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ABSTRACT

Despite a five order of magnitude range in size, the brains of mammals share many anatomical
and functional characteristics that translate into cortical network commonalities. Here
we develop a machine learning framework to quantify the degree of predictability of the
weighted interareal cortical matrix. Partial network connectivity data were obtained with
retrograde tract-tracing experiments generated with a consistent methodology, supplemented
by projection length measurements in a nonhuman primate (macaque) and a rodent (mouse).
We show that there is a significant level of predictability embedded in the interareal cortical
networks of both species. At the binary level, links are predictable with an area under the ROC
curve of at least 0.8 for the macaque. Weighted medium and strong links are predictable
with an 85%–90% accuracy (mouse) and 70%–80% (macaque), whereas weak links are
not predictable in either species. These observations reinforce earlier observations that the
formation and evolution of the cortical network at the mesoscale is, to a large extent, rule
based. Using the methodology presented here, we performed imputations on all area pairs,
generating samples for the complete interareal network in both species. These are necessary
for comparative studies of the connectome with minimal bias, both within and across species.

AUTHOR SUMMARY

Revealed by tract-tracing datasets, communication between the functional areas of the cortex
operates via a complex, dense, and weighted network of physical connections with little
apparent regularity. Although there are studies showing the existence of nonrandom
topological features, their extent has not been clear. Employing a machine learning–based
approach, which efficiently extracts structural models from such datasets, here we show that
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there is a significant amount of regularity embedded in the mammalian connectome. This
regularity allows predicting interareal connections and their weights with good accuracy
and can be used to infer properties of experimentally untested connections. The structural
models are well learned even with small training sets, without overfitting, suggesting the
existence of a low-dimensional, universal mechanism for mesoscale cortical network
formation and evolution.

INTRODUCTION

Information in the brain is encoded via the temporal patterns of signals generated by a network
of distributed neuronal assemblies (Hebb, 1949; McCulloch & Pitts, 1943), whose organiza-
tion has been shown to be strongly determined by its weighted connectivity and spatial
embedding (Knoblauch et al., 2016; Markov et al., 2013b). This contrasts with technological
information networks, where information—including the destination address—is encoded into
packets and routed via switches, and where the network structure serves principally as a prop-
agation backbone. In comparison, the structure of brain networks—the connectome (Sporns
et al., 2005)—forms an integral part of the processing algorithm itself. It is expected that dis-
ruptions to the optimal structure of the connectome will lead to severe neurological deficits
(neurodegenerative diseases) even though the network remains connected, as for example, in
patients with syndromic autism spectrum disorder (such as with tuberous sclerosis complex),
where there is decreased long-range connectivity and short-range overconnectivity, with
reduced functional specialization (Peters et al., 2013). In contrast, while long-range connec-
tivity in packet-switching technological networks helps with efficiency of information transfer,
it is not necessary (e.g., ad hoc wireless mobile radio networks), as long as there is a path from
source to destination for the packets to travel along.

Despite being fundamental for understanding the brain in health and disease, there is lim-
ited knowledge of cortical circuitry, which at the microscale is presently intractable, due to the
staggering size of its numbers of nodes (neurons) and connections (Frégnac & Bathellier, 2015).
What is tractable with current technology, however, is the investigation of the mesoscale,
interareal connectivity patterns corresponding to the physical pathways between functionally
defined areas, addressed in ongoing electrophysiology and whole-brain imaging efforts to
understand cognitive functions (Mesulam, 2012). Note, complete connectomes have been
generated in numerous mammalian species using tractography based on diffusion MRI (Assaf
et al., 2020; Suarez et al., 2022) and used for comparative network studies (Goulas et al.,
2019; Griffa et al., 2022; Mars et al., 2018; Warrington et al., 2022). However, in dMRI trac-
tography the weak signal-to-noise ratio, the limited resolution and abundant false positives
lead to only a modest performance in terms of measuring with precision the point-to-point
physical connectivity between cortical areas (Donahue et al., 2016). Here, we restrict our-
selves to accurate interareal network data inferred from retrograde tract-tracing methods
(see below). While the full interareal network (FIN), as determined via tract-tracing is currently
unavailable for any mammal, it is obtainable in the foreseeable future, although, requiring
highly specialized laboratories.

Among the empirical approaches, retrograde tract-tracing, has emerged as a reliable, high-
resolution method to trace neuronal pathways (Köbbert et al., 2000; Lanciego & Wouterlood,
2011). Compared to anterograde techniques, the major advantage of retrograde tract-tracing is
that counts of labeled cells provide a reliable metric of connection strength, yielding a

Retrograde tract-tracing:
An experimental technique that
identifies the cell bodies of neurons
whose terminals (synapses) are
located in a region injected with a
liquid tracer (Fast Blue or Diamino
Yellow). The tracer is taken up
through the synaptic cleft,
transported along the pre synaptic
neuron’s axon, labeling its cell body.
It maps single-step, physical
connectivity. Injected functional
areas are called targets, the areas
housing the labeled neurons are
called sources.
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weighted, directed and spatially embedded, physical network of connections between brain
areas (Gămănuţ et al., 2018; Majka et al., 2020; Markov et al., 2014; Zingg et al., 2014). In
these experiments, a site in a single area, referred to as the target area, is injected with a tracer,
which then back labels the cell bodies of neurons with terminals ending at the injection site in
that target area. Areas external to the target area housing labeled neurons are called source
areas. The weight of an interareal connection from source area j to target area i, defined via the
counts of labeled neurons, is recorded as the fraction of labeled neurons FLNij found in area
j (j ≠ i ), when injecting into area i (Markov et al., 2011).

Although existing retrograde tracing datasets do not provide the FIN, they do provide edge-
complete subgraphs, that is, networks formed by a subset of vertices whose connectivity
within this subset is fully known. These studies have shown that interareal cortical networks
(Ercsey-Ravasz et al., 2013; Gămănuţ et al., 2018; Horvát et al., 2016; Theodoni et al., 2020)
are in a class of their own when compared to other real-world complex networks, including
technological information networks. One key distinguishing feature is their high density of
binary connectivity (connections existing or not), that is, they contain a large fraction of the
maximum number of possible connections: 0.66 for the macaque (Markov et al., 2011) and
0.97 for the mouse (Gămănuţ et al., 2018). At such high-density values, binary connectivity
gives little insight and instead, a network’s specificity is largely encoded in the profiles of con-
nection weights of individual areas (Gămănuţ et al., 2018; Markov et al., 2014), which are
reflective of the area’s specialization (Bressler, 2004; Bressler & Menon, 2010; Markov
et al., 2011; Passingham et al., 2002).

Studies of self-consistent tract-tracing datasets (Horvát et al., 2016; Kennedy et al., 2013)
have revealed in both mouse and monkey the action of the so-called exponential distance rule
(EDR), which significantly constrains the structure of the interareal networks (Ercsey-Ravasz
et al., 2013; Horvát et al., 2016; Markov et al., 2013b; Theodoni et al., 2020). The EDR
expresses the empirical observation that axonal connection probability decays exponentially
with projection length (Ahn et al., 2006), p(l ) ∼ e−λl, where λ = 1/hli is the inverse of the aver-
age axonal projection length (λ mac

exp = 0.19 mm−1, λ mus
exp = 0.78 mm−1). A one-parameter (λ),

maximum entropy principle–based generative EDR model captures many features of the inter-
areal network in both species, including the frequency distribution of three-node motifs, effi-
ciencies, core-periphery structures, eigenvalue distributions connection similarity profiles, and
wire minimization (Ercsey-Ravasz et al., 2013; Horvát et al., 2016; Song et al., 2014; Theodoni
et al., 2020). Earlier studies of network measures/quantities in the cortical connectome, such as
small-world properties, rich-club, hierarchical modularity, motifs, and so forth, have shown
that they deviate significantly from their counterparts in random or randomized networks (used
as null models), indicating the existence of nontrivial topological features (Bassett & Bullmore,
2017; Betzel et al., 2018; Meunier et al., 2010; Tononi et al., 1998; van den Heuvel et al.,
2012; van den Heuvel & Sporns, 2013). The discovery of the EDR and the fact that it captures
most of these network measures with good accuracy, further strengthens the conclusion that
the cortical connectome is indeed rule based.

Interareal networks are the evolutionary consequences of genetic prespecification and
interactions with the environment (Buckner & Krienen, 2013). Although there is network var-
iability between individuals (Gămănuţ et al., 2018; Markov et al., 2014), there are common
features within and across species (Goulas et al., 2019; Horvát et al., 2016; Margulies et al.,
2016; Markov et al., 2013b; Mota et al., 2019). This is supported, for instance, by the cross-
species consistency of the EDR (Horvát et al., 2016; Theodoni et al., 2020) and of the topo-
graphical ordering of areas on the cortical mantle (Krubitzer, 2009). We refer to these generic
features as architectural network invariants, which we argue, imply predictability of networks.

Fraction of labeled neurons:
The proportion of labeled neurons of
a source area computed as the ratio
between the number of labels found
in that source divided by the total
number of labels found in all the
sources.

Edge-complete subgraph:
It is a subgraph spanned by a set
of nodes for which the status of
connectivity between any two of
them is fully known (including edge
weight information).

Exponential distance rule:
It expresses the experimental
observation that the probability of a
neuron creating connections at a
distance, decays exponentially with
the distance.
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To study this issue, we turn to prediction and machine learning methods and show that they
can be used to assess the degree of predictability of brain networks, and thus also usable for
predicting missing network data (imputation). Naturally, the accuracy of imputation is deter-
mined by the degree of predictability inherent in the data. Moreover, we argue that predictive
methods can also be used as tools to study structure-function relationships in these networks.
Overall, they address the following questions: (i) How well can connections be predicted? (ii)
Are certain parts of the network more predictable than others? (iii) How does heterogeneity in
predictability relate to cortical function and behavioral features of the species? (iv) How does
predictability compare across orders? (v) Can we use predictability as a guide for further
investigations?

Two aspects of our approach need to be emphasized. First, the limit to predictability is pri-
marily an inherent property of the data. This is because even the best possible algorithm can
extract only so much predictive information, either because the dataset is noisy or the unpre-
dictable part is the result of other variables, independent from those in the dataset, and not
contained in it. Although the quality of prediction algorithms can vary wildly, even the best
algorithm cannot and should not “predict” information that is not there (e.g., in the case of two
pieces of mutually independent data A and B). Secondly, one must avoid overfitting, that is,
fitting to noise in the data, as this leads to loss of generalization power and erroneous
conclusions.

RESULTS

Data Description

We rely on two retrograde tract-tracing datasets obtained with consistent methods, one for the
macaque (mac) (Markov et al., 2014) and the other for the mouse (mus) (Gămănuţ et al., 2018).
The mouse dataset Gmus

19�47 is a matrix of FLN values FLNij for 19 injected target areas (j is a

source, projecting into target i ) in a 47-area parcellation. The macaque dataset Gmac
29�91 contains

the same for 29 injections on a 91-area atlas. Both datasets are provided in the Supporting
Information. The full interareal networks (FIN), which are not available for either species,
would be the matrices Gmus

47�47 and Gmac
91�91, respectively. Additionally, our datasets contain all

pairwise distances along estimated shortest paths avoiding anatomical obstacles, between the
area barycenters, recorded in the matrices Dmus

47�47 and Dmac
91�91 , respectively (provided in the

Supporting Information). Due to the high tracer sensitivity, each injection reveals all the areas
that project into the injected target area and thus, the FLN matrix GT×N is a row submatrix of
the FIN GN×N. Therefore, we either know the full row (corresponding to a target area) or not at
all. This is illustrated in Figure 1A where the first T rows represent the targets in the full GN×N

matrix. The FLN data matrices were preprocessed so that the links have a positive real numeric
weight between 0 and 7 (see Methods).

Link Prediction Framework

Link prediction refers to inferring links from observed network data (Clauset et al., 2008; Liben-
Nowell & Kleinberg, 2003; Lü & Zhou, 2011). This can be done at the binary (predicting only if
a link exists/1 or not/0) or weighted levels (predicting the associated weight). Binary level pre-
dictors are also known as classifiers, whereas weighted predictors are essentially regressors.
There are two main families of network prediction methods: Classical Link (CL) predictors
and Machine Learning (ML) predictors. CL predictors/classifiers, used extensively in social net-
works, forecast links at the binary level based on either node neighborhood information (local)
or path information (global). This information is formulated into a predefined model that

Imputation:
Predicting the missing values from a
data set based on information
learned from the dataset.

Overfitting:
When the parameters of a model are
tuned such as to obtain the best fit for
the training set but performs weakly
on the test set. This happens, for
example, because the model tries to
fit the noisy part of the training set.

Classifiers:
The task of predicting the category or
class of an object, i.e., “classification”,
using its attributes.
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generates a score score(u, v) for every ordered node pair (u, v), which is then used to make the
prediction. For this reason, CL methods are susceptible to modeling bias: the models are built
using modeler-defined measures as constraints, which might have or not have strong rele-
vance to the features the modeler wants to predict for a given dataset.

ML predictive methods can be used both as classifiers (for binary prediction) or as regres-
sors (for weighted prediction). They predict based on learning from samples given a set of
features. A feature is a vector of values (feature vector) quantifying what we know about the
relationship of a node pair. We train an ML predictor in a supervised fashion (hence they belong
to the class of supervised classifiers/regressors, by providing the feature vectors computed for
the node pairs in the training set and using the ground truth data about the pairs’ connectivity.
The predictor then creates a model autonomously that best fits the given training set with the
given feature vectors, which is then tested against the ground truth in the test data and the clas-
sifier’s performance is evaluated. Thus, the fundamental difference between CL and ML is that
we impose the model in CL, whereas it is learned in ML. While the ML uses a modeling frame-
work, such as weighted feed-forward neuronal network, it is not a model of the graph that is
being modeled. The framework just has to have sufficient complexity and sufficient flexibility
that allows tuning its internal state to any information that it is learned. In particular, for feed-
forward neuronal networks, the Universal Approximation Theorem (Cybenko, 1989; Hornik
et al., 1989), allows approximating with arbitrary accuracy any function, given sufficient neu-
rons in the hidden layer. This theorem guarantees the absence of modeling bias, given a suffi-
ciently large size of the hidden layer. However, not all ML frameworks have mathematical
proofs for them being universal approximators, but they do have both the flexibility and suffi-
cient tunability to work as universal approximators, at least in practice. It is also important to
note that given several ML algorithms with such universal approximation properties, they
should all have similar predictability performance, given that they truly minimize bias, when
learning, which can also be seen in our results below. One way to test that a given ML predictor
has extracted the relevant, generalizable information is via the analysis of prediction residuals
(discussed below). The residuals should show the characteristics of uncorrelated noise once all
the information has been extracted in an unbiased manner.

An important note is that for both CL and ML, the information on which the prediction is
based (scores and feature vectors) has to be computable for all pairs in an identical fashion,

Figure 1. Schematics for link prediction with retrograde tract-tracing data. (A) k-fold cross-
validation setup for predictability (k = 3). (B) Links are predicted based on information (weights,
distances) from the out-neighborhoods of its incident vertices.

Modeling bias:
Appears when an inadequate model,
or working hypothesis is used to
represent the data, e.g., using a linear
function to fit a parabolic curve.

Feature vector:
It is a vector that stores the variables
or data based on which predictions
are made by the method.

Supervised classifiers/regressors:
Supervised classification or
regression are machine learning
approaches where a model is trained
using labeled data (the labels form
the ground truth). Typically, it works
by finding the model’s parameters
that minimize a given error function.
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limiting the types of predictors that can be used. In particular, this excludes path-based pre-
dictor models (PageRank, Katz, Shortest Path), because there are no paths into some of the
vertices of the links to be predicted (the noninjected areas). For both CL and ML, we must
use information on outgoing links, these being the only type of information commonly avail-
able to all node pairs (see Figure 1B).

The performance of both classifiers (CL, ML) and regressors (ML) is evaluated using cross-
validation, which separates the data with ground truth value into two sets: a training set and a
test set. The former is used as input information for the predictor, which based on that makes
predictions for links in the test set, which is then compared to the ground truth. Here we use
k-fold cross-validation, which splits the data into k equal parts, using in one iteration one of the
parts for the test set and the other k − 1 parts for training, then this is repeated for every com-
bination of test/training split. Performance metrics are then averaged. To avoid correlations
with any predetermined ordering of the input data we randomize the ordering of the target
areas in the FLN matrices1 before splitting it into k parts. We apply k-fold cross-validation over
multiple randomizations of the target areas, then compute the corresponding averages over all
these randomized realizations and all the folds within. For classifiers we use the standard
receiver operating characteristic (ROC) curve and the corresponding single scalar metric,
the area under the ROC curve (AUC), as performance metrics. The ROC shows the true pos-
itive rate TPR = TP/(TP + FN) plotted against the false positive rate FPR = FP/(FP + TN),
obtained by moving the threshold value that distinguishes positive and negative predictions.
Here TP, TN, FP, and FN are the number of true positive, true negative, false positive, and false
negative predictions, respectively. A perfect classifier has 100% TPR and 0% FPR and the ROC
curve fills the top left corner of the unit square; a random predictor has 50% TPR and 50% FPR
with the ROC following the main diagonal of the unit square; anything below the main diag-
onal implies an invalid predictor. The ROC curve also has a specific point that corresponds to
the maximum prediction accuracy. Accuracy (ACC) is defined as the number of correctly pre-
dicted links and nonlinks divided by the number of all predictions, ACC = (TP + TN) / (TP + TN +
FP + FN). This point is determined numerically for each ROC curve, and this threshold is used
to make the binary predictions during cross-validation. For weighted predictors there are no
ROC curves. Instead, we use the mean absolute error (MAE) or the relative MAE (RMAE)
between predicted and actual links weights (using RMSE, i.e., root-mean-square error gives
very similar results).

Cross-validation helps to quantify not only how well a particular algorithm predicts the
presence or absence of links but also to quantify the degree of predictability in the data. Note,
the imputation task is only meaningful if the cross-validation results indicate significant pre-
dictability in the data. Here we present predictability results (cross-validation) in both species
using both CL and ML algorithms at binary and weighted levels. Details of link imputation will
be presented in a subsequent publication.

Network Predictability in the Macaque and Mouse

Binary link prediction. The scores score (u, v) generated by the CL algorithm for every node pair
(u, v) are based on formulas that express various types of network information. These formulas,
used typically in social networks, provide summations over nodes with incoming links from
both u and v. Since retrograde tracing data only reveal the incoming links to the target areas,
the predictor formulas must be modified accordingly (see Materials and Methods). In the case
of ML classifiers, we need to specify the feature vectors.

k-fold cross-validation:
It is a random resampling procedure
that separates the same dataset into
testing and training sets, evaluating
the model on each split, repeating
the procedure, then reporting the
statistics of the performance on all
the splits used.

MAE:
The mean absolute error between the
predicted quantity and its ground
truth value.

RMAE:
Relative mean absolute error is the
MAE divided by the ground-truth
value.

1 The training of ML predictors may be sensitive to the order in which the training data is supplied.
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Figure 2 shows the macaque ROC curves for four ML classifiers (solid lines) based on full
information, that is, feature vectors composed of both FLN values and distances (see Table 3)
for details. We have tested several combinations of data for feature vectors and found the
results to be inferior to those based on full information (Supporting Information Figures S1–
S5). We also tested other classifiers, including DecisionTree, AdaBoost, and NaïveBayes,
but they performed worse than those shown here. It is clear that with the exception of JA (mod-
ified Jaccard), the CL predictors do not perform as well as the four ML classifiers. The ML clas-
sifiers were tested against overfitting (Supporting Information Figures S6 and S7 show the case
of the MLP). They were also tested using different k values for the number of folds (Supporting
Information Figure S8). The approximately 80% AUC obtained consistently by the top per-
forming classifiers indicates high predictability embedded in the macaque interareal network,
suggesting the existence of architectural invariants and corresponding mechanisms (Figure 2).
This analysis cannot be applied to the mouse dataset, (see the ROC curves in the Supporting
Information Figure S9) due to its ultra-high connectivity density of 97%, which causes a strong
bias (because the classifiers have only 3% true negatives to learn from). This implies that only
weighted predictions can be made in the mouse brain, as presented in the next section.

Figure 3 shows individual link prediction errors in the macaque data for all the links with a
corresponding ground truth value (lighter colors correspond to smaller errors). A prediction
(link existing/1 or not/0) was obtained for every k-fold run in all area pairs i, averaged over
100 randomized k-fold run predictions, generating a prediction hypred(i)i. The error is calcu-
lated via error(i) = |ytrue(i) − hypred(i)i|, where ytrue(i ) 2 {0, 1} is the true binary link value.

The inset in Figure 3A is a matrix of link prediction error heterogeneity by cortical brain
regions. This shows that links from the frontal to temporal regions are less predictable (bottom
row, second column), while links from frontal to cingulate (and prefrontal) are more predictable,
and so forth. In addition, links within functional regions are more predictable than between

Figure 2. ROC curves for binary link prediction in the macaque. Dashed lines are from CL pre-
dictors: CN = common neighbors, PA = preferential attachment, AA = Adamic-Adar, RA = resource
allocation, JA = Jaccard index. The continuous lines are from the four best ML classifiers, based on
the full FLN-plus-distance feature vectors: KNN = k-nearest neighbors, MLP = multilayer percep-
tron, RF = random forest, GB = gradient boosting, using k-fold cross-validation, with k = 3. The
markers indicate the location of the maximum accuracy thresholds.
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regions (main diagonal of the small matrix). This suggests that predictability is possibly distance
and thus weight dependent, since from EDR, we know that short/long connections are prepon-
derantly strong/weak. Figure 3B and C show how prediction errors behave as a function of link
weights and distance, demonstrating the action of a distance rule on predictability. In order to
disentangle the effects of distance/weight, we examined predictions based only on links of certain
strengths: Strong, wij ≥ 5; Medium-&-Strong, wij ≥ 3; Medium-&-Weak, wij ≤ 5, and Weak,wij ≤
3. In one analysis, we consider the data only within one weight class and measure the predict-
ability within that class. This is presented in Figure 4, clearly showing that weak links are not
predictable at the binary level (panel D), that is, the weak (mostly long-range) links carry no infor-
mation about each other. This is a significant observation that we revisit below, in our weighted
prediction analysis. The maximum binary predictability is within the Strong-&-Medium group.
The somewhat weaker predictability of the Strong group is possibly due to it being the smallest
and the existence of some strong links with high unpredictability (red circles in Figure 3A) within
this group, note V4→ 8l is part of a strong loop (Markov et al., 2013b, 2013c; Vezoli et al., 2021).

We obtain the same conclusion if, after training the models within one weight class only,
we predict all links in the test set, irrespective of their ground truth weight class, then decom-
pose the predictions by ground truth weight classes (see Supporting Information Figure S10).

Figure 3. Binary prediction heterogeneity in the macaque brain. (A) Prediction error matrix for all known links (3-fold cross-validation) gen-
erated by gradient boosting (GB). Vertical lines within the main diagonal boxes, separate targets (to the left of the line) from noninjected areas
(to the right of the line). Red circles indicate strong links (with weights > 5) with high prediction errors (� > 0.5). Along with their weights w and
their errors �, these are: V6 → DP (w = 5.3, � = 0.80), V4 → 8l (w = 5.1, � = 0.72), 25 → 10 (w = 5.2, � = 0.66), V6A → 9/46d (w = 5.3, � =
0.65), TEa/mp → 9/46v (w = 5.3, � = 0.65), MIP → 7B (w = 5.9, � = 0.58), 7m → 7B (w = 5.3, � = 0.57), DP → 7m (w = 5.1, � = 0.52) and V6A
→ DP (w = 5.6, � = 0.52). Inset matrix shows interregional errors obtained by averaging errors within submatrices corresponding to cortical
lobes. (B) Prediction errors as function of link weights and (C) as function of link projection distance. The vertical line in panel B at 0 are all the
node pairs for which the prediction was nonlink, while panel C contains all links and all nonlinks. The orange shaded areas in B and C
represent one standard deviation from the average (orange line). The definition of error measure is given in the main text. Area abbreviations
with corresponding area names and region assignments are provided in the Supporting Information Table S1.
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Weighted link prediction and comparisons between mouse and macaque. In order to predict link
weights, we turn to supervised regression methods. This excludes CL algorithms as they are
designed uniquely for binary link predictions. Since all our ML classifiers are available as
regression algorithms as well, they can be used for weighted link prediction. The same feature
vectors are used but the ground truth now is the actual link weight, wtrue. To evaluate the per-
formance and the amount of predictability inherent in the network we employ the same k-fold
cross-validation scheme, but the performance metric has to be modified (there are no ROC
curves in weighted link prediction). One could use the mean absolute error (MAE) obtained
as the absolute value of the difference between the predicted and the actual weight |Δw| =
|wpred − wtrue|, averaged over the 100 k-fold predictions; however, since FLN values vary over
orders of magnitude, the MAE of a weak link is not easily comparable to that of a strong link.
To take this into account, we use the relative MAE (RMAE), which is the MAE divided by the
ground truth strength of the predicted link, |Δw|/wtrue. Thus, the RMAE value is the fraction of
the link weight that is not predicted. For example, an RMAE of 0.2 means that 80% of the link
weight w was predicted and 20% was not. An RMAE of 2 reflects an error of 200% compared
to the true link strength. Similar to binary prediction, when comparing the performance of
several classifiers, GB, KNN, MLP, RF (see Materials and Methods for abbreviations) emerge
as the four top predictors.

Regressors work by minimizing a cost function (such as the root-mean-square error RMSE)
over the training set, when finding the best fitting model, which in turn is used to predict the
test set. Analysis of prediction residuals provides both an efficient test of the capacity of the
predictor to capture the signal part of the data as well as a means of ranking performance. This
analysis shows that GB performs somewhat better compared to RF, MLP, or KNN. Supporting
Information Figure S11 shows the results from the analysis of the prediction residuals for the

Figure 4. Binary predictability within link weight classes in the macaque. Predictability within
only (A) Strong links wij ≥ 5 (359 links), (B) Strong-&-Medium wij ≥ 3 (1,164 links), (C) Medium-
&-Weak wij ≤ 5 (2,251 links), and (D) Weak links wij ≤ 3 (1,446 links). The AUC values and errors in
panel A: KNN (0.65 ± 0.02), MLP (0.75 ± 0.04), RF (0.75 ± 0.03), GB (0.72 ± 0.03), JA (0.69 ± 0.03);
in B: KNN (0.78 ± 0.03), MLP (0.81 ± 0.04), RF (0.81 ± 0.03), GB (0.81 ± 0.03), JA (0.83 ± 0.02); in
C: KNN (0.65 ± 0.03), MLP (0.63 ± 0.05), RF (0.65 ± 0.03), GB (0.63 ± 0.03), JA (0.59 ± 0.04); in
D: KNN (0.45 ± 0.03), MLP (0.50 ± 0.06), RF (0.46 ± 0.03), GB (0.47 ± 0.03), JA (0.55 ± 0.02).

Regression:
The task of predicting the numerical
value of a dependent variable using
information on some independent
variables.
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GB algorithm. A featureless scatter plot of the residuals versus predicted values, as shown in
Supporting Information Figure S11C, indicates that the signal portion of the data has been well
learned by the predictor. For simplicity, in the following we show predictions based only on
GB. Figure 5A and B show the prediction error (RMAE) matrices for both the macaque and
mouse. Note the strong similarity of the patterns between Figure 5A and Figure 3A for the
macaque. At the weighted level as well, some links are more predictable than others. The
matrices at the regional level (Figure 5C and D) also show heterogeneity: for example, across
species, temporal to occipital is highly predictable, whereas occipital to frontal is less so.
Globally, the mouse network appears more predictable than the macaque (overall lighter
matrices for the mouse).

This is further demonstrated in Figure 6, where we plot RMAE values as function of link
weight and as function of link projection lengths (distance). While in both species weaker links
are harder to predict, comparing Figure 6A to, C we see that the medium-to-strong links are
much more predictable in the mouse than in the macaque, but the situation is reversed for the
weakest links. Similarly, long-range links are harder to predict in both species than shorter
ones. Overall, weighted links are more predictable in the mouse than in macaque.

Figure 5. Prediction error heterogeneity for link weights. (A) Weight prediction error (defined as relative mean absolute error, RMAE) matrix
for all known links with 3-fold cross-validation, in the macaque, generated by GB and (B) in the mouse. The vertical lines within the main
diagonal boxes, separate targets (to the left of the line) from noninjected areas (to the right of the line). (C) interregional error matrix for the
macaque (averaged from the matrix in A) and (D) for the mouse (averaged from the matrix in B). For nonlinks, the RMAE was calculated using
the lowest statistically acceptable FLN value of 8 × 10−7 for the ground truth value (corresponding to a weight of w = 0.9). Area abbreviations
with corresponding area names and region assignments are provided in the >Supporting Information Table S2.
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We quantify link predictability globally, and by weight classes in Table 1. Predictions
(3-fold cross-validation) were made on the full dataset (including links with nonzero weight
and also nonlinks) using the GB algorithm and errors computed and averaged within the
corresponding groups. The RMAE values in Table 1 show that unlike stronger links, weak links
are not well predicted in either species. The stronger links are in general 2-fold more predict-
able in the mouse than in the macaque. The nonlinks, however, are better predicted in the
macaque, likely due to the fact that there are only 3% nonlinks in the mouse dataset. Since
the larger errors are associated with the nonlinks, we performed the predictability analysis also
on a reduced dataset, with only actual links included (nonlinks excluded) (see Supporting

Figure 6. Weighted prediction errors as function of link strength and distance, using the prediction
data from Figure 5. (A) Relative mean absolute error RMAE versus link weight and (B) versus pro-
jection distance in the macaque for every predicted link. (C) Same as panel A, and (D) same as
panel B, for the mouse. The continuous line is the mean value, the orange shaded area corresponds
to one standard deviation. Panels do not contain data for no connections.

Table 1. Prediction errors by link weight

Nonlinks included
Macaque Mouse Mac/Mus

MAE RMAE MAE RMAE RMAE ratio

Weak (wcut < w < 3) 1.081 0.460 1.032 0.446 1.033

Weak-&-Medium (wcut < w < 5) 1.173 0.365 0.647 0.196 1.862

Medium-&-Strong (w > 3) 1.255 0.288 0.565 0.127 2.274

Strong (w > 5) 1.324 0.237 0.569 0.102 2.313

All links (w > wcut) 1.207 0.336 0.622 0.166 2.025

Nonlinks (w ≤ wcut) 1.498 1.101 2.911 2.288 0.481

Both links and nonlinks 1.318 0.628 0.683 0.222 2.829

Note. MAE = mean absolute error |Δw| = |wpred − wtrue|, RMAE = relative mean absolute error |Δw|/wtrue. For
“nonlinks” only, for the relative error, we used the estimated experimental lower cutoff value of wtrue = wcut =
0.9, corresponding to an FLN = 8 × 10−7.
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Information Table S3). Except for weak links, predictability improved in general, with mouse
links being 1.5 times more predictable than the macaque ones.

Finally, we discuss the issue of scaling of predictability with the amount of data used for
training. Here m − 1 is the size of the training set; see the Methods section “Scaling and Leave-
One-Out Analysis” for definitions and procedure description. Figure 7 shows this scaling as
function of input data set size m. An interesting conclusion is that the ML predictors learn the
structure in the data quickly for the medium-to-strong links, and the improvement after that is
relatively modest, although more significant for the weak links (the y-axis is on log-scale). See
also Supporting Information Figure S12 for another approach, leading to the same conclusion.

DISCUSSION

Using machine learning methods, we demonstrated that the network of the mammalian cortex
contains significant levels of structural predictability, further strengthening previous observa-
tions that the formation and evolution of the cortex is rule based. Moreover, our approach
allows quantifying the level of predictability in the datasets, which can be used also as a tool
for function-structure analyses and interspecies comparisons. Note that the consistent empir-
ical methodology used to generate the two retrograde tract-tracing network datasets in
macaque and mouse does allow for interspecies comparisons, using the edge-complete por-
tions of the datasets (Horvát et al., 2016).

At the binary level, predictions on the macaque dataset show that there are significant dif-
ferences in levels of predictability within the weight classes: while strong and medium links
are well predictable, weak links are not. Note that this is solely due to the way the links of
different strengths (in the 0–7 weight range) and their lengths are distributed across the network
structure. There is no a priori reason for the algorithms not to be able to predict weak links (w ≅
1) compared to strong links (w ≅ 6), given that it uses simple (0–7) weight values, which are
represented as O(1) numbers throughout the network. One can set up artificial networks in
which none of the categories are predicted well, or the performance of prediction is flipped
(weaker are predicted better and stronger are not). An example for the former is obtained by
taking the original data network and rewiring its links, obtaining the configurational model; in
this network predictability falls in all categories (see Supporting Information Figure S13B). An
example for the flip is shown in Supporting Information Figure S13C in which we use an arti-
ficial weight distribution that flips the predictability: the weak and the weak-medium links are
much better predicted than the strong. Note that the Jaccard ( JA) CL algorithm consistently

Figure 7. Scaling of prediction errors as function of input data size in a leave-one-out analysis. The
relative mean prediction errors RMAE (of weights) are computed for areas internal to a set of
m targets for both macaque (A) and mouse (B), then plotted as function of m; see the Methods
section for description. The errors are separated by link weight class. Note the logarithmic scale
on the y-axis.
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predicts badly, because it is based on a preconceived model that is no longer relevant for this
new artificial weight distribution.

Predictions at the level of link weights confirm the same conclusion as at the binary level,
but with more details and now also for the mouse. The analysis also shows that overall, com-
pared to macaque, the mouse brain is more predictable. However, the weakest connections in
the mouse (compare panels A and C in Figure 6) are less predictable than in macaque,
suggesting comparatively less specificity. One argument one could raise regarding the non-
predictability of the weak/long-range links in both species is that the experimental data on
weak links may be much noisier. However, this is not true, the consistency of the data on weak
links has been demonstrated in several analyses (Markov et al., 2011, 2013a, 2014; Gămănuţ
et al., 2018).

It is important to note that these predictability measures are all based on the features of link
weights and projection distances. Including additional, biologically relevant features such as
cell types, transcriptomic specialization, and anatomical gradients would be expected to lead
to an improved refinement of the predictability (Burt et al., 2018; Wang, 2020), including for
weak/long-range links. See further discussions in the last paragraph.

Link prediction efforts in the context of brain networks are fairly limited, but they go back to
a 1998 paper by Jouve et al. (Jouve et al., 1998) using a seminal dataset on the macaque visual
system (Felleman & Van Essen, 1991). Follow-up works appear almost a decade later
(Cannistraci et al., 2013; Chen et al., 2020; Costa et al., 2007; Hinne et al., 2017; Hoff,
2007; Nepusz et al., 2008; Røge et al., 2017; Shen et al., 2019), but all (including Jouve’s)
are based on preconceived network models using summary network statistics whose param-
eters are fitted to the data, and then used to make predictions on missing links. One problem is
that the summary statistics are obtained on incomplete datasets, which bias these statistics, a
bias which is then built into the prediction. A further possible bias is that these models are
taken from the field of social networks. Here, by comparing the performance of CL link pre-
dictors (social science inspired, model-imposed) with machine learning predictors (that learn
the structure from the data, without imposing specific models), we have shown that the latter
approach achieves significantly better predictions than most of the model-based predictors.
The Jaccard coefficient is the only successful CL predictor because its formula happens to
correlate with a property of the link weight distributions in the brain, namely the triangle
inequality. This holds for spatial networks, a property respected by the link weights of the
brain, due to the action of the EDR: if areas A and B are close to each other (strong link)
and area C is far from A (weak link), then C will also be far from B (weak link), mimicked
by the Jaccard index as well. Although, in general, it is better to have a model-based predictor
as it is based on one or more well-defined network properties responsible for good predict-
ability, one usually cannot know a priori what those properties are. It might be the case that it is
not a single, simple-to-formulate property, but a collection of complex features, that lead to
good predictions. The advantage of the ML predictors is that they learn the features for
predictability from the dataset and do make good predictions, almost independently of how
complex those features are; the disadvantage, however, is that it is very difficult to “interro-
gate” ML predictors so as to extract those features in a human-understandable format. How-
ever, it is recommended to try starting out with ML predictors as they indicate the level of
predictability inherent in the dataset. If there is a significant amount of predictability, then
one can start working toward narrowing down the features responsible for it.

Given the amount of link predictability inherent in the datasets for both species, we can
now use our ML predictors to impute all the missing connections, thus generating samples
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for the weighted FIN in both species (91 × 91 for the macaque and 47 × 47 for the mouse).
Edge-complete, full connectivity matrices are crucial when studying network/graph theoretical
properties since missing links significantly bias summary statistics, such as path-length distri-
butions, centrality measures, and even simpler summary statistics such as degree distributions
and network motifs distributions. Samples of FIN for both species have been included in the
accompanying data package.

Recall that the EDR model (Ercsey-Ravasz et al., 2013; Horvát et al., 2016; Markov et al.,
2013b; Theodoni et al., 2020), mentioned in the introduction, captures many features of the
cortical networks in both species. One may ask, what is the amount of predictability in the
EDR model, using the same distance matrix as in the data, and the empirical decay rates λ?
We find that the top predictors achieve a better performance on the EDR model networks (an
AUC of 0.86, see Supporting Information Figure S14) than on the experimental connectivity
data (an AUC of 0.80; Figure 2). This is expected, given that these networks are, by definition,
rule based, with some level of randomness (Ercsey-Ravasz et al., 2013).

Machine learning methods can be used to explore the connectome in several ways. First, as
a guide to future neuroanatomical experiments. Prediction analysis could propose optimal
injection sites based on levels of expected surprise. Second, prediction analysis can be used
to examine the known connectivity. Here, those areas for which predictions differ significantly
from the observed connections would be of particular interest, or alternatively would prompt
reexamination of the empirical data. Cases where large deviations are observed deserve close
scrutiny; they could correspond to the appearance of a novel information processing modality,
reflecting a significant evolutionary branching event in the history of the species. The fact that
long distance and therefore weak connections are systematically unpredictable is intriguing,
because anatomically we have shown that they are highly consistent across individuals
(Gămănuţ et al., 2018; Markov et al., 2013a), suggesting that such connections could have
important functions (Csermely, 2006; Granovetter, 1973), which have been largely missed
by numerous studies (Kennedy et al., 2013) and which could have relatively recent evolution-
ary origins. In particular, our finding that the weak, long-range links are not predictable based
on distances and weights alone is consistent with earlier observations that in-link similarity, in
terms of shared inputs of two targets, decreases with increasing distance between the two tar-
get areas (Horvát et al., 2016; Markov et al., 2013a) both for macaque and also for mouse
(Horvát et al., 2016). The in-link similarity index measures the degree to which two target areas
receive input or avoid receiving input from common sources. This is consistent with the find-
ings here, namely that compared to macaque there is slightly more predictability of long-range
links in the mouse (Figure 5B and D). The globally greater predictability in mouse compared to
macaque, could imply a greater degree of gradualism in the evolution of rodents compared to
primates (Gould & Eldredge, 1977). When the similarity indices are overlayed between the
two species on the same plot, as a function of rescaled distance (by the average interareal
distance in the respective species) one finds strong overlap up to medium distances, after
which the plots deviate, as shown in Horvát et al. (2016). Another piece of evidence is the
comparison of the decay of the probability of extrinsic (to the target area) connections (when
injecting into target V1) with rescaled distance (by the average interareal distance) between
three species, namely, macaque, mouse, and microcebus, also shown in Horvát et al. (2016).
These histograms strongly overlap up to medium distances, clearly following the EDR, after
which they separate in their own ways. This is again, consistent with the machine learning
observations presented here. Good predictability of the long-range/weaker connections thus
requires additional information, the nature of which is an open question. An important impli-
cation of these observations is that there are common building blocks/motifs and cortical
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network similarities between mammals from local to midrange distance scales (also indicated
by strong adherence to EDR in this range), followed by species and/or individual dependent
deviations at longer distances. One could then speculate that major aspects of diverse behav-
ioral traits, including intelligence, are encoded in the long-range connectivity of the connec-
tome (Wiesel, 1982).

MATERIALS AND METHODS

Data Preprocessing

In order to use the available input data, it needs to be organized in a format appropriate for the
prediction algorithms. To generate the weights we compute the base-10 logarithm of all the
nonzero entries of the FLN matrix (Markov et al., 2013b) (which range in order of magnitude
from 10−7 to 1) then shift them by 7: wij = 7 + log10(FLNij). The zero entries are left as zeroes.
The resulting matrix has values between 0 and 7 (in both species) with 0 entries corresponding
to nonlinks (i.e., nonconnected node pairs and elements on the main diagonal), the rest to
actual links. The largest macaque distance is Dmax = 58.2 mm and for mouse is 12 mm.
For both species, the distance feature matrix Df = {31 · (Dij/Dmax)} with values ranging
from 0 to 312.

Software Packages

For this work we used Python 3.7 and SciKit-Learn version 0.20.2. The computation of the ML
and CL predictors, cross-validation, and analysis of the results were implemented in Python.
General calculations and plotting functions are utilizing the standard packages of NumPy and
Matplotlib.

Classical link predictor formulas. Since we do not have incoming links except for injected areas,
we need to modify slightly the predictor formulas as shown in Table 2.

Machine learning classifiers and predictors. All the classifiers used are implemented in the
Python package scikit-learn; “defaults” refer to those parameters provided in version 0.20.2
of the library. We list the other parameters used for each classifier below.

• K-nearest neighbors (KNN): n_neighbors = 5, leaf = 30
• Decision tree (DT): defaults
• Random forest (RF): n_estimators = 200, criterion = ’gini’
• Multilayer perceptron (MLP): hidden layer size: 100, convergence error tolerance: 10−6,

max iterations: 20
• Gradient boosting (GB): n_estimators = 100 (default), which is the number of boosting

stages to perform. GB is robust to overfitting and larger values typically yield better per-
formance. Max_depth = 7 (not default). This is the maximum depth of the individual
regression estimators. It limits the number of vertices in the tree.

• AdaBoost (ADA): defaults
• Naïve Bayes (NBA): defaults

Feature Vectors

Here we summarize the feature vectors that we used to train and test the classifiers. In each
feature function in Table 3, the link in question is (u, v); A denotes the weight matrix; D

2 This value gives a good resolution on the distance range, but other similar values can also be used.
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denotes the distance matrix; d(x) denotes the outdegree of node x in I; and I denotes the set of
injected areas (nodes) in the training set. Notice that the feature vectors have various lengths,
as some provide more information than others.

Scaling and Leave-One-Out Analysis

We consider a random subset M of m target areas, leave one target area out (of this m), then
make the prediction for the out-links of the excluded area, based on the links of the remaining
m − 1 areas in M. We repeat this exclusion/prediction for every member of M, obtaining a
prediction error for each. These are then compared with the ground truth and the relative error
computed, which we call internal relative error (internal to the selected subset M). We then
repeat this random selection of m subsets 500 times and average the internal errors.

Table 3. Machine learning feature functions used to train our classifiers

Feature Formula
Weighted_common_neighbors (sum of FLN weights of links from source areas
u and v to target i )

P
i2I [A(i, u) + A(i, v)]

Degree_plus_distance {d(u), d(v), D(u, v)}

Adjacency {A(i, u) > 0, A(i, v) > 0|∀i 2 I}

Outdistance_source (vector of distances from source area u to the injected areas I ) {D(i, u)|∀i 2 I}

Outdistance_target (vector of distances from the target area v to the injected areas I ) {D(i, v)|∀i 2 I}

Outdistance (vector of distances from areas u and v to the injected areas I ) {D(i, u), D(i, v)|∀i 2 I}

FLN {A(i, u), A(i, v)|∀i 2 I}

FLN_plus_distance {A(i, u), A(i, v)|∀i 2 I} ∪ {D(u, v)}

Table 2. Classical, neighborhood-based link predictors for directed and weighted networks

Method (abbreviation) Formula

Common neighbors v2 (CN2) CN2(u, v) =
1
2

X
z2I

[w(z, u) + w(z, v)]

Preferential attachment (PA2) PA2(u, v) =

P
z2Γo uð Þw z; uð Þ

Γo uð Þj j
� � P

z2Γo vð Þw z; vð Þ
Γo vð Þj j

� �

Adamic-Adar v2 (AA2) AA2(u, v) =
1
2

X
z2I

w z; uð Þ þw z; vð Þ
log
P

x2Γo zð Þw x; zð Þ

 !

Resource allocation v2 (RA2) RA2(u, v) =
X
z2I

w z; uð Þ þw z; vð ÞP
x2Γo zð Þw x; zð Þ

Jaccard v2 ( JA2) JA2(u, v) =

P
z2I min w z; uð Þ;w z; vð Þð ÞP
z2I max w z; uð Þ;w z; vð Þð Þ

Note. The formulas have been adapted to be based on the out-link neighborhood information of the endpoints
(u, v) of the directed link to be predicted. Each formula provides a prediction score s(u, v) for that directed link.
Here I denotes the set of all target (injected) areas and Γ0(u) denotes the neighbors of u, including itself.
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