cell carcinomas andmedulloblastomas. SLCT has not
previously been associated with SUFU abnormalities.

Case 2

A 17-year-old girl presented with a 2-year history of
amenorrhea and 2-month history of abdominal pain.
Computed tomography scan showed a 17-cm septated
ovarian mass. She underwent right salpingo-oophorectomy
and fertility-preserving staging. Shewas found to have stage
IA SLCT with intermediate differentiation with heterologous
mucinous elements. She had no family history of DICER1-
related cancers in immediate family or secondary relatives.

She received three cycles of cisplatin, etoposide, and bleo-
mycin, and had no evidence of disease until 30 months after

SLCT,
age 2 years

Thyroid 
carcinoma,
age 8 years

Cystic
nephroma,
age 2 years 1

FIG 1. Pedigree of case 1. The proband (case 1) was diag-
nosed with SLCT at age 2 years. His paternal uncle and aunt,
who also developed conditions that have been linked to
DICER1 variants, were tested in this study and found to have
the same intronic variant. Other family members are not
shown. SLCT, Sertoli-Leydig cell tumor.
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completion of therapy when she presented with pain and
vaginal bleeding and was found to have a left-sided ovarian
mass. She underwent left salpingo-oophorectomy with
pathology demonstrating poorly differentiated SLCT. She
received six cycles of carboplatin and paclitaxel and had no
evidence of disease until 10 months after completion of
therapy when she presented with abdominal pain and was
found to have a complex mass in the posterior cul-de-sac.
Pathology showed SLCT. She received cisplatin, etoposide,
and ifosfamide for two cycles. On the basis of molecular
results and patient preference to avoid inpatient chemo-
therapy, she then received sorafenib, celecoxib, and oral
cyclophosphamide alternating with oral etoposide, which
was continued until she presented 20 months later with
pelvic pain and was found to have a left pelvic mass, his-
tologically proven to be SLCT. She received topotecan and
talazoparib for 4 months before further pelvic progression,
which was treated with debulking and hyperthermic in-
traperitoneal chemotherapy (HIPEC) with cisplatin fol-
lowed by bevacizumab and talazoparib. She remains on
therapy with no evidence of disease now 3 months after her
HIPEC procedure. Staging studies throughout her treatment
course have shown no evidence of distant metastases, al-
though a stable 1-cm thin-walled cystic lung lesion is
present, radiographically consistent with a nonprogressed
PPB (type Ir).

Tumor sequencing showed a DICER1 RNase IIIb variant
p.D1709N (c.5125G>A) at 48% frequency for both the original
tumor and subsequent recurrences. A DICER1 germline
variant at c.1509116A>G was also detected in the tumor. The
significance of this variant was unknown at the time, al-
though it was noted in the molecular diagnostic report to
have the potential to impair splicing. The tumor also showed
variants in the TERT promoter c.-124C>T at 43% frequency,
ARID2 p.T1167fs (c.3498delG) at 25% frequency, and BCOR
p.H1501fs (c.4502_4514, delinsTGTTGT) at 51% frequency.
An ABCC4 amplification was also detected.

DICER1 Sequencing

To identify novel, disease-causing variants in DICER1, we
designed a custompanel of hybridization probes targeting an
approximately 92-kb region spanning 10 kb upstream and
downstream of the gene, including all introns and exons
(Fig 2A). We tested this capture panel on 10 samples (Fig 2B):
three samples without known variants (germline DNA from
case 1, tumor DNA from case 2, and germline DNA from
patient R) and seven tumor samples with known DICER1
variants (A, B, D, E, I, K, and Q). Tumormolecular testing for
patient R had shown a p.E1813G hotspot variant (64%variant
allele fraction) in the absence of an identifiable germline
pathogenic/likely pathogenic variant or deletion. We per-
formed next-generation sequencing on DICER1-enriched
libraries from each sample and obtained >1,0003 mean
coverage across the entire region in each sample. For all 10
samples, ≥95% of bases in the targeted region were se-
quenced at a depth of ≥203.

Our custom capture panel and processing pipeline success-
fully recapitulated all variants that were previously identified
as pathogenic or likely pathogenic by ClinVar (table in
Fig 2B). Specifically,we identified the stereotypical pattern of
a loss-of-function variant combined with a hotspot variant
in four tumor samples (patients A, B, D, and Q). In another
case (patient I), commercial germline testing had not de-
tected any pLOF variants; in the tumor, we detected the
hotspot variant in 95% of reads without a pLOF variant. In
two renal tumors (patients E and K), we recovered the known
germline pLOF variant. In the Wilms tumor from case E, we
also found a missense variant at p.R821C (c.2461C>T), a
position that has recently been shown to be vital for an-
choring and measuring at the 59 end of pre-microRNAs.14

Intronic Variants Produce Aberrant Splicing

Sequencing from cases 1 and 2 identified no pathogenic var-
iants using conventional filters. Thus, to identify other po-
tential disease-causing variants, we next examined variants
predicted to affect splicing using the splicing predictor algo-
rithm SpliceAI.15 Case 1 had one such DICER1 variant, chr14:
95116240T>C (c.17521213A>G),which had not previously been
observed in large genome sequencing databases (Figs 2B, 3A).
We verified that his uncle and aunt carried with the same
heterozygous variant by Sanger sequencing (Fig 3B). This
variant is 213 nt downstream of the intron 10 splice donor, and
it is predicted by SpliceAI to produce a new cryptic splice donor
at the site of the variant, with a score of 0.96 (scores over 0.8
denotehigh confidence, Fig 3C). Transcriptsmis-spliced in this
manner would retain 213 nt of intronic sequence and result in
an in-framepremature termination codon 18nt into the intron.

To verify that this intronic variant affectsDICER1 splicing, we
next isolated tumor RNA from case 1. We used RNA from the
WiT49 cell line, which does not contain any known DICER1
variants, as a normal control. From both RNA samples, we
performed reverse-transcriptase polymerase chain reaction
(RT-PCR) using primers designed to detect abnormal
splicing at this site as predicted by SpliceAI. As shown in
Figure 3D, two independent pairs of primers demonstrate
abnormal splicing as predicted. The lower band intensity of
the abnormal product could suggest lower abundance of the
abnormally spliced transcript.

Case 2 also harbored an intronic variant, chr14:95117606T>C
(c.1509116A>G, Figures 2B, 4A and 4B). This variant is 16 bp
downstream of the intron 9 splice donor and is predicted by
SpliceAI to produce a cryptic splice donor at the site of the
variant, with a score of 0.99. As with the variant above,
abnormal splicing in thismannerwould result in retention of
intronic sequence leading to an in-frame premature stop
codon (Fig 4C). We again used RT-PCR to verify that this
variant affects splicing in the predicted manner (Fig 4D).
Again, the abnormal RT-PCR product appears less abundant.

To classify the variants found in cases 1 and 2, we applied the
ClinGen DICER1 and miRNA-Processing Gene Variant
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Curation Expert Panel (DICER1 VCEP) specifications to the
ACMG/AMP variant interpretation guidelines16 (Table 1).
Since RT-PCR is not explicitly described for functional assay
application in the specifications, we conservatively down-
weighted this evidence as PS3_Supporting, in line with the
DICER1 VCEP use of in vitro cleavage assays. On the basis of
the clinical, segregation, tumor, functional, computational,
and population evidence for the c.17521213A>G variant in
Patient C, the following evidence codes were applied,
resulting in a likely pathogenic classification: PS4_Support-
ing, PP1, PP4, PS3_Supporting, PP3, and PM2_Supporting.
On the basis of the clinical, tumor, functional, computa-
tional, and population evidence for the c.1509116A>G var-
iant in case 2, the following evidence codes were applied,
resulting in an uncertain classification one supporting cri-
terion short of likely pathogenic: PS4_Supporting, PP4,
PS3_Supporting, PP3, and PM2_Supporting. Case data for
both variantswere sharedwith theDICER1VCEP,which relies
on data sharing from various internal sources to bolster
curations. This ultimately resulted in recently released likely
pathogenic VCEP classifications for both variants in ClinVar
(Variation IDs: 2573146, 690461) and the ClinGen Evidence
Repository.17

We then explored whether these intronic variants have
previously been observed in three large population cohort
databases: Geisinger (170,503 exomes), UK Biobank

(469,787 exomes), and All of Us (98,560 genomes). From
these three databases, we were only able to find
c.1509116A>G from one individual in UK Biobank (GQ >30,
ABhet 5 0.43, total read depth 5 60). This individual was a
male in his 60s who has never smoked with an unremarkable
medical record. His only recorded ICD-10 codes found per-
tained to cancer screening procedures typical for patients of
this age. There was no record of medication or self-reported
cancer or noncancer illnesses. A second individual, in the
Geisinger database, harbored a different alternate allele,
c.1509116A>C (GQ >30, ABhet5 0.36, total read depth5 28).
This variant is not predicted to affect splicing. A review of
this individual’s medical chart includes ICD codes for hy-
pothyroidism at age 29 years, endometrial cancer at age 37
years, and acute lymphoblastic leukemia at age 44 years.
However, importantly, Geisinger and UK Biobank contain
exome-sequenced data. Therefore, it is possible that a deep
intronic variant such as c.17521213A>G would have been
missed.

Other DICER1 Variants of Uncertain Significance May
Impair Normal Splicing

Pathogenic loss-of-function variants in DICER1 may occur
through a variety of mechanisms, including the loss of
normal splice sites. However, few intronic pLOF variants
have been previously described. To investigatewhether other
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FIG 2. Sequencing panel. (A) Regions covered by targeted sequencing panel. (B) Metrics and results from next-generation sequencing of 10
samples, with identified pLOF and additional (hotspot) variants. In cases 1 and 2, private variants predicted to affect splicing are shown in
bold. aThis variant in tumor from patient I was seen in 95% of reads. pLOF, pathogenic loss-of-function; PPB, pleuropulmonary blastoma;
SLCT, Sertoli-Leydig cell tumor.
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intronic DICER1 pLOF variants affecting splicing may have
previously been missed, we explored all reported single-
nucleotide variants (SNVs) in ClinVar. Here, we defined
intronic variants as any that were more than two bp from an
intron-exon boundary. Of the 283 intronic SNVs, two are
annotated as pathogenic or likely pathogenic. On the basis of
SpliceAI predictions, eight of the remaining 281 intronic
SNVs are likely to change splicing (listed in Table A2). All
eight are currently annotated as VUSs in ClinVar, and all eight
lay within nine bp of a splice site.

Discussion

Here, we report the discovery of two highly suspicious
germline intronic DICER1 pLOF variants, including a deep
intronic variant that segregates with the development of
DICER1-related tumors in the family of case 1. These variants
both produce cryptic splice donors that result in the

retention of intronic sequence, including a premature stop
codon. In a recent review of 313 reported germline DICER1
variants,5 32 (10%) were deemed splicing variants. Of these
32 variants, 24 were within 12 bp of a splice site. The other
eight were not thought to be pathogenic; seven were seen in
individuals with cancers not typically associated with
DICER1, while the eighth individual also harbored a separate
frameshift variant, suggesting the intronic variant was not
causative.

Deep intronic variants have occasionally been reported in
DICER1,18,19 and intronic pLOF variants arise in other cancer
predisposition genes with varying frequency.20 For example,
splicing variants account for 20%-37% of pathogenic var-
iants in NF1.21-23 In BRCA1/2, intron sequencing of 192
families with hereditary breast and ovarian cancer without
exonic pLOF variants identified a single pathogenic deep-
intronic variant.24 Another study found that a deep intronic
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FIG 3. Validation of abnormal DICER1 splicing in case 1. (A) Novel variant discovered in case 1. (B)
Sanger sequencing confirming presence of variant in affected relatives. (C) The variant,
ENST00000343455.7: c.17521213A>G, is predicted to produce a novel splice donor, which results
in retention of the first part of intron 10 and an in-frame premature stop codon. (D) Confirmation of
the aberrant splicing product by RT-PCR. Samples on gel, from left to right: WiT49WT cell line, tumor
from case 1, and NTC. Locations of green and purple primers are designated in diagram above, and
predicted sizes of products are shown on the right. The green primers are designed with a forward
primer in the retained region of intron 10 and a reverse primer in exon 12, and these produce a 327-bp
product when the cryptic splice donor is used. The purple forward primer bridges the exon 9-exon 10
junction, and the reverse primer resides on exon 11. Normal splicing produces a 395-bp product, and
the abnormal splicing product migrates to 607 bp. A third, intermediate band appears to show a
heteroduplex of these two products or an alternative splicing product. NTC, no template control;
RT-PCR, reverse-transcriptase polymerase chain reaction; WT, Wilms tumor.
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SNV in BRCA1, rs191253965, which is found in <1 per 1,000
individuals in gnomAD, results in activation of a cryptic
exon.25 Typically, splicing defects are only considered for
variants near exon-intron boundaries. However, silent ex-
onic variants far from an intron could also affect splicing by
producing a cryptic splice site or inducing exon skipping.
Both effects have been demonstrated in exonic TP53
variants.26

Clinical sequencing of cancer predisposition genes has fo-
cused on exons because of technical and analytical con-
straints. For instance, the sequencing panel we describe here
covers approximately 93 more bases than simply se-
quencing the exons of DICER1, but advances in sequencing
technology may overcome the increased cost of identifying
these variants. Even when intronic variants are identified,
however, interpretation of these variants remains difficult.
Earlier splicing predictors were based on consensus splicing
sequences, but newer prediction algorithms such as SpliceAI

usemachine learning or deep learning. SpliceAI was reported
to have superior sensitivity and specificity for predicting
splicing changes23,27 (sensitivity of 90%-95% v 69%-84%
and specificity of 92%-94% v 39%-93%, for SpliceAI v
earlier algorithms, respectively).

To identify variants that affect splicing, some clinical lab-
oratories have begun using an alternative approach of
paired DNA and RNA sequencing in cancer susceptibility
genes.28,29 In addition to sequencing exons from genomic
DNA, transcripts are captured and sequenced from RNA.
This approach has the advantage of quantifying splicing
effects without relying on computational prediction, but it
also has certain limitations. This paired approach requires
specialized RNA collection tools, an optimized oligonucle-
otide capture pool for cDNA, and a reference set of splicing
variation in healthy control patients. Furthermore, some
alterations will be harder to detect with this approach. For
example, variants that reduce transcript abundance could be
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variant, ENST00000343455.7: c.1509116A>G, is predicted to produce a novel splice donor,
which results in retention of the first part of intron 9 and an in-frame premature stop codon. (D)
Confirmation of the aberrant splicing product by RT-PCR. The green primers sit in intron 9 and
exon 10, while the purple primers sit in exons 9 and 10. NTC, no template control; RT-PCR,
reverse-transcriptase polymerase chain reaction; WT, Wilms tumor.
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harder to detect, whether by triggering nonsense-mediated
decay or by removing segments of the promoter and first
exon. In other cases, dedicated intron sequencing could still
be required to detect a causative variant even after splicing
impairment is detected by RNA-first sequencing. For in-
stance, the variant in case 1 affects splicing by creating a
cryptic splice donor, but the variant itself is not included in
the alternatively spliced transcript. Other variants could
affect the branch point or polypyrimidine regulatory re-
gions. A future approach could combine full intron se-
quencing with upfront RNA sequencing to detect such
variants.

Intronic pLOF variants in DICER1 appear to be rare. Germline
pLOF variants can be found in most DICER1-related tumors,
and nearly all cases without germline pLOF can be explained
by mosaicism or biallelic tumor variants. In our previous
studies of DICER1-related tumors, germline or mosaic pLOF
variants were found in 95 of 124 PPB cases (77%) and 25 of 41
SLCT cases (61%).2,9 Of the cases without germline ormosaic
pLOF variants, tumor-specific pLOF variants could be found
in 19 of 21 cases of PPB (90%) and 12 of 12 cases of SLCT
(100%) for whom tumor DNA was available. In sum, there
were only two cases of either PPB or SLCT for which we could

not detect a pLOF variant when germline and tumor DNA
were both available.

Nevertheless, finding such variants could have ramifications
for both screening and therapeutic purposes. Identifying a
causative variant allows a patient to undergo surveillance for
early detection of DICER1-related tumors, and it allows
family members to be tested and undergo genetic coun-
seling.12 Furthermore, abnormal splicing can be therapeu-
tically targetable. Spinal muscular atrophy has been treated
with the antisense oligonucleotide (ASO) nusinersen, which
is designed to rescue a defect in SMN1 by changing how SMN2
is spliced. Similarly, the ASOmilasenwas designed to change
how CNL7 is mis-spliced by a novel variant discovered in a
single patient.30 In the liver, the ASO mipomersen treats
familial hypercholesterolemia by targeting apolipoprotein
B-100. ASO delivery to cancer cells or cancer precursors will
be more challenging, but a recent study described ASOs
designed to target variants in the cancer susceptibility gene
ATM.31 The intronic variants in DICER1 splicing we describe
here could conceptually be therapeutically targeted with an
ASO that restores normal DICER1 function. Further research
will investigate genotype-phenotype correlations and po-
tential therapeutic implications.
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APPENDIX

TABLE A1. Primers Used in This Study

Oligos Sequence Application Size

AAAC_var73_F TCCCTCCCAGTTCCAATCGTA Sanger sequencing 618 bp

AAAC_var73_R GGTTCGTTTTGATTTGCCCAC Sanger sequencing

Di_in10 qF ATCTCAAAAGAGGTGTACTCTGTGT RT-PCR (AAAL) 327 bp

Di_ex12 qR ATCAGGCAACTCTCGGGTTC RT-PCR (AAAL)

Di_ex9_10 qF AGAGGTACTTAGGAAATTTCGAGCA RT-PCR (AAAL) 395 bp wildtype

Di_ex11 qR TGTGTCCAATGGCCGTGTT RT-PCR (AAAL) 607 bp mutant

AAAN_in9 mut F GTCCACAGATCTATGTGGTGAAGA Sanger sequencing 600 bp

AAAN_in9 mut R TGCAGTTGTGTAACATCAATCCAAT Sanger sequencing

Di_in9 qF3 CAGGAAGAGGTAACTTAAATCAA RT-PCR (AAAN) 129 bp

Di_ex10 qR3 ATCAAAACGAACCACCAAGTT RT-PCR (AAAN)

Di_ex9 qF2 GCCTCGCAACAAACAGATGG RT-PCR (AAAN) 81 bp wildtype

Di_ex10 qR2 AGGTTGGTCTCATGTGCTCG RT-PCR (AAAN) 96 bp mutant

Abbreviation: RT-PCR, reverse-transcriptase polymerase chain reaction.

TABLE A2. Intronic Single-Nucleotide Variants From ClinVar With Predicted Effects on Splicing

Name Clinical Significance DS_AG DS_AL DS_DG DS_DL

NM_177438.3(DICER1):c.1753-9A>G Uncertain significance 1.00 0.92 0.00 0.00

NM_177438.3(DICER1):
c.309319T>G

Uncertain significance 0.00 0.00 0.92 0.00

NM_177438.3(DICER1):
c.225616T>A

Uncertain significance 0.00 0.00 0.36 0.85

NM_177438.3(DICER1):c.2117-9A>G Uncertain significance 0.98 0.38 0.00 0.00

NM_177438.3(DICER1):c.308-3T>G Uncertain significance 0.00 0.87 0.00 0.00

NM_177438.3(DICER1):
c.225615G>C

Uncertain significance 0.00 0.00 0.29 0.91

NM_177438.3(DICER1):c.2257-7A>G Uncertain significance 1.00 0.75 0.00 0.00

NM_177438.3(DICER1):c.1908-3C>G Uncertain significance 0.56 0.95 0.00 0.00
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