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Abstract

Lewontin’s paradox, the observation that levels of genetic diversity (π) do not scale linearly

with census population size (Nc) variation, is an evolutionary conundrum. The most extreme

mismatches between π and Nc are found for highly abundant marine invertebrates. Yet, the

influences of new mutations on π relative to extrinsic processes such as Nc fluctuations are

unknown. Here, we provide the first germline mutation rate (μ) estimate for a marine inverte-

brate in corallivorous crown-of-thorns sea stars (Acanthaster cf. solaris). We use high-cov-

erage whole-genome sequencing of 14 parent-offspring trios alongside empirical estimates

of Nc in Australia’s Great Barrier Reef to jointly examine the determinants of π in populations

undergoing extreme Nc fluctuations. The A. cf. solaris mean μ was 9.13 x 10−09 mutations

per-site per-generation (95% CI: 6.51 x 10−09 to 1.18 x 10−08), exceeding estimates for other

invertebrates and showing greater concordance with vertebrate mutation rates. Lower-than-

expected Ne (~70,000–180,000) and low Ne/Nc values (0.0047–0.048) indicated weak influ-

ences of population outbreaks on long-term π. Our findings are consistent with elevated μ
evolving in response to reduced Ne and generation time length, with important implications

for explaining high mutational loads and the determinants of genetic diversity in marine

invertebrate taxa.

Author summary

Understanding how levels of genetic diversity levels are maintained in natural populations

and their relationship to species abundance is central to many conservation problems. We

address this question in ecologically important crown-of-thorns sea stars to advance our
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understanding about the determinants of genetic diversity in species undergoing extreme

population size fluctuations or outbreaks. In this work, we report the first germline muta-

tion rate estimate for a marine invertebrate using whole-genome sequencing of parent-

offspring trios. Our results reveal that unexpectedly high mutational contributions and

reduced effective population size (stronger genetic drift than predicted by abundance)

shape genetic diversity in this species, despite outbreaking populations sizes exceeding

20–90 million individuals. Our results are consistent with theory on mutation rate evolu-

tion, whereby elevated mutation rates evolve in response to reduced effective population

size or generation time length. Our findings highlight the potential importance of high

mutation rates in maintaining extreme deleterious mutational loads observed in marine

invertebrate taxa and moderate genetic diversity levels despite population declines. Such

fundamental knowledge advances our understanding about the determinants of genetic

diversity in large marine populations and is valuable for testing future hypotheses on

mutation rate evolution across diverse animal phyla.

Introduction

Understanding how and why genetic diversity varies among taxa is a longstanding evolution-

ary puzzle [1]. The neutral theory of evolution predicts that genetic diversity should increase

proportionally with effective population size, Ne [2], where the expected level of pairwise

genetic diversity (π) at neutral sites reflects the balance between new mutations and loss via

genetic drift (as reflected by Ne) and can be approximated by π = 4Neμ, where μ is the mutation

rate per-base pair, per-generation. However, empirical evidence shows that the range of π
observed in natural populations does not scale with ranges in census population sizes (Nc)

[1,3,4]. This disparity between π and Nc variance across taxa, known as Lewontin’s paradox,

contradicts theoretical expectations and challenges our understanding of how natural variation

is maintained. With increasing evidence that genetic diversity is central to many conservation

problems [5], including inferences about extinction risks and species responses to environ-

mental change, our ability to understand how diversity levels are maintained and how they

relate to census population sizes is critical. Yet, the determinants of π and the causative factors

underlying Lewontin’s paradox are still debated well into the genomic era [4,6–9].

Population genetic studies aiming to solve Lewontin’s paradox suggest that neutral and

selective processes act in combination to decouple π from Nc [9] (Fig 1). Historical demo-

graphic fluctuations and contemporary dynamics such as repeated extinctions and recolonisa-

tions or pest population outbreaks may result in founder events that substantially reduce Ne

[10–12]. Positive selection [13] and the indirect effects of background selection and recombi-

nation rate variation may also reduce linked neutral diversity to levels lower than predicted by

Nc [9,14,15], where the effect of these selective processes on π is expected to be greater in large

populations [6,8]. Importantly, equilibrium values of π are also a function of the mutation rate,

μ, which varies by orders of magnitude across animal taxa [16]. Several hypotheses seek to

explain μ variation across organisms. In particular, the drift-barrier hypothesis proposes that

more efficient selection against high mutation rates (relative to genetic drift) in large popula-

tions leads to maximal fine-tuning of DNA repair and replication mechanisms and predicts

that reduced germline mutation rates should evolve in highly abundant taxa [17–19] (Fig 1).

Alternatively, life history traits such as differences in generation time length [16] and repro-

ductive longevity [20,21] may be important determinants of μ evolution across animal phyla,

whereby longer-lived organisms have higher mutation rates compared to shorter-lived taxa
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(which also tend to be more abundant). While these predictions help explain lower-than-

expected π in highly abundant species, the extent to which μ variation influences π relative to

extrinsic processes remains unknown for most taxa.

Bentho-pelagic marine organisms have long been recognised for harbouring extreme levels

of genetic diversity (π ~2–8% [3,4,22,23]). For example, prolific fecundity and long-lived

planktonic larval stages, coupled with few physical barriers to gene flow in the marine environ-

ment can enable the establishment of large and genetically diverse populations [24]. While the

assumption of large population sizes holds true for some marine taxa as a possible explanation

for high π [25], marine invertebrates show some of the most extreme mismatches between π
and Nc towards both lower [26] and higher relative genetic diversity [4,8]. High variance in lar-

val recruitment and reproductive success (i.e., sweepstakes reproduction) among broadcast

spawning adults may drastically decrease Ne relative to population size [27]. Similarly, the

‘boom-bust’ population ecologies of many marine invertebrates, whereby populations rapidly

increase in density followed by dramatic declines [28,29], can decouple Ne from Nc (Fig 1).

Theory suggests that long-term Ne in fluctuating populations is approximated by the harmonic

mean and thus bound closer to population sizes during contraction periods [10,30,31]. From

the other perspective, exceptionally high π in highly fecund and dispersive species (e.g., tuni-

cates and mussels, [4,25,32,33]) exceeds expectations based on approximated Nc (see Fig 2 in

[8]). In both cases, decomposing the determinants of π (Ne and μ) and their relationship to Nc

provide deeper insights regarding the processes maintaining genetic variation in natural popu-

lations [34].

Fig 1. Conceptual diagram illustrating the relationships between evolutionary parameters underlying genetic

diversity. Under mutation-drift equilibrium, pairwise genetic diversity (π) reflects the balance between new mutations

(μ) and the loss of variation via genetic drift, reflected by effective population size (Ne). In natural populations, π does

not increase linearly with Ne and Ne is often smaller than census population size (Nc). μ is unknown for marine

invertebrate taxa, thus the contributions of new mutations to π remain unknown. The drift-barrier hypothesis, a

leading explanation for μ variation, proposes that selection against high μ is less efficient in small Ne species. This leads

to an inverse relationship between μ and Ne (μ ~1/2Ne for diploid organisms) and the evolution of high μ in small Ne
populations. Key evolutionary and ecological processes or traits affecting the magnitude of each parameter are shown.

Several evolutionary processes act in combination to reduce Ne and thus, constrain π, decoupling it from Nc. This

decoupling leads to a disparity between the range of π and Nc variance observed across taxa, known as Lewontin’s

paradox. π can be measured in natural populations using DNA sequencing to calculate pairwise differences between

sampled individuals and Nc can be approximated most accurately from direct observations of organisms from field

surveys. μ and Ne are inferred parameters from polymorphism data.

https://doi.org/10.1371/journal.pgen.1011129.g001
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Fig 2. Germline mutation rates inferred in Acanthaster cf. solaris and other metazoan taxa. Top panel: Germline

mutation rates (μ) for 14 A. cf. solaris parent-offspring trios. Individual estimates for each trio are shown in grey. The

average μ is show in black and 95% confidence intervals are indicated with error bars. Lower panel: Previously

published average μ estimates and 95% confidence intervals for representative metazoan groups. Mutation rates

estimates from [16] are represented by squares and estimates from other publications (both pedigree-based and

mutation accumulation approaches) are represented by circles. 95% confidence intervals are shown as reported or

omitted if not reported. In cases where multiple estimates are available for a single taxon, 95% confidence intervals
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Focusing on how μ affects π, determining whether high contributions of new heritable

mutations underlie high π values could help explain how extreme polymorphism levels are

maintained in some marine invertebrate taxa (e.g., genome-wide silent site π ~ 8.0% for Bos-
trycapulus aculeatus, [4] and Ciona savignyi, [3]; π ~ 5.0% for Ciona intestinalis, [33]; π ~ 2.3%

for Crassostrea gigas, [23]). Marine invertebrates also show some of the highest reported rates

of deleterious recessive mutations associated with early mortality (i.e., high mutational load)

for animal taxa, exemplified by wild populations of mussels, oysters and abalones (e.g., [35–

38]). Thus, one possible explanation for large mutational loads in marine invertebrates is that

their genome-wide mutation rates are substantially higher than terrestrial animals and marine

fishes [39]. Indirect measures of mutational load based on comparisons of synonymous and

nonsynonymous diversity also support elevated genomic mutation rates in the marine inverte-

brate taxa studied (e.g., [33,37]). Despite the importance of quantifying new mutational contri-

butions to genetic diversity, little empirical data exists on germline spontaneous mutation

rates for marine organisms. The current knowledge for germline mutation rates in marine

metazoans is limited to five fish taxa [16,40], and there are no direct estimates of germline

mutation rates for marine invertebrates.

In this study, we decompose key evolutionary parameters (μ, Ne, Nc) in one of the world’s

most intensely monitored marine invertebrate species, the corallivorous crown-of-thorns sea

star (CoTS; Acanthaster cf. solaris) to advance our understanding about the determinants of π
in populations undergoing extreme Nc fluctuations. (Fig 1). We present the germline mutation

rate, μ, for A. cf. solaris using deep sequencing of pedigree trios of wild-caught parents and

early-stage larval offspring, alongside detailed estimates of Nc calculated from 32 years of long-

term field monitoring and high-resolution mapping of reef geomorphology in Australia’s

Great Barrier Reef (GBR). CoTs in the genus Acanthaster are diploid, broadcast spawning

asteroid echinoderms that reach sexual maturity at about two years of age when they become

corallivorous [41,42]. Although CoTS are native to the Indo-Pacific Ocean, they are among the

most influential keystone predators in tropical coral reef ecosystems. CoTS populations can

locally reach massive adult densities during cyclical outbreak events (>1,500 individual ha-1)

[43,44] during which populations can decimate coral reefs [45]. In the GBR, predation by out-

breaking A. cf. solaris populations is among the leading causes of hard coral cover loss [45,46].

Population outbreaks are followed by rapid declines to population densities several orders of

magnitude below outbreaking densities within a few years (~3 individual ha-1) [47,48]. Such

boom-bust population fluctuations appear characteristic for echinoderm taxa and are also

common to many pests and invasive species. However, empirical genomic datasets for fluctu-

ating or outbreaking populations are rare, limiting our knowledge about the impact of popula-

tion fluctuations on π and as a contributing factor to extreme cases of Lewontin’s paradox [9].

Our first aim is to directly quantify μ and infer Ne. Given the inverse predicted relationship

between μ and Ne (i.e., drift-barrier hypothesis), we expect that A. cf. solaris μ is low and simi-

lar to values reported for other highly abundant invertebrates, where presumably large Ne

favours the evolution of low mutation rates. Alternatively, if Ne is low, or if elevated μ underlies

high mutational loads [39] and extreme polymorphism levels observed in some marine inver-

tebrates (e.g., [4]), we may expect that A. cf. solaris μ is high relative to terrestrial animals and

marine fishes. Similarly, if generation time length is an important determinant of mutation

rate variation, the A. cf. solaris μ may exceed values reported for annual, shorter-lived

from the most recent publication are shown. Refer to S9 Table for article details. Exceedingly high mutation rate

estimates (μ> 2.5 x 10−08) for Thamnophis sirtalis and Rhea pennata [16] (S9 Table) are omitted for visual purposes

only. Silhouettes were sourced from Phylopic (http://phylopic.org).

https://doi.org/10.1371/journal.pgen.1011129.g002
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invertebrate taxa, such as insects, and align closely with μ estimates for longer-lived organisms.

A. cf. solaris are one of the most intensely monitored wild marine invertebrate taxa in the

world providing far greater resolution on Nc than is typically feasible for marine invertebrate

taxa, where indirect approaches for estimating Nc have been based on body size predictors of

population density and distribution ranges extracted from publicly-sourced occurrence data

(e.g., [6,8]). Thus, our second aim is to clarify the relationship between Ne and Nc with higher

certainty to provide insight into the magnitude of genetic drift influencing π in large popula-

tions experiencing frequent outbreaks. Our study provides the first germline mutation rate

estimate for a marine invertebrate, a crucial basis for interpreting genetic diversity patterns

within species [17], and advances our understanding of the processes controlling levels of nat-

ural genetic variation in an ecologically significant taxon.

Methods and materials

Parental gonad collection and fertilisation

Reproductively mature A. cf. solaris were collected from John Brewer Reef (18˚38’S, 147˚03’E)

in the Great Barrier Reef (GBR; November 2020). Specimens used for the analysis were col-

lected by the Great Barrier Reef Marine Park Authority’s (GBRMPA) CoTS control program

and were thus from areas with densities above the culling threshold (e.g., 10–15 individuals

ha−1; [49,50]). Collection of gonad tissue, in vitro breeding experiments and larval rearing

were performed at the National Sea Simulator (SeaSim) Experiment Rooms at the Australian

Institute of Marine Science (AIMS; Townsville, Queensland) following procedures outlined in

[51]. However, here we fertilised individual males and females as unique parental pairs and

raised their embryos and larvae for 3–8 days. For each parental cross, we selected two larvae in

the early-mid bipinnaria stage (day 3–8) or early-mid brachiolaria stage (day 8–9) (Fig A in S1

Text). DNA from individual larvae was extracted using the QIAGEN Blood and Tissue kit and

following modifications for A. cf. solaris larvae from [52]. Adult DNA was extracted from

gonad tissue using a modified CTAB protocol optimised for marine invertebrate tissue [53]

and purified with PCR-DX Clean beads. Whole genome libraries were prepared for seven

biparental families with two offspring per family to generate 14 mother-father-offspring trios

including siblings. Genomic libraries were sequenced on a single lane of the NovaSeq S4 300

cycle to achieve 60X coverage using 2 x 150 bp paired reads. Refer to S1 Text for additional

details on breeding experiments, DNA extraction and genomic library preparation.

Genomic data processing, variant calling and site selection

Raw reads were quality filtered using Trimmomatic (v0.39) [54]. Quality-filtered reads were

mapped to the A. cf. solaris reference genome (GCF_001949145.1_OKI-Apl_1.0) [55] using

the Burrow-Wheeler Aligner (v0.7.17 BWA) [56]. BAM files were sorted and indexed using

Samtools v1.10 [57] and PCR duplicates were removed using picard (http://broadinstitute.

github.io/picard/). The bioinformatic pipeline used for calling germline mutations from pedi-

gree samples was initially described in [58] and follows best practices principles outlined in

[59]. All scripts are available on Github (https://github.com/lucieabergeron/germline_

mutation_rate). Variant calling was performed in GATK (v4.0.7.0) using HaplotypeCaller

(BP-RESOLUTION) constrained to 693 scaffolds greater than 10,000 bp. Individual gVCF

files were collated into a GenomicsDB for each trio using GenomicsDBImport and joint geno-

typing was performed using GenotypeGVCF. SNPs were filtered to remove sites following

site-specific parameters: QD< 2.0; FS> 20.0; MQ< 40.0; MQRankSum < -2.0,

MQRankSum > 4.0, ReadPosRankSum < -3.0, ReadPosRankSum > 3.0, SOR> 3.0. Refer to

S1 Text for additional details on genomic data and variant filtering.
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Detecting and filtering of de novo mutations

We detected candidate de novo mutations (DNMs) as positions with Mendelian violations

using GATK SelectVariants, where one of the alleles observed in an offspring is not present in

either parent. We retained sites in which: (i) parents were homozygous for the reference allele

and the offspring was heterozygous (parental alternative allelic depth per site, AD = 0); (ii) all

individuals within a trio have GQ > 70, DP> 0.5 * average individual depth, and DP< 2 *
average individual depth; and (iii) the offspring had an allelic balance (AB) between 0.3 and

0.7. We recalled regions with candidate DNMs with bcftools (version 1.2) [60] and classified

any candidates not jointly detected by GATK and bcftools as False Positive (FP) DNMs. All

resulting DNMs and mutation-associated regions were manually inspected using original

BAM files in Integrative Genomics Viewer [61]. We ruled out mis-mapping errors, validated

homozygous parental genotypes and confirmed shared DNMs between siblings following six

criteria to assign DNMs as spurious (S1 Text). Refer to S1 Text for details on DNM detection

and manual curation.

Germline mutation rate estimation

To estimate the germline mutation rate, we estimated the genome portion for which we had

power to detect candidate DNMs, considering all sites where mutations could be detected (i.e.,

number of callable sites) and corrections for the false negative rate (S1 Text). This was done by

selecting every position in the VCF files (BP_RESOLUTION output) for which both parents

were homozygous for the reference allele and all three individuals passed GQ and DP filters

(as described above) [58]. The mutation rate was then estimated for each trio as:

m ¼ ðnb DNM � nb FPÞ=ð2∗C∗ð1� FNRÞÞ;

where nb_DNM is the number of DNMs, nb_FP is the number of false positive mutations, C

is the number of callable sites in the genome and FNR is the false negative rate.

Parental origins and mutation characteristics

We phased DNMs to their parental origins using a read-back phasing approach [62] (https://

github.com/besenbacher/POOHA) to determine the proportion of male-to-female contribu-

tions (α) to DNMs. DNMs were classified by mutation type and mutations resulting in a

change from C to any base were classified as CpG sites. We annotated variants and predicted

their genomic location with snpEff v5.1 [63] according to the A. cf. solaris reference genome

annotations [55] to assess whether the number of DNMs in each annotation category was sig-

nificantly greater than expected by chance (S1 Text).

Effective population size (Ne) estimation

We used our new μ estimate and population nucleotide diversity (π) across 14 parental

genomes using ANGSD (v0.934) [64] to calculate effective population size as Ne = π /(4μ). It is

important to note that population genomic programs leveraging whole genome data (e.g.,

ANGSD [64] and Sequential Markovian coalescent approaches [65]) often rely on SNPs for

inference because their mutational process is well approximated by the infinite sites model

[66]. Neglecting sites with multiple mutations (e.g., tri-allelic SNPs) can bias diversity esti-

mates [67] and may be especially relevant for high diversity species (π>>0.05) in which the

infinite sites model is violated and π is no longer proportional to Ne [68]. Because our dataset

of filtered variants (quality thresholds as applied to GONE analyses described below) across 14
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parental genomes did not contain sites with multiple alleles, it is reasonable to assume that no

or very few sites show multiple mutations affecting diversity and Ne estimates in A. cf. solaris.
We inferred historical changes in Ne (> 10,000 years ago) using Multiple Sequential Mar-

kovian Coalescent (MSMC2) analysis [65,69] The MSMC method approximates the most

recent time to coalescence between haplotypes across multiple diploid phased genomes, where

the coalescence rate distribution is used to infer changes in historical Ne over an extended time

period into the past (several hundreds to thousands of generations) [65,70]. For this analysis,

we adapted scripts from Github (https://github.com/iracooke/atenuis_wgs_pub) [71].

MSMC2 analyses were executed for each pair of phased parental genomes (4 haplotypes) using

a single randomly chosen offspring for phasing. A distribution of Ne was obtained for each

parental pair applying our inferred mean μ and a 2 year generation time as inferred from labo-

ratory and field studies in A cf. solaris [41,42,72].

To infer Ne on recent timescales (< 100 generations ago) and to generate Ne estimates that

are independent of our inferred μ, we used the Genetic Optimisation for Ne Estimation

(GONE) method [73]. The GONE method leverages the distribution of linkage disequilibrium

(LD) between pairs of loci over a range of recombination rates from SNP data to infer recent

Ne changes (0–200 generation). Because LD patterns between pairs of loci at various genetic

distances provide Ne information at different time points in the recent past, the GONE genetic

algorithm can infer the recent Ne trajectory that best explains observed LD patterns, providing

much greater resolution on contemporary Ne not captured by coalescent-based methods

[70,73]. For this analysis, we used the 14 parental genomes, retained scaffolds greater than 1M

bp and variants passing minimum quality criteria (S1 Text). We used the default recombina-

tion rate of 1 centimorgans per megabase and a maximum recombination rate of 0.01

(hc = 0.01) as recommended by the authors [73]. Because the GONE method considers the

compounded effects of genetic drift from all previous generations, we calculated the arithmetic

mean Ne between the last 10–80 generations to exclude the most recent and distant generations

where estimation may not be reliable [73]. Refer to S1 Text for details on Ne estimation.

Census population size (Nc) estimation using long-term monitoring data

We inferred the size of the contemporary A. cf. solaris population in the GBR Marine Park

using three decades of benthic monitoring data [74] combined with high-resolution (10 m)

mapping of the reef geomorphology of the GBR to estimate the area of suitable A. cf. solaris
habitat [75,76]. This mapping product characterises the geomorphic zonation of 2,164 offshore

reefs [75] and 890 fringing and nearshore reefs [76] of the GBR Marine Park to a 20 m depth

using classifications of physical attributes derived from remote-sensing data (sub-surface

reflectance, bathymetry, slope angle) and wave modelling. As representative A. cf. solaris habi-

tats, we only considered geomorphic categories predominantly covered by consolidated hard

substrate, which is more suitable for coral colonisation. According to Roelfsema et al. [75],

there are 4 geomorphic categories that are representative of significant ‘coral habitat’: ‘outer

reef flat’, ‘reef slope’, ‘reef crest’, and ‘shelter reef slope’. These habitats are likely to support the

greatest share of adult A. cf. solaris populations, as they provide optimal conditions for abun-

dant shelter and food source. Refer to S1 Text for additional details. The available census data

were collected using standardised benthic surveys performed between 1991 and 2022 on a

selection of individual reefs. For each surveyed reef, individual counts were converted into an

estimate of non-cryptic A. cf. solaris density (i.e., adult density, where adults are

approximately > 15 cm diameter) (Fig B in S1 Text), and a mean value of reef-level density

(individuals km-2) was calculated for each annual sample of monitored reefs. A 95% confi-

dence interval of annual mean densities was calculated from 500 pseudo-samples generated by
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bootstrap for each monitored year. Finally, the confidence limits and the mean of the annual

mean densities were multiplied by the total surface (3D) area of the preferred A. cf. solaris hab-

itat of reef-building corals on the GBR (14,199 km2, S1 Text).

Results

Germline mutation rate in A. cf. solaris
High-coverage sequencing of 14 A. cf. solaris parent-offspring trios resulted in an average cov-

erage of 59X per individual after mapping (range 37X to 91X) (S1 Table). Analyses of related-

ness validated trio parent-offspring relationships (relatedness_phi ~0.25 between parents and

offspring) and low parental relatedness (relatedness_phi < 0.015 between parents) (S2 Table).

Variant calling in GATK resulted in 7,316,821 SNPs post-filtering (mean across trios) and 596

DNM candidates based on Mendelian violations (S3 and S5 Tables). Additional filtering for

sites with no reads supporting parental alternative alleles (AD = 0) resulted in 246 variants (S4

and S5 Tables). Following variant calling with an independent approach, 141 of 246 variants

passed our selection criteria as candidate DNMs. Four false positive mutations were present as

low frequency variants in the population genomic dataset spanning the GBR (S6 Table). We

further verified 63 out of these 141 mutations (44.7%) as true positive DNMs based on strict

manual validation criteria (S6 and S7 Tables). The total number of validated DNMs (n = 63)

ranged between 1 and 9 mutations per trio (S5 Table). Approximately 19.0% (12 of 63) of

DNMs were shared among siblings where both shared DNMs passed selection criteria.

The average false positive rate was 42% when considering the independent variant calling

approach and 31% for manual validation, resulting in a cumulative false positive rate of 73.0%

(range 50% to 92% among trios; S5 Table). False positives arose largely from the incorrect

absence of a heterozygous site in the parents where 1 or more reads supported the alternative

allele. The high rate of false heterozygous genotypes is comparable to other values reported for

non-model taxa [16] and could be due to read mapping errors, paralog mis-mapping or incor-

rect variant calls associated with reference genome quality [77]. The available CoTS reference

genome is a scaffold-level assembly, although genome assembly quality is not expected to have

large impacts on the accuracy of the mutation rate estimates [16]. Our parent-offspring trios

and high coverage genomic data could be used to improve mutation rate estimates in the

future with the availability of a chromosome-level assembly for A. cf. solaris or long-read

technologies.

We estimated the per-site per-generation mutation rate as the number of observed true pos-

itive DNMs out of the total number of callable sites while accounting for the FNR, estimated to

be 8.4% (S5 Table). The number of callable sites ranged from 196,000,000 to 294,000,000 for

each trio, representing 71% of the A. cf. solaris genome on average (S5 Table), which is compa-

rable to other studies (e.g., range for 68 taxa 17–93%, mean = 72%; see Fig S1c in [16]; ~80%;

[78]; ~88% [58]). The final estimated mean germline mutation rate averaged across 14 trios

was μ = 9.13 x 10−09 DNMs per-site per-generation (95% CI: 6.51 x 10−09 to 1.18 x 10−08).

Parental origins and mutation characteristics

We established parental origins for 53/63 DNMs, with 27 maternally and 26 paternally inher-

ited phased DNM across all trios (S7 and S8 Tables). The ratio of male-female contributions

(α) to DNMs was 0.96, not statistically distinguishable from 1 (Welch two sample t-test;

p = 0.50; Fig CA in S1 Text). There was no effect of family grouping on between group vari-

ance (ANOVA; p = 0.33; Fig D in S1 Text). Four phased pairs of DNMs shared among siblings

showed no parental bias, however the remaining two pairs of shared DNMs could not be

phased to parental origins. Out of 63 DNMs, the number of transitions (n = 47) exceeded
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transversions (n = 16) as is typically observed in eukaryotes, yielding a transition to transver-

sion ratio (ti/tv) of 2.94 (Fig CB in S1 Text and S7 Table). 15.9% of DNMs (10 of 63) were

located in CpG sites, two of which were classified as missense mutations (Fig CB in S1 Text).

Twenty-four DNMs occurred within introns (34.9%) and four DNMs within intergenic

regions (6.3%), and nine variants (14.2%) fell within coding regions (missense and synony-

mous variants) (Fig E in S1 Text and S7 Table). There was no significant enrichment of anno-

tation categories based on genome-wide expectations (p>0.05) after corrections for multiple

tests.

Ne and Nc estimates

Based on our estimated μ and π from 14 parental individuals (π = 0.0108), we calculated the

long-term Ne (π/4μ) of A. cf. solaris to be 296,000 based on equilibrium expectations. Historical

Ne trajectories inferred by MSMC2 using four parental haplotypes (per larva) showed peak Ne

values ~60,000 years ago, followed by a decline to a most recent minimum ~20,000 years ago,

coinciding with the lowest global sea levels during the last glacial maximum (data from [79];

Fig 3). However, recent Ne estimates (< 10,000 years) are likely inflated and less reliable

because there are few coalescent events expected to have occurred on these recent timescales

[65]. The historical harmonic mean Ne over the last 10,000 to 1 million years was 187,141 and

238,656 over a more recent time period (10,000–100,000 years). Estimates of recent Ne using

GONE that are independent of our inferred μ returned a mean Ne of 67,755 between the last

10–80 generations.

To better understand the ecological factors constraining Ne, we drew upon observational

density estimates from 32 years of long-term monitoring surveys to calculate contemporary

adult Nc in the GBR with much higher certainty than is typically feasible for marine inverte-

brate taxa (e.g., [8]). Increased certainty is not only due to the monitoring technique, which

Fig 3. Historical Ne trajectories inferred in MSMC2 applying the inferred Acanthaster cf. solaris mutation rate

and nucleotide diversity from 14 parental genomes (four parental haplotypes per larva). Populations have

experienced large fluctuations over the past 10,000 to 1 million years, with peak population sizes ~60,000 years ago and

a most recent minimum ~20,000 years ago coinciding with the lowest global sea levels during the late Pleistocene [79].

The long-term harmonic Ne between the last 10,000 to 1 million years (~180,000) is indicated by the grey dashed line.

https://doi.org/10.1371/journal.pgen.1011129.g003
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allows for rapid surveys of adult populations over large reef areas, but also due to high-resolu-

tion spatial mapping enabling reliable estimates of the extent of coral habitat sustaining adult

A. cf. solaris populations. Between 37 and 136 individual reefs were monitored annually

between 1991–2022 across the GBR (Fig 4A). Contemporary Nc estimates across 14,199 km2 of

coral habitat varied between 6.7 and 14.3 million non-cryptic individuals (harmonic means of

the annual 2.5th and annual 97.5th percentiles of bootstrap distributions, Fig 4B). Population

sizes were 3 to 6 times higher (20–90 million individuals) during outbreaking years (Fig 4B).

Considering these Nc confidence intervals, harmonic mean Ne/Nc ratios ranged between

0.0047–0.048 applying equilibrium Ne (Ne/Nc = 0.022–0.048), historical Ne (Ne/Nc = 0.014–

0.030) and recent Ne (Ne/Nc = 0.0047–0.010).

Discussion

Lewontin’s paradox arises from comparisons of genetic diversity (π) and census population

sizes (Nc) across the tree of life. Yet, partitioning the determinants of π and characterising spe-

cies-specific Nc is a difficult challenge, especially for large and fluctuating populations [4,7,9].

In this study, we estimate the germline mutation rate (μ) in Acanthaster cf. solaris crown-of-

thorns sea stars and provide empirical estimates of adult Nc to interrogate the determinants of

π in this species. Based on direct observations of 63 de novo mutations (DNMs) across 14 pedi-

gree trios, the A. cf. solaris mean μ was 9.13 x 10−09 DNMs per-site per-generation (95% CI:

Fig 4. Recent adult Acanthaster cf. solaris abundance estimates in the Great Barrier Reef (GBR) based on long-term

monitoring data. (A) Individual reefs monitored between 1991 and 2022; (B) Contemporary abundance estimates of adult A.

cf. solaris across the GBR (3,054 reefs). For each surveyed reef, individual A. cf. solaris counts were converted into a density

estimate (individuals km-2), where mean reef-level density was calculated for each annual sample and a 95% confidence

interval of annual mean densities was calculated from 500 pseudo-samples generated by bootstrap for each year. The

confidence limits and the mean of the annual mean densities were multiplied by the total surface area of the preferred A. cf.

solaris habitat of reef-building corals on the GBR to calculate census population size. Black dots indicate the average

abundance, while vertical lines indicate the extent of the 95% confidence intervals of the 500 mean annual values estimated by

bootstrap sampling. The blue and red dashed lines represent, respectively, the harmonic means of the 2.5th (6.7 million) and

97.5th percentiles (14.3 million) of mean annual values over 32 years of monitoring. https://geoportal.gbrmpa.gov.au/.

https://doi.org/10.1371/journal.pgen.1011129.g004
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6.51 x 10−09 to 1.18 x 10−08). Our estimated μ exceeds previously reported values for highly

abundant terrestrial and freshwater invertebrates (Fig 2). Instead, the A. cf. solaris μ aligns

more strongly with values reported for vertebrate taxa, with largely overlapping 95% confi-

dence intervals with mammals and marine fishes (Fig 2). To provide insight into the magni-

tude of genetic drift influencing π in large populations experiencing frequent outbreaks, we

used our new μ estimate to infer historical Ne alongside more recent Ne estimates (that are

independent of μ). We find that historical (Ne ~ 180,000) and recent Ne (Ne ~ 70,000) estimates

are 1–2 orders of magnitude lower than typically reported for highly dispersive marine organ-

isms (e.g., ~ 106, [25,80]) and between 2–3 orders of magnitude lower than Nc estimated from

the Great Barrier Reef (GBR) (Fig 4). Our findings of elevated μ and reduced Ne in A. cf. solaris
are consistent with μ evolving in response to reduced Ne (i.e., drift-barrier hypothesis), sug-

gesting that short periods (~2–3 generations) of outbreaking population sizes exceeding 20–90

million individuals do not allow for lasting effects of selection against high mutation rates.

Consistently, A. cf. solaris exhibits low Ne/Nc values (0.0047 to 0.048), indicating significant

genetic drift and weak influences of contemporary demographic outbreaks on long-term π.

More broadly, our findings suggest that larger contributions of new mutations to π may under-

lie high mutational loads observed in some marine invertebrate taxa (e.g., bivalves) [39] and

may help explain high polymorphism levels in marine populations despite demographic

declines [4]. Our study also provides new data valuable for further testing hypotheses about

the determinants of mutation rate variation across diverse animal phyla, which are discussed

below.

Low long-term Ne and high μ shape genetic diversity in crown-of-thorns sea

stars

Using our new μ estimate and π from 14 parental genomes (π = 0.0108), the A. cf. solaris long-

term Ne was ~296,000 based on equilibrium expectations (π/4μ). Reconstructions of historical

Ne in MSMC2 returned a lower harmonic mean Ne ~180,000 over the last 10,000–1 million

years and revealed significant impacts of historic climactic changes on A. cf. solaris long-term

Ne. We show that A. cf. solaris have experienced large population fluctuations over the past 1

million years, with the most recent Ne minimum coinciding with the lowest global sea levels

during the late Pleistocene (Ne ~ 150,000) [79] (Fig 3). Applying the GONE method, which

does not rely on μ estimates, recent Ne values were even smaller (< 70,000) considering con-

temporary populations over last 10–80 generations. While Ne estimates in A. cf. solaris in the

present study (~70,000–180,000) are similar or larger than for most terrestrial chordates (e.g.,

< 105,) [16], the Ne range reported here is 1–2 orders of magnitude lower than for many highly

dispersive marine organisms (~106) [16,25,80], and terrestrial insects (e.g., Chironomus midges

~2.16–3.95 x 106, [81]; ~1.4 x 106, Drosophila, [77]; ~2 x 106, Heliconius; [82]). This finding

adds to empirical evidence that extremely abundant marine taxa, including those with out-

breaking tendencies, can sustain low Ne that is strongly decoupled from contemporary Nc,

contradicting the broad notion that large marine populations are immune to the effects of

genetic drift [26,83].

From a long-term evolutionary perspective, our findings of reduced Ne and elevated μ in A.

cf. solaris provide new genomic results consistent with the drift-barrier hypothesis as an expla-

nation for μ variation across taxa. The drift-barrier hypothesis predicts that the efficiency of

selection on DNA repair and replication machineries is negatively correlated with the strength

of genetic drift. Because the power of genetic drift is inversely proportional to Ne (~1/2Ne for

diploid organisms), high mutation rates are expected to evolve in small Ne species, such that π
is constrained across diverse taxa (Fig 1) [17,18]. Indeed, negative correlations between per-
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generation μ and Ne are evident across the tree of life [16,17] and recent work demonstrates

that environmental constraints on Ne in prokaryotes can rapidly evolve elevated mutation

rates, pointing to evolutionarily labile μ influencing π [19]. Thus, under the drift-barrier

hypothesis, low Ne in A. cf. solaris (i.e., similar to terrestrial vertebrates) allows for a high μ to

evolve because selection’s ability to maintain high-fidelity replication and repair mechanisms

is compromised (relative to the magnitude of genetic drift as reflected by Ne). This observation

supports a dominant role of genetic drift in evolutionary change and helps to explain Lewon-

tin’s paradox by describing the stability of π across diverse phyla as a result of the inverse rela-

tionship between μ and Ne, rather than a reflection of relatively constant Ne [17]. With our

study, it becomes clear that knowledge of temporal population size fluctuations should be

incorporated into investigations of μ variation and Lewontin’s paradox to support interpreta-

tions of the processes controlling genetic diversity in natural populations [9].

The low Ne values observed in this study likely reflect historical bottlenecks or Nc minima

during non-outbreaking periods. While periods of massive Nc experienced by A. cf. solaris
increase opportunities for genetic diversity to be reshuffled through phases of high recombina-

tion, rare variants are ultimately lost during repeated population bottlenecks and genetic diver-

sity can only be recovered through the generational input of new mutations or migration

[10,30]. Thus, if population size changes occur at a rate higher than coalescent events (that

reflect genetic drift), long-term Ne becomes independent of short-term demographic dynamics

and contemporary drift [84,85]. As such, frequently fluctuating A cf. solaris populations are

expected to remain far from mutation-drift equilibrium for longer periods of time [86] and a

weak relationship is predicted between π and Nc [4]. Consistent with this hypothesis, our cal-

culations of recent adult Nc resulted in low harmonic mean Ne/Nc values (0.0047 to 0.048),

indicating stronger-than-expected genetic drift and weak influences of extreme population

outbreaks on long-term π. It is important to note that Nc upper bounds reported here were

below the distribution of Nc estimates for other echinoderms (~108−1012; [8]). Because we

focused on coral habitats as defined by remote-sensing within the GBR [75], considering the

full-distribution of A. cf. solaris throughout its range in the Pacific Ocean would have likely

resulted in species-wide abundance estimates up to 5 x greater than our reported mean Nc. We

obtained Ne estimates from a sampled population representing a small proportion of the A. cf.

solaris range. However, based on absent spatial population structure in microsatellite data

[87], we can infer that gene flow is high across the GBR and that Ne estimates in our present

study are likely representative of the population within this region. Thus, while our Ne/Nc esti-

mates are conservative for the species-range, we consider them to be precise for the panmictic

A. cf. solaris population within the GBR [87] for which we present genomic data.

In the context of low Ne, larger contributions of new mutations to π may thus, in part,

explain how moderate polymorphism levels (π = 0.0108) are maintained in A. cf. solaris, and

may explain extreme polymorphism levels in marine bentho-pelagic taxa more broadly (e.g.,

tunicates and mussels) [4,33,68]. The combination of low Ne and elevated μ in A. cf. solaris
(relative to terrestrial invertebrates; Fig 2) could also reconcile evidence for higher observed

mutational loads in marine invertebrates compared to terrestrial taxa and marine fishes [39].

Populations with small Ne are expected to hold higher burdens of weakly deleterious mutations

due to less efficient purifying selection [88]. For example, high mutation rates in marine inver-

tebrates have been speculated from evidence for elevated genetic loads in Pacific oysters [38].

Similarly, low-frequency deleterious mutations and extreme dN/dS ratios in the flat oyster,

Ostrea edulis, are posited as outcomes of large mutational inputs coupled with small Ne [37].

While we provide evidence for a high germline mutation rate in A. cf. solaris, the 95% confi-

dence intervals were not distinctly greater than terrestrial animals or marine fishes for which

we have μ estimates (Fig 2). This result implies that extrinsic processes sustaining reduced Ne

PLOS GENETICS Germline mutation rate in a marine invertebrate with extreme population size fluctuations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011129 February 12, 2024 13 / 22

https://doi.org/10.1371/journal.pgen.1011129


(e.g., sweepstakes reproduction or demographic fluctuations) may have a more predominant

role, than mutation rate alone, in shaping genetic load and π in A. cf. solaris and other marine

invertebrate populations.

Large variance in reproductive success may be necessary to explain extremely low Ne/Nc

ratios (i.e., < 1%) in A. cf. solaris and other wild populations of exploited fish and bivalves

[26,34,37,80,89,90]. High skews in reproductive success may be especially relevant for shaping Ne

in A. cf. solaris during non-outbreaking periods when populations can reach densities as low as ~

3 individuals ha-1 [47,48]. Alternatively, asexual reproduction (or budding) of larvae observed in

A. cf. solaris under some circumstances in the laboratory [91], may, even if occasionally, contrib-

ute to patterns of genetic diversity observed in natural CoTS populations (reviewed in [92]).

Although there is limited support for this hypothesis from genetic simulations [93], an analysis of

microsatellites from> 3700 individuals showed no effect of potential clonality on population

genetic structure [94]. However, testing these hypotheses, and whether reaching known Allee

effect thresholds may amplify reproductive variance [95] or define lower genetic diversity limits

required to escape extinction [4] is challenging to evaluate in marine populations [80]. Compari-

sons of mutation rate and Ne estimates with closely related species that do not experience cyclical

outbreaks of a similar nature (e.g., Acanthaster brevispinus) or with different mating systems (e.g.,

brooding Asteroids) would be informative to tease apart the relative contributions of mating strat-

egies (e.g., [16]) versus ecologically-driven Ne fluctuations to μ variation.

Alternative hypotheses for mutation rate evolution in A. cf. solaris
There is growing evidence that differences in generation time length (e.g., [16]) and reproduc-

tive longevity (e.g., [20,21]) are important determinants of germline mutation rate evolution

across animal phyla, whereby species with longer generation times have higher μ than smaller

and shorter-lived organisms [96]. This alternative hypothesis could explain higher μ observed

in A. cf. solaris relative to other invertebrate taxa (Fig 2; with the exception of the cyclical

parthenogen Daphnia magna, 8.9 x 10−09, [97]). Compared to annual invertebrates, A. cf.

solaris are longer-lived species (~8 years in the wild; [45]) where most individuals become sex-

ually mature at 2 years of age when individuals become corallivorous [41,98]. In captivity, sex-

ual maturity can be delayed up to 6.5 years if juveniles are confined to herbivory, implying that

generation times in natural populations may be longer depending on the availability of live

corals as a food resource, although similar delays in sexual maturity have not been confirmed

for wild populations. Thus, the mutation rate observed in A. cf. solaris (values closer to verte-

brate taxa; Fig 2) suggests that marine invertebrate taxa may not be an exception to generation

time as a predictive factor, despite their phylogenetic distance and unique life history charac-

teristics that differentiate them from most chordates, such as extreme fecundity, large popula-

tion sizes and bentho-pelagic life cycles [83].

By assigning DNMs to their parental origin, we showed no significant differences in the

proportion of male-to-female contributions (α~1) to germline mutations in A. cf. solaris. This

result is consistent with similar male and female mutational contributions observed in ecto-

therm vertebrates (e.g., reptiles mean α = 1.5; fishes, mean α = 0.8; [16]), and in contrast to

stronger male biases observed in mammals that experience larger numbers of mitotic cell divi-

sions during the father’s reproductive lifetime [16,20,58]. This observed variation among ecto-

therms and mammals may be explained by differences in gametogenesis. Seasonally breeding

reptiles and fishes produce gametes during limited periods proceeding mating or spawning

activity [99,100], such that differences in the number of male and female cell divisions are

expected to be reduced and therefore α is closer to 1 (e.g., [40]). Similar to fishes, in A. cf.

solaris and other echinoderms, highly fecund females produce> 100 million oocytes per
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season [101] and undergo gametogenesis every spawning period (e.g., November to January;

[102]). Although little is known about germline formation in sea stars, the source of germline

stem cells (gonia) is likely present throughout the year [103,104], while gametes appear to be

reabsorbed after the spawning period [105,106]. The annual renewal of oogonia after the

spawning season implies that females replenish germ cells each gametogenesis cycle [104] and

that males and females undergo similar numbers of cell divisions throughout their reproduc-

tive life spans. In the present study, we show that α estimates for A. cf. solaris are consistent

with theory and empirical data for seasonally reproducing animals. The effect of parental age

on the observed mutation rate variation among trios (Fig D in S1 Text) is not clear, however,

because unlike other pedigree studies (e.g., [16]), we do not have information about the paren-

tal age of wild-caught A. cf. solaris.

Deep sequencing supports new inferences for non-model bentho-pelagic

marine invertebrates

By sequencing 3-day old larvae, we demonstrate that it should be feasible to detect germline

mutations in non-model bentho-pelagic organisms with long-lived planktotrophic larvae if

pedigreed larvae can be maintained to the earliest developmental stages preceding planktotro-

phy (e.g., day 3 larvae)—the key stage impeding successful captive rearing of many bentho-

pelagic species. The next main challenge in estimating genomic mutation rates is identifying

extremely rare, new mutations against a background of possible sequencing errors [107]. In

the present study, we used deep sequencing (60x) of many trios (>10) and applied stringent

bioinformatic criteria to detect germline mutations with high certainty. First, we applied best

practises workflows with conservative quality thresholds (e.g., genotype quality >70; [59]) that

enabled us to reliably compare the A. cf. solaris μ with most metazoan estimates [16]. Second,

we mitigated possible limitations imposed by reference genome quality (e.g., [77]) by visually

inspecting BAM files and applying stringent criteria to validate individual DNM candidates.

Third, our approach of screening DNMs against all sequenced trios and an independent popu-

lation genomic A. cf. solaris dataset helped ensure that DNMs did not correspond to known

alleles segregating in contemporary GBR populations. These measures were necessary because

larval resequencing was not feasible for independent validation. Additionally, our study exam-

ined only single base pair mutations and excluded indel variants, copy number and larger

structural variants that may also be important components of germline mutations as the raw

material for evolution (e.g., [20,81]). Although our strict approaches for classifying DNMs

may have resulted in underestimations of the A. cf. solaris mutation rate, we have high cer-

tainty in the identified DNMs and thus confidence in the resulting patterns, such as the co-

occurrence of DNMs between siblings and trends in parental bias. Our conservative approach

strengthens our main result that mutational rates in A. cf. solaris crown-of-thorns sea stars are

high relative to other measured invertebrate taxa.

Supporting information

S1 Text. More detailed methods with Figs A-E. Fig A. Summary of A. cf. solaris fertilisation

workflow and larval stages. (A) A. cf. solaris adult being dissected to extract gonads; (B) Female

gonads after rinsing in FSW; (C) Mature eggs recently dislodged from the gonad tissue; (D)

Fertilised eggs under the microscope presenting a clear fertilisation membrane; (E-I) Larval

developmental stages. For each parental cross, we selected two larvae in the early (F) or mid

(G) bipinnaria stage (Day 3–8) and early-mid brachiolaria stage (Day 8–9) (H). Fig B. Rela-

tionship between manta tow counts and SCUBA swim counts from [108]. The observed data

(black dots) are expressed as a per-tow basis (200×12 m, with 2 to 15 tows/transects supporting
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each observation). The regression model is used to generate deterministic predictions of

SCUBA swim counts (line) or stochastic predictions function of the number of tows con-

ducted in a given area (e.g., the perimeter of a reef), illustrated here with 5 (red dots) and 25

tows (green dots). Increasing the number of tows decreases the dispersion around the deter-

ministic model. Fig C. Variation in parental origins and mutational types for de novo muta-

tions (DNM). (A) Per-trio proportions of DNMs phased to their parental origins and those

with unknown phasing. There was no significant difference in the proportion of maternally

and paternally inherited phased DNMs among trios (Welch two sample t-test; p = 0.50); (B)

Distribution of DNMs classified by mutation type, where mutations resulting in a change from

C to any base were classified as CpG sites. Fig D. Mutation rate estimates for 14 parent-off-

spring trios grouped by family. There was no effect of family grouping on between group vari-

ance (ANOVA; p = 0.33). Mutation rate data points for Trio 7 siblings are overlayed. Fig E.

Annotated variants (synonymous, nonsynonymous) and their predicted genomic locations

according to the A. cf. solaris reference genome annotations [55]. There was no significant

enrichment of annotation categories based on genome-wide expectations (p>0.05) after cor-

rections for multiple tests.
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