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1  |  INTRODUC TION

Aging is a complex process resulting in decline in functions of tis-
sues/organs. This event is driven by a variety of intrinsic and extrinsic 
factors, such as DNA damage accumulation (d’Adda di Fagagna, 2008), 
shortened telomeres (Olovnikov, 1996), mitochondrial dysfunction 
(Wiley et al., 2016), and exposure to other environmental stressors 
(Kammeyer & Luiten, 2015). These factors direct the cells to enter 
a state of irreversible growth arrest known as senescence (Colavitti 
& Finkel, 2005; Coppé et al., 2008). Although senescent cells are no 

longer able to divide, they remain metabolically active and can se-
crete a mixture of molecules known as senescence-associated secre-
tory phenotype (SASP) that contribute to inflammation via autocrine 
and paracrine mechanisms (Rodier et al., 2009).

Skin, primarily comprising the epidermis and the dermis, serves 
as a physical barrier protecting the body from external insults. The 
epidermis, a stratified squamous epithelium, is mainly composed of 
keratinocytes, melanocytes, and Langerhans cells (Liu et al., 2021; 
Tang et al., 2020). Situated beneath the epidermis, the dermis plays 
a crucial role in structure and function. It contains an abundant 
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Abstract
Skin aging is characterized by changes in its structural, cellular, and molecular com-
ponents in both the epidermis and dermis. Dermal aging is distinguished by reduced 
dermal thickness, increased wrinkles, and a sagging appearance. Due to intrinsic or 
extrinsic factors, accumulation of excessive reactive oxygen species (ROS) triggers a 
series of aging events, including imbalanced extracellular matrix (ECM) homeostasis, 
accumulation of senescent fibroblasts, loss of cell identity, and chronic inflammation 
mediated by senescence-associated secretory phenotype (SASP). These events are 
regulated by signaling pathways, such as nuclear factor erythroid 2-related factor 
2 (Nrf2), mechanistic target of rapamycin (mTOR), transforming growth factor beta 
(TGF-β), and insulin-like growth factor 1 (IGF-1). Senescent fibroblasts can induce and 
accelerate age-related dysfunction of other skin cells and may even cause systemic 
inflammation. In this review, we summarize the role of dermal fibroblasts in cutane-
ous aging and inflammation. Moreover, the underlying mechanisms by which dermal 
fibroblasts influence cutaneous aging and inflammation are also discussed.
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extracellular matrix (ECM) produced by fibroblasts and houses 
various cell types due to its diverse structures, including vascula-
ture, nerves, sweat glands (Hosseini et al., 2022; Weng et al., 2020) 
(Figure 1). Constantly exposed to external insults, the skin under-
goes significant changes through our lifetime that differentiate 
the skin of a child from that of an older adult. These changes are 
caused by a combination of intrinsic aging, also known as chrono-
logical aging, and extrinsic aging induced by environmental factors, 
including air pollution, poor nutrition, smoking, and ultraviolet (UV) 
light. Both epidermal keratinocyte and dermal fibroblast senescence 
contribute to the skin aging (Fitsiou et al., 2021; Gruber et al., 2020; 
Wang et al., 2020). The role of keratinocytes in aging and inflamma-
tion has been well summarized by others (Wang et al., 2020). In this 
review, we focus on the dermal fibroblasts in skin aging and propose 
the crucial role of dermal fibroblasts in inflammation.

2  |  MECHANISMS OF DERMAL AGING

2.1  |  Excessive ROS, a driving force of dermal aging

Skin aging involves the intricate interplay of various mechanisms 
and multiple causal processes, such as nuclear DNA damage (García-
Beccaria et al., 2014; Rodier et al., 2009), generation of excessive re-
active oxygen species (ROS), and mitochondria dysfunction (Kaneko 
et al., 2012; Krutmann & Schroeder, 2009; Yang et al., 1995). Among 
these mechanisms, the oxidative stress theory holds a prominent posi-
tion, which emphasizes ROS as driving force of aging. ROS, also known 
as free radicals or oxidants, possess diverse properties and biological 
functions, ranging from oxidative metabolism to cell signaling (Ray 
et al., 2012; Sies & Jones, 2020). Under normal physiological condi-
tions, ROS are generated as natural byproducts of cell metabolism. 
However, as we age, ROS assume a dual role, acting as both primary 
triggers and critical consequences of skin aging. Intrinsic factors such 
as mitochondrial dysfunction (Sreedhar et al., 2020), along with ex-
ternal factors like UV radiation (Chaiprasongsuk & Panich, 2022), and 
other stressors, synergistically augment ROS production and retard 
ROS removal by antioxidants. Overtime, the accumulation of ROS 
proceeds to oxidize lipids, nucleic acids, proteins, and organelles, lead-
ing to the cell and tissue dysfunction (Lee & Wei, 2001; Rinnerthaler 
et al., 2015). It is worth noting that a vicious circle exists between 
oxidative stress and inflammation during aging. ROS serve as signal-
ing molecules that trigger inflammatory responses, and inflammatory 
cytokines and chemokines in turn generate more ROS and free radicals 
(Kammeyer & Luiten, 2015; Zinovkin et al., 2022).

The pathogenic role of accumulated ROS in chronological aging 
(Papaccio et al., 2022; Poljšak et al., 2012; Tu & Quan, 2016) is sup-
ported by a significant increase in ROS levels in aged human fibro-
blasts	in	vitro	(Kozieł	et	al.,	2011) and in aged rat skin in vivo (Tahara 
et al., 2001). In addition, a line of evidence also supports the role 
of excessive ROS in skin photoaging in vitro and in vivo (Jurkiewicz 
& Buettner, 1996; Li et al., 2018; Masaki et al., 1995; Yasui & 
Sakurai, 2000). In addition, inhibition of ROS production in these 

cells reduces the number of cells entering cell-cycle arrest (Cavinato 
et al., 2017). The driving force of ROS in skin aging and fibroblast 
senescence is evident in a mouse model with fibroblast specific 
superoxide dismutase-2 (SOD2) deficiency, where mitochondrial 
superoxide anions accumulate in fibroblasts. Selective SOD2 de-
ficiency results in a severe and accelerated skin aging phenotype, 
characterized by reduced collagen and dermal thickness, diminished 
resilience, enhanced DNA damage, and accumulation of senescent 
fibroblasts (Weyemi et al., 2012). Excessive ROS in fibroblasts can 
activate several signaling pathways, including mitogen-activated 
protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB), TGF-β, and mTOR, leading to the ac-
cumulation of senescent fibroblasts, induction of chronic inflamma-
tion, and disruption of ECM homeostasis (Ansary et al., 2021; Bang 
et al., 2021; Chen et al., 2022; Gu et al., 2020).

2.2  |  Role of senescent dermal fibroblasts in 
skin aging

Senescence inducers, including stressors (ROS, DNA damage, irra-
diation), telomere attrition, and mitochondria dysfunction, increase 
the activity of cyclin-dependent kinases (CDK) inhibitor proteins, 
resulting in cell-cycle arrest. In comparison with young skin (18–
29 year),	the	total	number	of	fibroblasts	is	reduced	by	approximately	
35% in aged skin (>80 year)	(Varani	et	al.,	2000), while the number of 
senescent fibroblasts is increased with age, as evidenced by a signifi-
cant increase in p16INK4a positive cells (a senescent cell marker that 
encodes an inhibitor of CDK4/6) in the dermis of the aged human 
skin (Ogata et al., 2021; Ressler et al., 2006; Waaijer et al., 2012). 
The number of p16INK4a positive cells is also correlated with wrinkle 
formation and elastic morphological changes (Waaijer et al., 2016). 
Other classical senescence biomarkers, such as p21CIP1, p53, and 
β-galactosidase (SA-β-gal), are upregulated, and lamin B1 is down-
regulated in aged or UV-irradiated fibroblasts (Chen et al., 2008; 
Dimri et al., 1995; McCart et al., 2017; Ravelojaona et al., 2009; 
Wang et al., 2017). Like other senescent cells, senescent fibroblasts 
also experience proliferation arrest, yet remain viable due to their 
low propensity for apoptosis and inefficient removal by the im-
mune system, causing them to persist in the stroma. An excessive 
buildup of senescence fibroblasts contributes significantly to skin 
aging, as these fibroblasts display loss of cell identity (Solé-Boldo 
et al., 2020; Salzer et al., 2018; Zou et al., 2021), enhanced release of 
SASP (Rodier et al., 2009; Waldera-Lupa et al., 2014), and dysfunc-
tion of ECM homeostasis (Treiber et al., 2011; Wlaschek et al., 2021) 
(Figure 2). Consequently, senescence spreads from cells to cells, 
fueling the process of dermal aging (da Silva et al., 2019).

2.3  |  Dermal SASP in skin aging

SASP refers to a mixture of molecules (including cytokines, matrix 
metalloproteinases(MMPs), miRNAs, chemokines, growth factors, and 
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small-molecule metabolites) released by senescent cells, which have 
immunoregulatory effects and impact the proliferation and motility 
of non-senescent cells. Proteins that are involved in matrix degrada-
tion (MMP1, MMP3, MMP10, MMP14, etc.) and proinflammatory 
processes, such as interleukin-1β (IL-1β), IL-8, IL-15, interferon gamma 
(IFNγ) have been found in both skin aging-associated protein (SAASP) 
and canonical SASP, suggesting shared senescent traits across dif-
ferent tissue contexts (Waldera Lupa et al., 2015). Moreover, unique 
expression patterns of proteins related to metabolism and adherence 
junction interactions were found in SAASP (Waldera Lupa et al., 2015). 
Epilipomics have revealed the presence of SASP lipids in aged dermal 
fibroblasts, with lysophosphatidylcholines as a pleiotropic factor that 
can elicit chemokine release in non-senescent fibroblasts and inter-
fere with macrophage activity (Narzt et al., 2021).

2.4  |  Inflammatory factors in SASP bridges 
inflammatory communication between cells

The inflammatory factors in SASP play a dual role in cellular senes-
cence. In an autocrine manner, they reinforce the senescence and 
inflammatory state of fibroblast themselves (Acosta et al., 2008; 

Kumar et al., 1992; Wlaschek et al., 1994). Simultaneously, they 
can act in a paracrine manner to induce inflammatory response 
in surrounding cells (Acosta et al., 2013; Ghosh & Capell, 2016; 
Wlaschek et al., 2021). Senescent human dermal fibroblasts pro-
duce extracellular vesicles (EVs) which are less supportive for ke-
ratinocyte differentiation and barrier function, but contain higher 
levels of IL-6 compared to EVs from young dermal fibroblasts 
(Choi et al., 2020). SASP cytokines and chemokines, such as IL-1, 
IL-8, and tumor necrosis factor alpha (TNFα), attract immune cells 
like macrophages, neutrophils, and T cells. SASP secreted by se-
nescent fibroblasts can hinder macrophage-dependent clearance 
and potentiate further accumulation of senescent cells (Ogata 
et al., 2021). Thus, SASP can act as a bridge between fibroblasts 
and other skin cells during aging. The classical transcription fac-
tors controlling SASP secretion include p53, NF-κB, CCAAT/
enhancer-binding protein beta (C/EBPβ), Janus kinase-signal 
transducer and activator of transcription (JAK–STAT), and GATA 
binding protein 4 (GATA4) (Huggins et al., 2013; Kang et al., 2015; 
Salminen et al., 2012; Xu et al., 2015). Dermal fibroblasts modulate 
SASP secretion and senescence phenotypes via signaling path-
ways, such as Nrf2, mTOR, TGF-β, and IGF-1 (Figure 2), which will 
be discussed later.

F I G U R E  1 Schematic	representation	of	dermal	fibroblasts	as	a	crucial	amplifier	in	skin	aging	and	inflammation.	Aged	skin	is	characterized	
by a dysfunctional epidermal barrier, thinner dermis, accumulated senescent fibroblasts, excessive immune cells, and fragmented ECM 
components. Chronological changes in cutaneous functions and external stressors induce skin cells such as keratinocytes and melanocytes 
to initiate skin senescence. Fibroblasts can receive aging signals through paracrine resources, such as neighboring cells like keratinocytes 
and melanocytes, or through autocrine secretion of SASP induced by intrinsic or extrinsic factors. Senescent fibroblasts play a key role 
in exacerbating cutaneous aging and amplifying inflammation by producing cytokines, chemokines, and other factors. This attracts and 
activates immune cells, leading to inflammation not only in the skin but also potentially in other parts of the body.
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2.5  |  ECM-modifying enzymes in SASP impair ECM 
homeostasis

Aged dermis exhibits prominent clinical features, including de-
creased dermis thickness, reduced resilience, and mechanical force 
with wrinkled and flabby appearance (Farage et al., 2008). These 
changes are related to the loss of ECM components during aging, 
due to a reduced synthesis and enhanced degradation of ECM in 
aged fibroblasts (Autio et al., 1994; Varani et al., 2006). SASP com-
ponents like MMPs, which can directly cleavage collagen fibrils, play 
a significant role in ECM degradation during aging. Previous studies 
have shown that the levels of MMPs, including MMP1, MMP2, and 
MMP9, are increased in the aged dermis and cultured fibroblasts 
derived from aged participants (Qin et al., 2017; Quan et al., 2013). 
Overexpression of hMMP1 induces aging phenotypes in ex vivo 3D 
human skin organ culture (Xia et al., 2013) and in vivo mice model 
(Quan et al., 2023). Additionally, the elevated levels of MMPs are 
paralleled by a reduction of tissue inhibitors of MMPs (TIMPs) in the 
aged skin, leading to an imbalance of MMPs/TIMPs and progressive 
collagen fragmentation (Yokose et al., 2012). TIMP-1 overexpression 
protects ECM against degradation and elasticity reduction induced 
by chronic UVB exposure, while the TIMP-1 neutralizing antibody 

acts in an opposite way (Yokose et al., 2012). Besides, fibroblasts 
of the aged skin decrease the production of ECM, especially the 
major collagen network components, such as collagen type I and III 
(Brinckmann et al., 1995; Lovell et al., 1987). This process is primarily 
a result of the reduction in TGF-β signaling, which will be discussed 
in detail later.

3  |  KE Y SIGNALING PATHWAYS 
INVOLVED IN DERMAL FIBROBL A ST 
SENESCENCE

Several signaling pathways are involved in the dermal aging. First, 
oxidative stress has long been recognized as a key regulator of aging 
process. Activation of Nrf2 increases the expression of antioxida-
tion-related factors, such as heme oxygenase 1 (HO-1), NAD(P)
H quinone dehydrogenase 1 (NQO1), and superoxide dismutase 
(SOD), to protect against oxidative stress burden and inflammation 
(Figure 2). Nrf2 activity is reduced during photoaging and chrono-
logical aging of human fibroblasts (Kapeta et al., 2010) and murine 
fibroblasts (Jódar et al., 2011), while silencing of Nrf2 induces pre-
mature aging (Kapeta et al., 2010). Accordingly, enhancement of 

F I G U R E  2 Extracellular	and	intracellular	alterations	occur	during	dermal	aging.	Intrinsic	and	extrinsic	factors	induce	alterations	in	
age-related pathways in dermal fibroblasts, including Nrf2 signaling, TGF-β signaling, IGF-1 signaling, and mTOR signaling. Additionally, 
an upregulation of senescence markers and loss of cell identity are also evident during fibroblast aging. The senescent fibroblasts secrete 
multiple SASP factors that contribute to inflammatory response and ECM dysregulation.
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Nrf2 signaling can attenuate aging and inflammation in dermal fibro-
blasts (Guo et al., 2022; Hseu et al., 2019; Lee et al., 2022; Sklirou 
et al., 2017). Thus, downregulation of Nrf2 signaling pathway can 
contribute to dermal aging.

Second, multiple studies indicate the pivotal role of TGF-β in 
dermal aging (Figure 2). Physiologically, aged dermis exhibits lower 
content of ECM (de Bengy et al., 2022; Fisher et al., 1996). TGF-β 
signaling can enhance ECM gene expression (collagens, fibronectin, 
decorin, versican), while inhibiting ECM degradation by downreg-
ulation of MMPs and upregulation of TIMPs (Quan & Fisher, 2015; 
Verrecchia et al., 2001). Either oxidative stress (He et al., 2014) or 
UV irradiation (Quan et al., 2004) impairs TGF-β signaling path-
way in fibroblasts, resulting in decreased expression of down-
stream targets, including connective tissue growth factor (CTGF/
CCN2) and type I collagen (He et al., 2014; Quan et al., 2004, 
2010). Knockdown of TβRII (Quan et al., 2004) or Smad3 (Purohit 
et al., 2016) impairs collagen synthesis while overexpression of 
TβRII rescues UV-induced loss of collagen via activation of TGF-β 
signaling. Impaired TGF-β signaling alters expression levels of CCN1 
in dermal fibroblasts of mice, resembling aged skin manifested by 
wrinkled appearance and disruption of collagen network (Quan 
et al., 2021). In addition, reduced fibroblast size, a characteristic of 
dermal fibroblasts in the aged skin, is associated with reduced ex-
pression levels of TβRII and diminished ECM production in the aged 
human skin (Fisher et al., 2016). Hence, abrogated TGF-β signaling 
pathway is associated dermal aging.

Moreover, evidence also suggests the involvement of IGF-1 sig-
naling pathway in dermal aging (Figure 2). IGF-1 signaling begins with 
the phosphorylation of IGF-1Rβ, followed by a series of activation 
of downstream pathways such as PI3K/AKT/p70S6K or Ras/Raf/
MEK/ERK, to regulate cell cycle and protein biosynthesis (Hakuno 
& Takahashi, 2018; Salminen & Kaarniranta, 2010). IGF-1 pathway 
can be deregulated by age-associated superoxide anion accumula-
tion, leading to limited fibroblast proliferation and collagen deposi-
tion (Singh et al., 2015). Transcription factor JunB-induced inhibition 
of IGF-1 promotor activation decreases the levels of IGF-1 and its 
downstream PI3K/AKT pathway effectors, resulting in disruption of 
the metabolic and structural niches of skin stem cells, consequently 
leading to exacerbation of skin aging (Maity et al., 2021). Aging-
related reduction in circulating IGF-1 levels and impaired IGF-1 sig-
naling likely contribute to the atrophy of skin, muscle, and bone in 
the elderly (Gallagher & LeRoith, 2011). However, long-term treat-
ment of primary human skin fibroblasts with IGF-1 induces a prema-
ture senescence phenotype (Nagaraj et al., 2022; Tran et al., 2014). 
Thus, further studies are needed to elucidate the role of IGF-1 sig-
naling in dermal aging.

Additionally, the contribution of mTOR signaling pathway to der-
mal aging has been well appreciated because of its regulatory role in 
cellular metabolism and autophagy (Figure 2). Previous study demon-
strated that activation of autophagy promotes the degradation of 
oxidized metabolites and inhibition of photoaging via inhibition of 
PI3K/AKT/mTORC1 signaling (Chen et al., 2022; Wang et al., 2019). 
In contrast, loss of autophagy or upregulation of mTOR signaling 

contributes to photoaging (Chen et al., 2022; Lim et al., 2020; Wang 
et al., 2019). Moreover, mTOR can also suppress SASP produc-
tion via MAPKAPK2 translation in oncogene-induced senescence 
(OIS) (Herranz et al., 2015). Treatment with pan-mTOR inhibitor, 
AZD8055, can modify the senescence phenotypes in skin fibro-
blasts (Walters et al., 2016). Similarly, the mTOR inhibitor Rapamycin 
can decrease the expression p16INK4a and ameliorate SASP secretion 
in senescent fibroblasts, and lead to visible improvement in aging 
skin appearance (Chung et al., 2019; Herranz et al., 2015; Laberge 
et al., 2015). Therefore, dermal aging is linked to activation of mTOR 
signaling pathway. Inhibition of mTOR signaling pathway can exhibit 
antiaging benefit.

4  |  DERMAL FIBROBL A STS A S A 
POTENTIAL AMPLIFIER TO SKIN AGING 
AND INFL AMMATION

Chronological changes in cutaneous functions and external stress-
ors induce telomere attrition, ROS accumulation, DNA damage, 
and mitochondrial dysfunction in dermal fibroblasts, resulting in 
diverse forms of senescence (Franco et al., 2022). Senescent fi-
broblasts exhibit irreversible cell-cycle arrest and release SASP, 
which distinguishes them from other non-proliferative cells. SASP, 
comprised of various components, plays multiple roles in aging. It 
builds up chronic inflammation through cytokines and chemokines, 
impairs proliferation by disrupting the release of growth factors, 
and remodels the ECM through enhanced activation of proteolytic 
enzymes (Wlaschek et al., 2021). SASP is not only a byproduct of 
senescent fibroblasts, but it also serves as a messenger to reinforce 
senescence in both paracrine and autocrine manners (Ghosh & 
Capell, 2016; Tasdemir & Lowe, 2013; Wlaschek et al., 2021). The 
cascading effects of stress, senescence, and SASP signaling in fi-
broblasts might contribute to the development of aging-associated 
cutaneous abnormalities, including wrinkles, loss of volume, and 
elasticity of collagen (Imokawa, 2009; Shuster et al., 1975) impaired 
wound healing (Mahmoudi et al., 2019; Thanapaul et al., 2022), and 
might related to the increased risk of inflammatory dermatoses in 
the elderly (Wang et al., 2020).

The age-related cutaneous dysfunction could serve as an initiator 
of inflammation, while the development and sustained inflammation 
during skin aging is resultant from a coordinated effort among various 
skin cells, including keratinocytes, fibroblasts, melanocytes, and in-
nate/adaptive immune cells (Figure 1). Recent research has explored 
the communication between keratinocytes and fibroblasts and has 
proposed the existence of a positive feedforward loop. Specifically, 
keratinocyte-produced IL-1 appears to play a crucial role in inducing 
fibroblasts to produce cytokines (IL-1, IL-6, IL-8) and growth factors 
(keratinocytes growth factors (KGF), granulocyte-macrophage colo-
ny-stimulating factor (GM-CSF)). In turn, these factors secreted by 
fibroblasts regulate the biological functions of keratinocytes, includ-
ing proliferation, differentiation, and cytokine production (Russo 
et al., 2020). Additionally, melanocytes are crucial resources of aging 
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signals. Chronological aging and chronic UVR exposure promotes 
the accumulation of senescent melanocytes, which exhibit disrupted 
glycolytic metabolism and telomere dysfunction (Park et al., 2023; 
Victorelli et al., 2019). The accumulated senescent melanocytes pro-
duce SASP, which induces paracrine telomere dysfunction transmis-
sion in neighboring cells like fibroblasts and keratinocytes through 
the IP-10-CXCR3-ROS signaling (Victorelli et al., 2019). Thus, while 
keratinocytes and melanocytes may act as triggers of inflammation, 
fibroblasts may serve as the amplifiers of inflammation (Figure 1). 
The SASPs generated by initiators and amplifiers further activate 
resident immune cells and recruit circulating immune cells to deteri-
orate inflammation (Fitsiou et al., 2021).

Recent evidence from scRNAseq of chronological aging and 
photoaging in humans and mice highlight fibroblasts as a major re-
sponder in age-related inflammation. For instance, Lin et al. demon-
strated that UV-irradiated mouse skin mainly induces inflammatory 
responses in fibroblasts (Lin et al., 2022). The transcriptomic atlas 
suggests that fibroblasts exhibit the highest level of aging-related 
transcriptional variability among all the identified skin cell types 
(Zou et al., 2021). These observations align with the defective ECM 
and thinned dermis observed in aged human skin. Therefore, it is 
important to focus on regulating the amplifier of inflammation in 
fibroblasts to control inflammation, restore ECM homeostasis, and 
maintain a youthful and healthy appearance. However, further re-
search is required to validate the link between dermal fibroblast 
function and inflammation.

5  |  CONCLUDING REMARKS

As we are aging, everyone will eventually face a problem of skin 
aging. Fibroblast senescence is attributed to alterations in multiple 
signaling pathways, including Nrf2, TGF-β, IGF-1, and mTOR. Dermal 
fibroblast senescence can induce and exacerbate cutaneous inflam-
mation, while sustained cutaneous inflammation can lead to chronic 
systemic inflammation, that is, inflammaging (Franco et al., 2022; 
Pilkington et al., 2021). Thus, dermal fibroblast senescence can 
potentially and negatively impact overall health of human being. 
Therefore, attenuation of skin aging, including fibroblast senescence, 
can benefit, at least, some health conditions in the elderly. Because 
multiple mechanisms can contribute to fibroblast senescence, devel-
opment of ideal approaches to prevent/treat dermal aging is still a 
challenge although applications of antioxidants show some benefits 
(Boo, 2022; Lee et al., 2022; Lephart, 2016). Additionally, further 
studies are needed to delineate the link between fibroblast senes-
cence and inflammaging.
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