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Summary

Today’s genomics workflows typically require alignment to a reference sequence, which limits 

discovery. We introduce a unifying paradigm, SPLASH (Statistically Primary aLignment Agnostic 

Sequence Homing), which directly analyzes raw sequencing data, using a statistical test to detect 

a signature of regulation: sample-specific sequence variation. SPLASH detects many types of 

variation and can be efficiently run at scale. We show that SPLASH identifies complex mutation 

patterns in SARS-CoV-2, discovers regulated RNA isoforms at the single cell level, documents 

the vast sequence diversity of adaptive immune receptors, and uncovers biology in non-model 

organisms undocumented in their reference genomes: geographic and seasonal variation and 

diatom association in eelgrass, an oceanic plant impacted by climate change, and tissue-specific 

transcripts in octopus. SPLASH is a unifying approach to genomic analysis that enables expansive 

discovery without metadata or references.

eTOC/In Brief:

Genomics workflows typically first map reads onto a reference genome as the foundation for 

downstream analyses. However, this poses severe limitations for biological discovery when 

references are incomplete or nonexistent and even for intensely studied genomes with rich 

population-level diversity. SPLASH is a highly efficient framework for statistics-driven analysis of 

sequence variation directly from raw sequencing data, overcoming previous limitations.
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Graphical Abstract

Introduction

Genomics is now foundational to biology, ecology and medicine, and as sequencing 

databases grow, so too does the opportunity to leverage them for discovery. How can 

this data best be analyzed to reveal regulation and function? Traditionally, bioinformatic 

pipelines start by assigning genomic positions to reads via alignment to a reference genome, 

an approach with many limitations. For less studied organisms, references can be partially 

misassembled, incomplete, or nonexistent. Even in the intensely studied human genome, 

it was found that under-studied populations have large amounts of sequence missing from 

the current reference1; such blindspots may exacerbate health disparities. Reference-based 

methods are not well-suited to deal with paralogs and repetitive elements (which comprise 

~54% of the human genome2), so many analyses simply ignore them. They are also poorly 

suited for diseases such as cancer that are almost defined by their deviations from the 

reference, and vary even within a single tumor. Additionally, the enormous diversity of 

viral and microbial genomes and their constant adaptation3,4 makes it infeasible to define a 

complete set of references. Practically, alignment to references is computationally intensive, 

limiting the scale of genomic inference.

When dealing with genomic data, precise statistical analysis is critical. However, alignment-

based methods are complex and difficult to model statistically; even seemingly simple 
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tasks such as calling allele-specific expression can be fraught with statistical imprecision 

introduced during alignment5. Permutation-based methods are not a panacea; in addition to 

being slow, they can give 10-fold underestimates of the false discovery rate6,7.

Addressing these concerns has led us to a simple unifying paradigm for statistically 

detecting signals of biological interest directly from raw sequencing data without using 

a reference genome, which we call SPLASH (Statistically Primary aLignment Agnostic 

Sequence Homing). It relies on a simple formalization of sequence variation (short 

stretches of varying sequences, “targets”, adjacent to short stretches of constant sequences, 

“anchors”). SPLASH applies to myriad biological questions that can be framed as asking 

how sequence distributions vary within a set of samples. In the results below, we provide a 

snapshot of SPLASH’s wide possibilities for discovery, encompassing viral strain variation, 

single-cell level alternative isoforms, and antigen receptor diversity in human samples. We 

also show that SPLASH is easily applied to less studied organisms: lemur, octopus, and 

eelgrass. This demonstrates SPLASH’s potential to discover meaningful sequence variation 

without the aid of reference genomes, across many biological questions and organisms.

Results

SPLASH is a k-mer based, statistics-first approach to identify sample-dependent sequence 

variation

The goal of SPLASH is to detect sequence variation between a set of samples. SPLASH 

uses a specific conception of variation based on k-mers, or subsequences of length k, 

in sequencing reads. This framework leads to a simple but powerful statistical test that 

identifies variation that is differentially distributed among the samples.

SPLASH only requires that each sample is represented by a separate file of sequencing data 

(FASTQ). The definition of a “sample” is dictated by the biological question: samples can 

denote different cells, different tissues, different individuals, or different mixed populations 

(metagenomics). Samples might differ by conditions as well – different times or treatments, 

and also in other features (cell-type, geographic location, etc.); we refer to these generically 

as “metadata”.

SPLASH characterizes variation using k-mer pairs called “anchors” and “targets” (Figure 

1A) (k = 27 by default, but is adjustable). Every k-mer in the data is an anchor; each k-mer 

a fixed offset downstream (R, which may be zero) from a given anchor is one of its targets. 

Note that targets are always defined relative to an anchor. Anchors with more than one 

target can report on most sequence variation of interest: from changes at a single position to 

alternative splicing and isoform usage, gene rearrangements, and more.

The SPLASH process is depicted in Figure 1B (detailed in STAR Methods, Figure S1). 

Conceptually, SPLASH steps through all positions in all reads of all samples, counting all 

anchor-target pairs. (To decrease compute time, SPLASH can analyze anchors at a subset 

of read positions, e.g., every fifth position, as used in this work.) SPLASH compiles a 

counts table for each anchor, with a column for each sample and row for each target; 

each entry is the count of a given target in a given sample (a contingency table). This 
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requires only one pass through the raw sequences and does not involve reference alignment, 

so it is computationally efficient. Importantly, we have developed a highly flexible test 

statistic that captures the desire to find relatively discrete groups of samples with differing 

variation, and controls false positives even for low numbers of observations; it admits a 

closed form p-value bound, which is thus fast to compute (unlike resampling methods). For 

each anchor, SPLASH calculates a p-value bound for the null hypothesis that the observed 

target frequencies in samples all come from the same distribution, i.e., that there is no 

underlying variation of targets between samples. A low p-value for an anchor implies that 

samples differ significantly in which targets they contain.

While SPLASH can use sample metadata (running in a “supervised” mode), SPLASH 

does not require such information. Indeed, for all the results presented here, SPLASH was 

run in its default unsupervised mode. For each anchor, SPLASH tries many random splits 

of the samples and the targets, retains the one which minimizes the p-value, and reports 

the corresponding effect size for this grouping (next paragraph). This process can detect 

patterned target variation among the samples, if it exists (Figure S3A, STAR Methods).

SPLASH also calculates for each anchor an “effect size” that ranges from 0 to 1, with 0 

meaning that the target distribution is the same between the two groups, and 1 meaning that 

the targets found between the two groups are disjoint. Effect size does not require that target 

distributions of all samples within a group are similar, just that they are different from the 

other group; thus, effect size can be high even when there are more than two natural groups. 

Anchors with large effect sizes have target variation that is more discrete across the samples, 

and are more promising for further biological investigation.

To interpret SPLASH’s findings, it can be useful to have longer sequence context than just 

the anchor and target. Thus, SPLASH also generates a “consensus” for each anchor, in 

each sample. Consensuses are longer sequences assembled from the raw reads of a given 

sample, looking at every occurrence of an anchor and extending base by base as long as the 

reads show a consensus (see STAR Methods). Mapping consensuses to protein sequences 

can identify protein domains – a powerful, reference-free attribution of biological function. 

Consensuses can also be aligned to sequence databases or reference genomes; aligning only 

the consensus sequences for significant anchors reduces the typical computational load by 

over 500-fold compared to usual approaches that align all reads (Figure S3B).

Figure 1C diagrams some of the differences between traditional alignment-first approaches 

and SPLASH; Figure 1D outlines some use cases for SPLASH. These guided us in our 

initial explorations with SPLASH, which are described below. While SPLASH has some 

adjustable parameters, we did not attempt to tune these (indeed, SPLASH seems robust to 

a range of parameters, STAR Methods); all analyses were run with the same settings, in 

unsupervised mode (blind to metadata). Despite this, we found that SPLASH performed 

well across a variety of datasets, and in all cases found significant patterns of sequence 

variation (q-values for anchors, and binomial p-values for target-fraction plots, are given in 

STAR Methods).
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SPLASH identifies strain-defining and other mutations in SARS-CoV-2 de novo

Viral genomes have high mutation rates, at the extremes forming quasispecies3. The 

emergence of SARS-CoV-2 was followed by multiple surges caused by variant strains, over 

the course of just two years. This is an ideal setting for the application of SPLASH: viruses 

are always mutating, but out of a sea of mutations, scientists, clinicians and public health 

officials want to identify those showing consistent and significant variation.

We applied SPLASH to two SARS-CoV-2 datasets, both viral amplicon Illumina sequencing 

of nasopharyngeal swabs from infection-positive patients, taken from times when the 

dominant strains were Delta or Omicron. The samples from South Africa8 (Nov to 

Dec-2021) represent the rapid rise of Omicron during its first outbreak. The samples from 

France9 (Dec-2021 to Feb-2022) represent cases of co-infection by more than one strain; 

the study authors provided as metadata the assignment of the primary and secondary viral 

strains for each case (Table S1) (though not used by SPLASH).

SPLASH finds many significant anchors with low q-values (<0.05) and high effect-sizes 

(>0.5) directly from sequencing reads (250 for South Africa dataset, 252 for France; Table 

S2). High effect sizes are expected for anchors whose targets partition samples by strain. 

To test if SPLASH recovers strain-defining and other variation, we examined the subset 

of significant anchors that perfectly map to a reference strain (Original, Delta, Omicron 

BA.1 or BA.2; defining mutations taken from CoVariants.org10), and call an anchor “strain-

defining” if it has at least two targets (by definition different) with >5% abundance, at 

least one of which perfectly matches to a reference strain. We compare to a control set 

of anchors, those that are most abundant across all the reads. In the South Africa dataset, 

98% (126/128) of SPLASH anchors that mapped perfectly were strain-defining, vs. 7/201 

(3.5%) in the control set (hypergeometric p-value <1.7E-79). In the France dataset, 100% 

(39/39) of SPLASH anchors were strain-defining, vs. 8.4% (21/250) of control anchors 

(hypergeometric p-value <2.6E-33). Nearly all the control anchors have only a single 

abundant target. Thus SPLASH, though blind to strain reference sequences and sample 

metadata, detects strain differences with high precision.

Figure 2 shows exemplary strain-defining mutations identified by SPLASH in the Spike 

protein (S gene). Figure 2A shows an anchor that distinguishes at the major lineage level: 

one target has no mutations and is consistent with Delta; the other target has the mutation 

K417N, found in all Omicron strains (but not in Delta or Original). Target fractions across 

samples are consistent with the strain assignment metadata. Figure 2B shows an anchor that 

discriminates sub-lineages: one target has no mutation, consistent with Delta; the second 

target has the 3-nt deletion NL211I and the 9-nt insertion R214REPE which are Omicron 

BA.1 specific; the third target has the mutation V213G which is Omicron BA.2 specific. 

Figure 2C shows an anchor that detects emergent mutations not in our references. One 

target has a pair of mutations, N679K and P681H, found in all Omicron strains. The 

other targets all have P681R, a Delta-specific mutation, but two targets additionally encode 

Q677H (by different mutations). Q677 mutations have arisen independently multiple times 

in different lineages11,12, and Q677H in several strain backgrounds enhanced infectivity, 

syncytia formation, and resistance to neutralizing antibodies in pseudotype assay13.
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SPLASH results can also be analyzed completely without a reference genome by examining 

their coding potential.The consensus sequences are translated in silico to amino acid 

sequences (in all six reading frames) and matched against a database of protein domain 

models such as Pfam14. Protein profiles that are more frequently associated with significant 

SPLASH anchors, compared to control anchors, are candidates for proteins with important 

patterns of variation. The distribution of protein domains for SPLASH anchors was 

statistically different from controls (chi-squared test p-values: France <3.7E-7, South Africa 

<2.5E-39) (Figure 2D). The top four protein domains in both datasets were beta-coronavirus 

receptor-binding domain (RBD; within S1 region of spike protein), coronavirus S2 domain 

(within spike protein), coronavirus M protein, and coronavirus ORF7a protein. By contrast, 

the bottom four domains for each dataset were completely different from each other. Protein 

profiling pinpoints domains undergoing high variation; for example, in the South Africa 

dataset the spike S2 domain had 23 SPLASH vs 3 control hits, p = 2.9E−6 (corrected 

hypergeometric p-value). The spike protein is the major site of antigenic variation in 

coronaviruses, as it is a principal focus of the immune response; the RBD is well known as 

a target for natural and therapeutic neutralizing antibodies15, but in addition about 50% of 

natural anti-spike antibodies are directed against the S2 domain16.

We also carried out SPLASH protein domain profiling on an unrelated virus, rotavirus17. 

The domains enriched over controls were rotavirus VP3 and NSP3 proteins (Figure S2). 

These two proteins have roles in blocking host innate immunity18. Thus, variation in viral 

protein domains interacting with the immune system may be a recurring theme in SPLASH 

protein profiling of viral strains.

In summary, SPLASH finds patterns of variation in SARS-CoV-2, including those 

characterizing strains, without requiring reference sequences or metadata; the methodology 

should be generally applicable to other viruses. More broadly, SPLASH may be useful 

in surveillance for new strains or even completely new pathogens, and to cluster patients 

directly from raw sequencing samples.

SPLASH identifies regulated expression of paralogs and HLA in single cell RNA-seq

Current approaches to single-cell transcriptomics are reference-based and specialized; we 

sought to see if SPLASH’s unifying methodology could also be applied to single cell 

sequencing data generated with the Smart-Seq2 (SS2) protocol19, which provides broad 

transcript coverage.

Our first testbed was human macrophage and capillary cells from the Human Lung Cell 

Atlas20 (Table S2 and S3), as it was recently established that these cell types have regulated 

alternative splicing in MYL6, a light chain subunit of myosin motor protein, which serves as 

a positive control21. As expected, among SPLASH’s significant anchors are ones reporting 

on MYL6 alternative splicing (exon skipping or inclusion) (Figure S4). Interestingly, other 

SPLASH top anchors also involved myosin light chains, MYL12A and MYL12B, two 

paralogs with highly similar coding regions (95% nucleotide, 98% amino acid identity for 

human). Nevertheless, SPLASH finds targets that specifically distinguish them, showing 

that macrophages express more MYL12A, while capillary cells express more MYL12B, 

reproducible in two individuals (Figure 3A). Little is known about these genes, but they 
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show differential expression in rat tissues22, and there is evolutionary conservation in 

mammals, birds, and reptiles of adjacent MYL12 paralogs within a syntenic region (e.g. 

human; rat22; Gallus gallus, NCBI Gene IDs 396284 and 770011; Chelonia mydas, Gene 

IDs 102938771 and 102937279). Besides the small number of amino acid differences 

between the paralogs, there may also be an important functional role for nucleotide sequence 

differences, as has been demonstrated for another pair of highly similar cytoskeletal 

paralogs, beta- and gamma-actin23.

In the same data, SPLASH finds cell type-specific expression of genes in the major 

histocompatibility complex (MHC), known as HLA in humans. HLA is the most 

polymorphic region in the genome, with the most known disease associations; the 

polymorphism of HLA class I and class II proteins is intimately tied to their function in 

antigen presentation for adaptive immunity24. Due to the high levels of polymorphism, 

the region is challenging to represent in a reference genome and for alignment pipelines. 

Five major haplotypes have been identified at the HLA-DRB locus: all contain DRB1, 

but some contain a second functional paralog, either DRB3, DRB4, or DRB525. DRB1 

is highly polymorphic (3516 alleles, in March 2023); the paralogs somewhat less so, e.g. 

DRB4 (236 alleles)26. SPLASH identifies an anchor with targets that distinguish between 

the highly similar 3’ untranslated regions (UTRs) of HLA-DRB1 and HLA-DRB4 (class II 

beta-chains) (Figure 3B). Macrophages express mainly DRB1, while capillary cells mainly 

express DRB4. This pattern is found in two individuals, who carry different alleles at DRB1 

and DRB4. Macrophages are “professional” antigen-presenting cells and constitutively 

express HLA class II. Not all endothelial cells express class II, however most human 

capillary cells do27; endothelial MHC expression may be strongly cytokine-dependent28. 

Thus, class II expression in macrophages and capillary cells is likely to be regulated 

differently.

In one individual (P3), SPLASH finds a remarkable anchor whose two targets report on 

HLA-DPA1 and HLA-DPB1 (class II alpha and beta chains, respectively), unique among 

HLA genes in being organized head-to-head and transcribed in opposite directions. The 

anchor lies in sequence shared by DPB1 and a specific isoform of DPA1, while the targets 

lie in exons exclusive to each; SPLASH consensus sequences confirm opposite directionality 

as they bridge splice junctions. Macrophages in this individual express exclusively DPB1, 

while capillary cells express mainly DPA1 (Figure 3C). This pattern may be haplotype-

specific, as we did not find a similar anchor for another individual (P2).

A final example is SPLASH’s detection of allele-specific expression of HLA-B in T cells 

(from a different dataset, see next section). The class I gene HLA-B is the most polymorphic 

of all HLA genes (9274 alleles)26, and HLA-B is the gene with the most anchors found by 

SPLASH in human T cells (Figure 3D). Since these T cells all come from one individual, 

this indicates substantial variation in expression of this individual’s two HLA-B alleles at 

the single-cell level (Figure 3D). Different T cells express a wide range of ratios of the two 

alleles, some cells expressing both alleles, but others expressing almost entirely one allele or 

the other (well outside the 98% confidence interval of what is expected by the average ratio). 

This is in keeping with a preprint that found allele-specific expression of HLA class I genes 

in normal breast epithelial cells29.
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Overall, SPLASH finds multiple types of variation regulated at the single cell level, 

including paralogs, splicing, and alleles. This gives a glimpse into the complexity of HLA 

haplotype- and cell type-specific expression patterns, raising the possibility that disease-

related HLA alleles might be expressed differently in key cell types compared to other 

alleles.

SPLASH identifies B and T cell receptor diversity in human and lemur single cell RNA-seq

Adaptive immune receptors for B cells (immunoglobulin or Ig), and T cells (T cell receptor 

or TCR) are generated combinatorially through V(D)J recombination, and Ig is further 

diversified through somatic hypermutation. Rearranged sequences are absent from germline 

reference genomes and cannot be cataloged comprehensively due to their huge potential 

diversity, empirically estimated at 1010-1011 for Ig heavy chains30. These genomic loci 

currently require manual curation due to their complexity and repetitive structure, so few 

species have high quality annotations. Existing methods to assign V(D)J rearrangements in 

single cells31 depend critically on annotations and so may have blindspots. Since SPLASH 

is designed to identify sequence diversity without a reference, we predicted that it would 

identify adaptive immune receptors de novo.

We ran SPLASH on 50 naive human B cells from peripheral blood of one individual, and 

separately on 128 CD4+ human T cells of another individual, taken from Tabula Sapiens, 

a large multi-organ dataset32 (Table S2 and S4). As a first reference-free pass, protein 

profiling found that the domains enriched in SPLASH anchors in B cells were Ig V-set 

and C1-set (variable-like and constant-like domains); these two domains were also matches 

in T cells (attributable to TCR) (Figure 4A). Mapping transcript gene-names to SPLASH 

anchors gives a similar picture: Ig light chain genes (both kappa and lambda) were strongly 

hit for B cells; HLA-B (discussed above) and TCR genes (both alpha and beta) were most 

prominent for T cells. These domains are not found among the control anchors (Figure 

4A). Significant anchors were also found in Ig heavy chains, though fewer than in light 

chains. Ig/TCR anchors characteristically have a high diversity of targets (“target entropy”, 

a measure reported by SPLASH), and could be identified on that basis rather than requiring 

reference mapping. This is expected for clonally diverse receptors, and is evident in the 

clonotypic pattern (each cell expressing only its specific target) seen in heatmaps (Figure 

4B).

To showcase SPLASH’s utility for non-model organisms, we ran SPLASH on mouse lemur 

(Microcebus murinus) samples. Mouse lemurs are primates that diverged from humans 

60–75 million years ago, and have potential as a model organism33. The lemur reference 

genome is incompletely annotated, especially at loci such as Ig and TCR. While the human 

reference does not suffice for alignment-first analysis of mouse lemur transcriptomes, we 

find that it is a reasonable approximation for interpreting SPLASH outputs; this may 

generalize to other organisms where a related, better-curated reference exists. From Tabula 

Microcebus, a multi-organ mouse lemur dataset34, we analyzed 111 natural killer T (NKT) 

cells from spleen; and separately, 289 B cells, also from spleen (Table S2 and S4). In 

both analyses, the cells came from two different individuals; for this reason, SPLASH also 

discovered numerous allelic differences between individuals, such as in COX2 (Figure S5A).
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Our main focus was on adaptive immune receptors; similar to the human analyses, we found 

that SPLASH’s lemur anchors in B and NKT cells included Ig C1-set and V-set domains 

by protein profiling and Ig/TCR gene-names by transcript mapping (data not shown). 

As expected, SPLASH targets for lemur Ig heavy chain are predominantly clonotypically 

expressed (Figure 4B). Lemur NKT cells provide an interesting counterpoint. While there 

is some clonotypic diversity, a number of cells share TCR-alpha sequences; notably, the 

shared target is different between the two individuals (bottom-right heatmap, top row vs. 

second row). We selected NKT cells for analysis without foreknowledge of their properties. 

However, it is known in humans and mice that an NKT subset expresses an “invariant” 

TCR-alpha chain; NKT cells bridge between adaptive and innate immunity35. For Tabula 

Microcebus, NKT cells were operationally defined as co-expressing CD3E and KLRB1 

(CD161)34; in this cell-type, SPLASH also finds shared usage in TCR-beta and TCR-gamma 

(Figure S5C and D).

To test if SPLASH can find diversity missed by standard methods, we analyzed a subset 

of 35 lemur B cells for which Ig light chain variable regions could not be assigned by the 

program BASIC36. BASIC assigns V-D-J regions based on curated human Ig sequences; 

although it was able to assign the large majority of lemur B cells, there was a subset for 

which it failed. We used SPLASH to find evidence of a light chain variable region in one 

of the 35 cells (STAR Methods); we were able to reconstruct the full variable region from 

reads (Data S1). In two cells, there were hits to the surrogate light chain (IGLL1/IGLL5 

or λ5), which associates with Ig heavy chain when there is not yet a rearranged light 

chain37 (Data S1). This is proof-of-principle that SPLASH provides insights on data beyond 

traditional methods. In more recent work we have built on this capability (J. Salzman et al., 
unpublished work).

SPLASH applied to non-model organisms: octopus and eelgrass

To further explore SPLASH’s generality, we applied it to two understudied organisms: 

octopus and eelgrass. Octopuses have the most complex sensory and nervous systems 

among invertebrates, and are unusual in having high levels of RNA editing38. The marine 

angiosperm Zostera marina, or eelgrass, is the most widely distributed seagrass, and its 

adaptation to varying conditions, especially in the face of climate change, is of great interest 

and is only beginning to be explored at the genomic level39,40.

We focused narrowly on anchors where no more than one of its abundant targets mapped to 

the respective reference (STAR Methods), that is, where reference-based methods could not 

have detected variation. Hence, in these analyses we ignored many interesting findings of 

SPLASH that are reference-consistent.

For octopus, we analyzed an RNA-Seq dataset of Octopus bimaculoides41, encompassing 

a variety of tissues from a single individual (N. Bellono, personal communication). We 

examined several anchors with high effect sizes and BLAST hits to the closely related 

species Octopus sinensis (STAR Methods; Table S5). An anchor was found in O. sinensis 
myosin-VIIa, known as MYO7A in humans; MYO7A mutations cause Usher syndrome, 

leading to deafness and blindness42. Target 1 corresponds to the annotated first exon of 

O. sinensis myosin-VIIa, while target 2 represents an alternative first exon (not annotated 
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in either species) expressed only in statocyst tissue (Figure 5A). The annotated O. 
bimaculoides myosin-VIIa gene is likely incomplete; it includes neither target, yet both 

target sequences are found upstream in the reference genome; also, the anchor is missing 

from the genome (Data S2). The O. sinensis myosin-VIIa gene is likely misassembled in 

a different way (Data S2). The statocyst-specific expression of an alternative first exon is 

intriguing given MYO7A’s association with Usher syndrome and deafness, as the octopus 

statocyst is a sensory organ for sound and balance43,44, suggesting homologous gene 

function.

Other SPLASH anchor-targets did not map to the O. bimaculoides genome yet did BLAST 

to 3’ UTRs of O. sinensis transcripts, including carboxypeptidase D, Upf2, and netrin 

receptor/DCC (Figure 6, Table S5). For all three, each target is expressed exclusively 

in some tissues and not others. Although O. bimaculoides has annotated transcripts for 

these genes, in all three cases the 3’ UTR region is missing or likely incorrect in the O. 
bimaculoides genome assembly. For two of the genes, the target variation may represent 

differential expression of alleles: a 13 nt deletion in carboxypeptidase D, and a short CAG 

repeat polymorphism in nonsense-mediated decay gene Upf2 (Figure 6A and B). For netrin 

receptor/DCC, involved in axon guidance and apoptosis, the variation SPLASH detects 

could be allelic but is also consistent with A-to-I RNA editing (Figure 6C). Our focus 

here on non-mapping anchor-targets excluded many more examples of regulated variation, 

including potential RNA editing in numerous octopus genes (data not shown).

We also applied SPLASH to RNA-Seq data from eelgrass (Zostera marina), collected in 

two locations, Montpellier, France (Mediterranean climate) and Rovika, Norway (near-arctic 

climate), in two seasons (winter and summer), and during day and night40. Considering 

each anchor with its most abundant target, a large number (14,680, 5.7%) did not align to 

eelgrass references (Table S6). A high-level view is provided by protein profiling: the top 

hits were chlorophyll A-B binding protein domain, Actin, Ubiquitin, and Silicon transporter 

(Figure 5B). BLASTP of some of the translated sequences finds that these have their best 

hits to a variety of organisms other than eelgrass, notably diatoms. Though a surprise to 

us, it has long been known that eelgrass is extensively colonized by epiphytes45, of which 

diatoms predominate46 and may provide as much as 71–83% of the primary production by 

the community47. For the most enriched protein domain, we investigated an anchor with 

high effect size whose consensus matches “fucoxanthin chlorophyll a/c protein” (FCP) in 

several diatoms, for example, Phaeodactylum tricornutum (95% amino acid identity, 81% 

nucleotide identity; Figure 7C). Given that the matches are imperfect, the true species of 

origin may not be in the NCBI database. FCPs function as light-harvesting antennae for 

photosynthesis48. This anchor has several targets whose abundance varies by location and 

time of year: target 1 is predominant in France in June; targets 3, 4, 5, which share the same 

amino acid sequence, together dominate in France in December; target 6 is predominant in 

Norway in December (Figure 5C). These targets could represent different diatom species or 

intra-species allelic variants. The abundance of this anchor (irrespective of target) is lower 

in Night samples (Figure 7C), indicating circadian regulation of this diatom photosynthetic 

gene. Other anchors mapping to diatoms, such as ferredoxin and high mobility group 

box-containing protein, also show targets that segregate by location, France vs. Norway 

(Figure 7A and B).
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One anchor and its targets, although mapping to the eelgrass genome, does report on 

noteworthy variation. It is in the NdhL subunit of chloroplast NADPH dehydrogenase 

complex (NDH). Of its four most abundant target sequences, three are within exon 3 and 

are SNP coding variants. The fourth represents retention of the intron following exon 3 

(Figure 5D), altering the second transmembrane segment and terminating translation soon 

after (Data S2). The intron retention variant (target 4) is highest in winter (Figure 5D): 

for Norway, December (green) vs June (red) samples completely segregate by target 4 

expression; the France samples show overlap, but on average December (blue) is higher 

than June (yellow). Figure 5D also illustrates other patterns: Norway samples do not express 

target 2 (instead they express target 1 and 3; data not shown); France samples have either 

a high fraction of target 2, or moderate (the latter also express target 1; data not shown). 

NDH is involved in cyclic electron transport49 and modulation of NDH function may affect 

photosynthetic efficiency and oxidative stress under varying light conditions50.

The above work with octopus and eelgrass are early forays, but show that SPLASH 

can discover regulated RNA splicing and isoforms, and bring to light allelic variation 

and communities of associated organisms. SPLASH’s statistics-first and reference-free 

methodology provides an unbiased approach to discovery, which can be augmented by 

protein profiling and the use of sequence databases beyond solely genomic references.

Discussion

Genomic analysis today is performed with complex computational workflows that are 

highly problem-specific and reference-dependent. Here we present a unifying statistics-first 

framework, SPLASH, which identifies sample-specific sequence variation directly from raw 

reads using a statistical test.

We provide a snapshot of SPLASH’s discoveries in disparate genomics subfields. When run 

on SARS-CoV-2 patient samples, without strain metadata or reference genomes, SPLASH 

finds many anchors capturing strain defining and emerging mutations. Using reference-

free protein domain analysis, SPLASH identifies the spike protein as highly enriched for 

sequence variation. This points to broad potential for SPLASH in viral and other genomic 

surveillance.

In single-cell sequencing data, SPLASH is able to identify differential expression between 

highly similar genes, including myosin light chains MYL12A and B and several different 

HLA genes (traditionally difficult to analyze as they are highly polymorphic). SPLASH 

analysis was conducted in unsupervised mode, yet many of its significant anchors show 

cell-type regulation between macrophages and capillary endothelial cells. This testifies to 

the power of SPLASH’s unique statistical approach. When applied to B and T cells of 

both human and mouse lemur, SPLASH automatically identifies antigen receptor genes as 

exhibiting the most diverse variation. Post-facto analysis for lemur was performed using 

only an approximate genomic reference (human) that diverged from lemur ~60 million years 

ago.
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To examine SPLASH’s ability to find variation not present in reference genomes, we 

applied it to two diverse organisms: octopus and eelgrass. In octopus, we identified several 

tissue-regulated isoforms not in the reference, in particular one in myosin-VIIa that is only 

expressed in statocyst. In the eelgrass dataset, SPLASH uncovered many sequences from 

epiphytic diatoms, with variation correlating with geography and season. This highlights the 

enormous potential in already existing datasets, and the need for tools like SPLASH to better 

explore them.

SPLASH should be of general interest to most genomic analyses. Users can easily run 

SPLASH on their own samples (FASTQ files): we provide it as a containerized Nextflow 

pipeline to minimize installation issues; it is lightweight, and can be run on a laptop (STAR 

Methods). The default parameters work well across all tested datasets (and SPLASH is 

robust to a range of parameters, STAR Methods). SPLASH outputs a list of significant 

anchors and targets; these results are a large data reduction and distillation of the variation 

present in the samples, and there are many ways they can be used. If metadata is available, it 

can be correlated with anchor-targets generated in unsupervised mode; alternatively, one can 

use metadata to supervise SPLASH analysis. If a reference genome is available, SPLASH 

can use it to align anchors and targets and provide gene names. SPLASH provides a number 

of metrics, such as a p-value bound, effect size, target entropy, and average target similarity, 

which can be used to filter the anchor list. Another avenue for analyzing SPLASH’s results 

is BLAST of anchor-targets or consensus sequences against the NCBI databases and protein 

domain profiling with databases like Pfam, helpful especially when there is no reference 

genome or it is incomplete. Ultimately, users will bring their own domain expertise to bear 

in deciding how to best utilize SPLASH results.

Even in areas where there are existing pipelines, for example in differential alternative 

splicing, or antigen receptor identification, SPLASH provides a different approach and may 

well give additional insights. SPLASH scales to allow discovery to keep pace with the ever-

increasing sequence data from the world at large, in particular microbes and metagenomic 

communities; recent collaborative work has further increased the computational efficiency 

of SPLASH51. SPLASH provides an expansive paradigm, and could be applied to a 

wide range of “omics” modalities, from DNA and protein sequencing to Hi-C and spatial 

transcriptomics, and more (STAR Methods). The statistical ideas underlying SPLASH are 

also expansive: anchor-target pairs can be generalized to tensors, and higher-dimensional 

relations between anchors, targets, and samples can be studied; other functions for splitting 

and hashing targets and samples can be considered, to optimize statistical power52.

In summary, SPLASH shifts from the “reference-first” approach to “statistics-first”, 

performing statistical hypothesis tests on raw sequencing data. By this design, SPLASH 

is highly computationally efficient. References are valuable for interpretation; however, the 

filtering of data by reference alignment introduces quantification biases and blindspots. 

SPLASH promises data-driven biological study with scope and power previously 

impossible.
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Limitations of the study

SPLASH can be applied to problems across diverse fields which are of great current 

importance (STAR Methods), including those previously discussed. Naturally, some 

problems are not directly amenable to SPLASH analysis as formulated here. The most clear 

are cases where quantification of sample-specific RNA or DNA abundance alone is desired 

(e.g., differential gene expression analysis). Additionally, SPLASH is currently unable to 

distinguish which biological mechanism underlies the called variation, and work in progress 

seeks to address this.

STAR★Methods

RESOURCE AVAILABILITY

Lead contact—Correspondence and requests for materials should be addressed to the lead 

contact, Julia Salzman (julia.salzman@stanford.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data. These accession numbers 

for the datasets are listed in the key resources table.

• All original code has been deposited at Zenodo/Github and is publicly available 

as of the date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We note that all datasets used are publicly available. We provide relevant details taken 

from the original papers. Because this work was a study of existing data and because 

the method can be used on any sample size above two, we did not perform sample size 

estimation (all samples in existing data were used). Also, samples were not explicitly 

allocated to experimental groups, rather the SPLASH procedure described in this manuscript 

uses random allocation and testing to find significant groupings.

Human samples

South Africa SARS-CoV-2 samples,: Sequencing was done on randomly selected 

nasopharyngeal and oropharyngeal swab samples from routine diagnostic SARS-CoV-2 

PCR testing from public and private laboratories in South Africa and Botswana; requirement 

for participant consent was waived by the Research Ethics Committees. The large majority 

of samples were sequenced using Oxford Nanopore, but we only analyzed the samples 

sequenced using the Illumina COVIDseq assay; the paper does not explain how samples 

were chosen for Illumina sequencing. The paper does not give a breakdown of samples by 

age, sex, location, or ethnicity. 8
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France SARS-CoV-2 samples,: The clinical samples presented in the paper are those that 

had evidence of co-infection by more than one strain of SARS-CoV-2; they were taken 

from a broader sequencing effort that included hospitalized patients and health care workers 

at the university hospital of Lyon (National Reference Center of Respiratory Viruses of 

Hospices Civils de Lyon (HCL)); and randomly selected positive samples nationwide from 

all diagnostic laboratories in France (EMERGEN consortium). The study was approved by 

the HCL ethics committee. We used all the samples in our analysis. Table 1 of the original 

paper gives some demographic information: among 15 outpatients with Delta/Omicron 

coinfection, median age was 31.13, 10 were male; 21 outpatients with BA.1/BA.2, median 

age was 22.36, 6 were male; 13 hospitalized with Delta/Omicron, median age 66.61, 7 were 

male; 3 hospitalized with BA.1/BA.2, median age 29.03, 2 were male.9

HLCA samples,: Normal lung tissues (approximately 5 cm3) were obtained from 

uninvolved regions of patients undergoing lobectomy for focal lung tumors; informed 

consent was obtained. Patient 2 was a 46-year-old male, non-smoker with a right middle 

lobe (RML) endobronchial carcinoid, who underwent surgical resection of the right upper 

and middle lobes; two blocks of tissue were selected from mid-bronchial region (medial 

2) and periphery (distal 2) of right upper lobe (RUL). Patient 3 was a 51-year-old female, 

non-smoker with mild adult-onset asthma and a left lower lobe (LLL) endobronchial typical 

carcinoid, who underwent LLL lobectomy; three tissue blocks were resected from the 

bronchus (proximal 3), mid-bronchial (medial 2), and periphery (distal 3) of the LLL.20

Tabula Sapiens samples,: Donated tissues were procured in the Northern California 

through collaboration with the federally mandated organization Donor Network West (DNW, 

San Ramon, CA, USA); the research protocol was approved by the relevant boards of DNW 

and Stanford University. Donor TSP1 was a 59-year-old female with BMI of 23 and a 

history of stroke. She was found down with slurred speech. Donor TSP2 was a 61-year-old 

female with BMI of 41 and a history of deep vein thrombosis, hypertension, hypersensitive 

lung disease, type 2 diabetes, an infected knee replacement, and recent bout of the flu. She 

reported being short of breath and later went into respiratory arrest.32

Mouse lemur samples—Microcebus murinus gray mouse lemurs originated from the 

closed captive breeding colony at the Muséum National d’Histoire Naturelle in Brunoy, 

France, and transferred to the University of Texas (Austin) and then Stanford University. 

Mouse lemurs were housed indoors in an AAALAC-accredited facility in a temperature 

(24°C) and light-controlled environment (daily 14:10 h and 10:14 h light:dark alternating 

every 6 months) with perches and nest boxes, and were fed fresh fruits and vegetables, 

crushed primate chow plus live insect larvae. Animals in declining health that did not 

respond to standard therapy were euthanized by pentobarbital overdose under isoflurane 

anesthesia. Organs and tissues were removed and divided by a veterinary pathologist. We 

used data from two individuals: L2, 10 year old female; and L4, 11 year old male.34

Octopus samples—Adult female California two-spot octopuses (Octopus bimaculoides) 

were wild-caught (Aquatic Research Consultants, San Pedro, CA), fed daily with fiddler 

crabs (Uca pugnax, Northeast Brine Shrimp, Oak Hill, FL), and kept on a 12hr light/
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dark cycle in natural sea water. Sensory cells were isolated from suckers following tissue 

extraction and sucker epithelium dissection from animals that were sedated using step-wise 

increases in ethanol (ending at 3%). Animal protocols were approved by the Harvard 

University Animal Care and Use Committee.41

Eelgrass (Zostera marina) samples—Eelgrass shoots were sampled in Norway 

(Røvik, 67°16′06.2” N, 15°15′38.4″ E) and France (Sète, Thau Lagoon, 43°25′08.0” N, 

3°40′03.9″ E). The youngest two shoots of each of six plants were collected at each site 

at noon and the following midnight around summer solstice (June 21) and winter solstice 

(December 21) 2017.40

METHOD DETAILS

SPLASH overview—Full details of SPLASH usage and outputs can be found at https://

github.com/salzman-lab/nomad. Briefly, it takes as input a set of FASTQ sequencing data 

files (one per sample). SPLASH has several tunable parameters (anchor and target length, 

lookahead, minimum count thresholds, and more). SPLASH’s default settings work well 

in practice, and SPLASH’s inference is robust to these choices (see below). The standard 

output includes a table of anchors, targets, p-values, etc., a table of “consensus” sequences 

(see below), and a table of “element annotations” (see below). SPLASH can also perform 

alignments with bowtie2 and STAR, to generate “genome annotations” and splice junction 

annotations (see below).

The code used in this work is available as a fully-containerized Nextflow pipeline60 

at https://github.com/salzman-lab/nomad, commit 1b73949. The GitHub repository also 

contains the sample sheets for all analyses, including individual sample SRA accession 

numbers; as well as scripts for supplemental analysis. See Quantification And Statistical 

Analysis, below, for explanation of SPLASH p-value and effect size computations.

SPLASH anchor preprocessing and parameter choices—Anchors and targets are 

defined as sequences of length k (k-mers) positioned at an offset R = max 0, L − 2 * k /2
apart, where L is the length of the first read processed in the dataset, and R is rounded to 

the nearest integer. If L = 100 and k = 27, then R = 23. For a fixed number of anchor-target 

pairs, under alternatives such as differential exon skipping, larger choices of R have provably 

higher power than smaller choices, following the style of analysis in [Salzman 2011]61. 

k = 27 is typically long enough to be assigned a unique position in a genome while having 

a low probability of containing a sequencing error. Anchor sequences can be extracted as 

adjacent, disjoint sequences or as tiled sequences that begin at a fixed step size, to reduce 

computational burden. For this manuscript, SPLASH was run with default parameters: with 

1M reads per FASTQ file, anchor sequences tiled by 5 bp, and k = 27. For HLCA datasets, 

both read 1 and read 2 were used; for other datasets, only read 1. Extracted anchor and target 

sequences are then counted for each sample with the UNIX command, `sort | uniq -c`, and 

anchor-target counts are then collected across all samples for restratification by the anchor 

sequence. This stratification step allows for user control over parallelization. To reduce the 

number of hypotheses tested and required to correct for, we discard anchors that have only 

one unique target, anchors that appear in only 1 sample, and (anchor, sample) pairs that have 
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fewer than 6 counts. Then, we retain only anchors having more than 30 total counts after the 

above thresholds were applied. This approach efficiently constructs sample by target counts 

tables for each anchor.

SPLASH is robust to these parameter choices. We give examples of how choices of k, 

R, and tiling length impact results in France SARS-CoV-2 data as follows, showing that 

SPLASH yields similar results for a range of parameter choices. Default parameters shown 

in bold: we tested k = [25, 27, 30]; Tile = [3, 5, 7]; Lookahead = [0, 15, 23]. For k = 25, 

94.4% of anchors with default parameters contain at least one of the K=25 anchors as a 

substring. For k = 30, 93.8% of anchors with k = 30 contain at least one of the anchors 

with default parameters a substring. For tile size of 3, 85% of the anchors from the default 

run can be found in the significant anchors of tile size of 3. For tile size of 7, 85% of 

the anchors from the default run can be found in the significant anchors of tile size of 

5. For lookahead distance of 0, 37% of the anchors from the default run can be found in 

the significant anchors of tile size of 3; for lookahead distance of 15, 76% of the anchors 

from the default run can be found in the significant anchors. Overall, as tile size decreases, 

anchor calls increase (4715, 5522, 7891 for [7, 5, 3] respectively). As k varies, anchor calls 

stay essentially the same (5875, 5522, and 5958 for k = [25, 27, 30] respectively). Finally, 

for lookahead distance, the total number of calls decrease as lookahead distance increases 

(13239, 8295, 5522 for R = [0, 15, 23] respectively).

Consensus sequences—For each significant anchor, a per sample consensus sequence 

is built for the sequence downstream of the anchor. A separate consensus is built for each 

sample by aggregating all reads from this sample that contain the given anchor. Then, 

SPLASH constructs the consensus as the plurality vote of all these reads; concretely, the 

consensus at base pair i is the plurality vote of all reads that contain the anchor, i base pairs 

after the anchor appears in the read (a read does not vote for consensus base i if it has 

terminated within i base pairs after the anchor appeared). The consensus base as well as the 

fraction agreement with this base among the reads is recorded. Some empirical behavior of 

consensuses is shown in Figure S4.

The consensus sequences can be used for splice site discovery as well as other 

applications, such as identifying point mutations and highly diversifying sequences, 

e.g. V(D)J rearrangements. The statistical properties of consensus building make it an 

appealing candidate for use in short read sequencing62, and may have information theoretic 

justification in de novo assembly63.

To provide intuition regarding the error correcting capabilities of the consensus, consider 

a simple probabilistic model where our reads from a sample all come from the same 

underlying sequence. In this case, under the substitution only error model, we have that 

the probability that our consensus for n reads makes a mistake at a given location i under 

independent sequencing error rate ϵ (substitution only) is at most

ℙ(error at basepair i) ≤ ∑
k ≥ n/2

n n
k ϵk(1 − ϵ)n − k ≤ n

2
n

n/2 ϵn/2
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We can see that even for n = 10, this probability is less than 1.3E-7 for a given base pair, 

which we can union-bound over the length of the consensus to yield a vanishingly small 

probability of error. Thus, for a properly aligned read, if a base pair differs between the 

consensus and reference it is almost certainly a SNP.

Element annotations—To identify false positive sequences or contextualize mobile 

genetic elements, anchors and targets are aligned with bowtie2 to a set of indices, 

corresponding to databases of sequencing artifacts, transposable elements, and mobile 

genetic elements64. In these alignments, using bowtie2, the best hit is reported, 

relative to an order of priority. The references used are: UniVec, Illumina adapters, 

grass carp (Ctenopharyngodon idella genome, GCA_019924925)65, Escherichia phage 

phiX174, Rfam66, Dfam67, TnCentral68, ACLAME69, ICEberg70, CRISPR direct repeats71, 

ITSoneDB72, ITS273; and also the reference genome of interest for the study. (Grass 

carp was used as a control as it contains many artifactual Illumina adapters.) To perform 

these annotations, bowtie2 indices were built from the respective reference FASTAs, using 

bowtie2-build with default parameters. Anchors and targets were then aligned to each index, 

using bowtie2-align with default parameters. For each sequence, we report the alignment to 

the reference and the position of that alignment for each reference in the prespecified set. 

Anchors and targets, and their respective element annotations, are reported in the element 

annotation summary files.

Genome annotations—Anchor, target, and consensus sequences can be aligned by 

SPLASH to reference genomes and transcriptomes, to provide information about the 

location of sequences relative to genomic elements. All alignments reported are run in two 

modes in parallel: bowtie2 end-to-end mode (the bowtie2 default parameters) and bowtie2 

local mode (`-local`, in addition to the bowtie2 default parameters). To report alignments 

to the transcriptome, the sequences are aligned to the reference transcriptome with bowtie2, 

with `-k 1`, in addition to the above parameters, to report a maximum of one alignment per 

sequence. If there is a transcriptome alignment, we report the alignment to the reference 

and the MAPQ score of the alignment. To report alignments to the genome, the sequences 

are aligned to the reference genome, with the same parameters above. If there is a genome 

alignment, we report the alignment to the reference, the strand of the alignment, and the 

alignment MAPQ score.

Splice junction calls—To identify exon coordinates for reporting annotations in this 

manuscript, consensus sequences are mapped with STAR aligner (default settings)54. 

Gapped alignments are extracted and their coordinates are annotated with known splice 

junction coordinates using ‘bedtools bamtobed --split’; each resulting contiguously mapping 

segment is called a “called exon”. From each consensus sequence, called exons are 

generated as start and end sites of each contiguously mapped sequence in the spliced 

alignment. These ‘called exons’ are then stratified as start sites and end sites. Note that 

the extremal positions of all called exons would not be expected to coincide with a splice 

boundary; “called exon” boundaries would coincide with an exon boundary if they are 

completely internal to the set of called exon coordinates. Each start and end site of each 

called exon is intersected with an annotation file of known exon coordinates; it receives 
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a value of 0 if the site is annotated, and 1 if it is annotated as alternative. The original 

consensus sequence and the reported alignment of the consensus sequence are also reported. 

Gene names for each consensus are assigned by bedtools intersect with gene annotations 

(hg38 RefSeq for human data by default), possibly resulting in multiple gene names per 

consensus.

SPLASH protein domain profiles—Custom scripts were used to generate protein 

domain profiles. For each set of enriched anchors, homology-based annotation was 

attempted against an annotated protein database, Pfam14. For each dataset, up to 1000 of 

the most significant anchors (q-value < 0.01) were retained for the following analysis: we 

first generated a substring of each downstream consensus by appending each consensus 

nucleotide assuming both conditions were met: a minimum observation count of 10 and a 

minimum agreement fraction of 0.8, until whichever metric first exhibited two consecutive 

failures at which point no further nucleotide was added. A limit of 1000 anchors was used 

due to computational constraints from HMMer3 (see below). Anchors that did not have any 

consensus nucleotides appended were kept as is. An extended anchor was generated for each 

experiment in which an anchor was found. Each extended anchor was then stored in a final 

concatenated multi FASTA file with unique seqID headers for each experiment’s extended 

anchors.

To assess these extended anchors for protein homology, this concatenated FASTA file 

was then translated in all six frames with the standard translation table using seqkit57 

prior to using hmmsearch from the HMMer3 package74 to assess resulting amino acid 

sequences against the Pfam35 profile Hidden Markov Model (pHMM) database. The 

resulting ‘raw’ .tblout outputs were then processed, keeping the best hit (based on E-value) 

per each initial anchor, and any hits with an E-value better than 0.01 were parsed into an 

*_nomad.Pfam (or *_control.Pfam) file used for subsequent plotting.

All hits to the Pfam database were then binned at different E-value orders of magnitude. 

In each case, control assessments were performed by repeating the extension and homology 

searches against an equivalent number of control anchors (see below). Protein domains 

are ranked in the plot by the difference between SPLASH anchor hits and control anchor 

hits (for hits with E-value ≤ 1e-02). The number of matched anchors used for SPLASH 

and control analysis per dataset were as follows: 201 high effect size (.5) anchors in SARS-

CoV-2 from South Africa, 252 high effect size (.5) anchors in SARS-CoV-2 from France; 

1000 anchors (no effect size filter) were used for rotavirus, human T cells, human B cells, 

Microcebus natural killer T cells, and Microcebus B cells. We note that while the number of 

input anchors for SPLASH and control sets are matched, it is possible to have more control 

protein domains in the resulting barplots, as only high E-value hits to Pfam are reported in 

the visualizations. Domain profiling summaries are in Data S3.

A hypergeometric test was used to give p-values for protein domain analysis. For a given 

domain, we construct the 2×2 contingency table, where the first row is the number of 

SPLASH hits for this domain, followed by the total number of SPLASH hits not in this 

domain. The second row is the mirror of this for control, where the first entry is the number 

of control hits for this domain, followed by the total number of control hits not in this 
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domain. A one-sided p-value is computed using Fisher’s exact test, which is identically a 

hypergeometric test. We apply Bonferroni correction for the total number of protein domains 

expressed by either SPLASH or control, to yield the stated p-values.

Lastly it is worth noting that while only counts of the best scoring Pfam hits were 

assessed in this study, other information is also produced by HMMer3. In particular, relative 

alignment positions are given for each hit which could be used to more finely pinpoint the 

precise locus at which sequence variation is detected.

Control analyses—To construct control anchor lists based on abundance, we considered 

all anchors input to SPLASH and counted their abundance, collapsing counts across targets. 

That is, an anchor receives a count determined by the number of times it appears at an 

offset of 5 in the read up to position R - max(0,R/2–2*k) where R is the length of the read, 

summed over all targets. The 1000 most abundant anchors were output as the control set. 

For analysis comparing control to SPLASH anchors, min( |SPLASH anchor list|, 1000) most 

abundant anchors from the control set were used and the same number of SPLASH anchors 

were used, sorted by p-value.

Generation of contingency table heatmaps.—To plot the anchor-target heatmaps, 

we exclude targets with low counts. Concretely, we by default filter out targets that occur 

fewer than 5 times, have less than 5% of the total counts of that anchor, and retain at most 

the top 10 targets, while ensuring that at least 2 targets are plotted. Then, all samples with 

fewer than 5 counts are discarded. For clarity of presentation, we include or remove rows 

corresponding to additional targets based on biological relevance.

SARS-CoV-2 analysis—SARS-CoV-2 data was downloaded from the NCBI: France9 

(SRP365166) and South Africa8 (SRP348159). Sample metadata for the France dataset 

was provided by the authors via personal communication, and consists of their calls of 

the primary and secondary infecting strains for each patient sample. We note that sample 

‘WTA-022002271301_S1’ appeared to be mislabelled, appearing in the metadata file but not 

in the NCBI sample list. Conversely, the sample ‘Pl924-022002271301_S1472’ appears in 

the NCBI sample list, but not in the metadata file. Thus, we associate these labels to each 

other, to obtain metadata labeling for all 106 samples. We do not have information regarding 

which samples are replicates. We provide the NCBI sample list and the strain metadata file 

in Table S1.

The SARS-CoV-2 datasets used in this manuscript were analyzed with SPLASH’s 

unsupervised mode (no sample metadata provided). To identify high effect size anchors, 

a threshold of èffect_size_randCjs` > 0.5 was used (Table S2).

For the purposes of strain-defining mutation analysis, we manually constructed “archetype” 

genome sequences for variant strains Delta, Omicron BA.1, and Omicron BA.2 by editing 

the Original (Wuhan) reference NC_045512.2 to contain all (and only) the defining 

mutations specified at CoVariants.org10; these are provided in Table S1.
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To determine what SPLASH calls (and control anchors) were strain defining we perform 

the following. To generate SPLASH’s calls, we filter for anchors that are significant (with 

a BY corrected p-value less than .05) and have large effect size (> .5), yielding a list of N
SPLASH-called anchors. Control anchors are generated by taking the N anchors with the 

highest counts. For each of these anchors we construct their target × sample contingency 

table, first filtering out all anchors with fewer than 30 counts, only 1 unique target, or only 

1 unique sample, and filtering out all samples with 5 or fewer counts. Then, we discard all 

targets that constitute less than 5% of the remaining counts for that anchor. The remaining 

anchors and targets are then bowtie aligned to an index comprised of the Original, Delta, 

Omicron BA.1, and Omicron BA.2 archetype genomes. For this alignment, options `-a -v 0` 

were used. Then, for each set of anchors (SPLASH calls, and controls), the list is filtered to 

only anchors that align perfectly to at least one of the reference assemblies, further requiring 

that each anchor have at least one target that aligns perfectly to a reference assembly. Then 

for each anchor, we declare it to be strain defining if, for any of the reference assemblies, it 

has at least one target that maps to it and one target that does not.

Identifying cell-type specific isoforms in single-cell data (lung macrophages 
and capillary cells)—The human lung scRNA-seq data used here (HLCA SS2)20 

is accessible through the European Genome-phenome Archive (accession number: 

EGAS00001004344); FASTQ files from donor 1 (P2) and donor 2 (P3) generated with 

the Smart-seq2 protocol were used. In the analysis of HLCA SS2 data, we utilize “isoform 

detection conditions” for alternative isoform detection. These conditions select for (anchor, 

target) pairs that map exclusively to the human genome, anchors with at least one split-

mapping consensus sequence, mu_lev > 5, and M > 100; mu_lev is the average target 

distance from the most abundant target as measured by Levenshtein distance, M is the total 

number of counts in the anchor’s contingency table. To identify anchors and targets that 

map exclusively to the human genome, we included anchors and targets that had exactly 

one element annotation, where that one element annotation must be grch38_1kgmaj. To 

identify anchors with at least one split-mapping consensus, we selected anchors that had at 

least one consensus sequence with at least 2 called exons. The conditions on Levenshtein 

distance, designed to require significant across-target sequence variation, significantly 

reduced anchors analyzed (excluding many SNP-like effects). We further restricted to 

anchors with M > 100, to account for the lower numbers in macrophage cells; note that 

the user can choose to use a lower M requirement, based on input data. These isoform 

detection parameters were used to identify the SS2 examples discussed in this manuscript. 

For HLA discussion, gene names were called using consensus_gene_mode.

While here we focus on anchors that have aligned to the human genome, we note in 

passing that SPLASH makes many predictions of cell-type specific RNA expression that 

include sequences that map to repetitive elements or do not map to the human reference: 

for individual P2 (respectively P3), 53% (61%), of 4010 (4603) anchors map to the human 

genome and no other reference; 35% (30%) map to both the Rfam and human genome; 

6% (7%) have no map to any reference used for annotation which includes repetitive and 

mobile elements. As an example, 9 and 18 such anchors (individual P2 and P3, respectively) 

BLAST to MHC alleles in the NCBI database.
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Immune single-cell analysis—To study human B and T cells, we utilize Tabula Sapiens 

data (Smart-seq2)32, downloaded from https://tabula-sapiens-portal.ds.czbiohub.org/; B 

cells were used from donor 1 (TSP1) and CD4+ T cells from donor 2 (TSP2). 

Mouse lemur single-cell RNA-seq data used in this study was generated as part of the 

Tabula Microcebus consortium34; the FASTQ files were downloaded from https://tabula-

microcebus.ds.czbiohub.org. B cells and natural killer T cells were analyzed separately; both 

were from spleen and were a mixture of individuals L2 and L4. To determine the most 

frequent transcriptome annotation for a dataset, all significant anchors were mapped to the 

human transcriptome (GRCh38, Gencode) with bowtie2, using default parameters and `-k 

1` to report at most one alignment per anchor (Table S4). Then, the bowtie2 transcript hits 

are aggregated by counting over anchors. The transcript hits with the highest counts over all 

anchors were reported. Protein domain profiling was performed as described above.

SPLASH comparison to BASIC analysis in lemur spleen B cells—As part of 

the Tabula Microcebus consortium34, mouse lemur B cells were annotated with BASIC36 

to identify Ig variable domains. However, BASIC was unable to identify the light chain 

variable domain in 35 cells. We used a simple approach to see if SPLASH could identify 

variable domains in these uncalled B cells. We checked the SPLASH genome annotations 

for these cells for anchors mapping to human “IGL” or “IGK” genes; there were only five 

such anchors, all to IGL, and these were found in only eight cells. For those eight cells, we 

retrieved the SPLASH consensus sequences for these anchors, which ranged from 2–5 per 

cell. Where consensuses for a cell overlapped, one was chosen, and these were submitted 

to BLAST against the nr/nt database. Many hits were to “immunoglobulin lambda-like 

polypeptide” 1 or 5 (IGLL), surrogate light chain genes that contain sequence similar to 

lambda J and C regions (as well as a unique N-terminal region) and so could mimic 

alignment to a true lambda variable domain. Therefore, BLAST alignments were checked to 

see whether the match could be assigned to V, J, C, or IGLL-unique regions. 4 cells matched 

C-region, 2 matched IGLL-unique region, and 2 had sequence beyond J-region (presumed 

V-region). For the latter two, we attempted to extend the consensus further into the V-region 

by `grep` in raw reads; one could not be extended as it only had adaptors adjacent to its 

J-region sequence. The other consensus was extended through the full V-region, and its 

sequence is given in Data S1, along with the IGLL-unique matches.

SPLASH for Zostera marina (eelgrass) and Octopus bimaculoides—Data 

was downloaded from SRP327909 (eelgrass40), and SRP278619 (Octopus41), using 

nf-core fetchngs run in default mode75 and preprocessed with fastp53 run in 

default mode to mitigate false positive calls due to adapter concatenation. An 

updated version of SPLASH51 (R-SPLASH v0.3.9, commit 5dafdc8) was run 

with gap length=0, anchor_unique_targets_threshold=1, anchor_count_threshold=50, 

anchor_samples_threshold=1, anchor_sample_counts_threshold=5, and excluding anchor-

targets containing poly A / C / G / T run of length 8. 500 pairs of random c and f were 

chosen. fastp v0.3.9 was installed on 2/23/23 using bioconda.

The top 10 anchor-targets for each anchor were selected from the SPLASH calls if they 

had homopolymer length ≤ 5, effect size > 0.1, and corrected p-value < 0.01. Element 
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annotations were run using SPLASH commit ID 728066b; anchor-targets mapping to 

UniVec, Illumina adapters, SARS-CoV-2, or grass carp were removed. Anchor-targets were 

aligned with STAR 2.7.5 to a reference index generated from either the O. bimaculoides 
reference genome76 (NC_068981.1) and transcriptome41; or the Z. marina nuclear 

genome77 (v3.1, https://phytozome-next.jgi.doe.gov/info/Zmarina_v3_1) and mitochondrial 

and chloroplast genomes78 (NC_035345.1 and NC_036014.1, respectively).

For protein domain profiling, anchor-targets with no element annotation were in silico 
translated in all six frames and submitted to HMMer search of the Pfam database. For Figure 

5B (eelgrass), anchors were ordered by descending number of observations; the top 200,000 

were concatenated with their targets and submitted to element annotations, and unannotated 

anchor-targets were submitted to Pfam; these anchor-targets are defined as controls. For 

each anchor, we retain its best Pfam hit and full sequence E-value. Then for each Pfam 

domain, we tally (separately for SPLASH and control) the number of anchors that hit it with 

a full-sequence E-value ≤1e-02 and ≤1e-06.

For BLAST analysis, we selected anchors with no more than 1 target mapping with either 

STAR to the reference genome or Bowtie2 element annotations, thus cases where no 

sample-specific variation would be detected if a reference genome were used. In eelgrass, 

targets were selected if their fraction exceeded 0.5 and their anchor’s effect size exceeded 

0.9; in octopus, targets were selected if their fraction exceeded 0.3 and if their anchor’s 

effect size exceeded 0.8. The 1808 anchor-target pairs satisfying these criteria in octopus 

were submitted to BLAST with parameters:

-db nt -evalue 0.1 -task blastn -dust no -word_size 24 -reward 1 -penalty −3 - 

max_target_seqs 4

BLAST hits were merged into SPLASH output, with an indicator variable for whether 

the sequence was queried. For octopus anchor-targets, 1061/1808 had a BLAST hit (max 

E-value 0.028). There were 288 hits to octopus, of which 281 were annotated as from 

O. sinensis and 7 from O. bimaculoides. Selected sequences mapping to O. sinensis were 

further analyzed. For eelgrass, 1606/4081 had a BLAST hit (max E-value 0.028).

SPLASH output, merged with Pfam and BLAST analyses, are in Table S5 and Table S6 

(octopus and eelgrass, respectively).

SPLASH can detect myriad genomic events—In this work we focused our 

experimental results on identifying changes in viral strains and specific examples of 

RNA-seq analysis. SPLASH’s probabilistic formulation extends much further however, and 

subsumes a broad range of problems. Many other tasks, some described below, can also be 

framed under this unifying probabilistic formulation. Thus, SPLASH provides an efficient 

and general solution to disparate problems in genomics. We outline examples of SPLASH’s 

predicted applications in various biological contexts, highlighting the anchors that would be 

flagged as significant:

• RNA splicing, even if not alternative or regulated, can be detected by comparing 

DNA-seq and RNA-seq
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– Examples of predicted significant anchors: sequences upstream of 

spliced or edited sequences including circular, linear, or gene fusions

• RNA editing can be detected by comparing RNA-seq and DNA-seq

– Examples of predicted significant anchors: sequences preceding edited 

sites

• Liquid biopsy – reference free detection of SNPs, centromeric and telomeric 

expansions with mutations

– Examples of predicted significant anchors: sequences in telomeres 

(resp. centromeres) preceding telomeric (resp. centromeric) sequence 

variants or chromosomal ends (telomeres) in cancer-specific 

chromosomal fragments

• Detecting MHC allelic diversity

– Examples of predicted significant anchors: sequences flanking MHC 

allelic variants

• Detecting disease-specific or person-specific mutations and structural variation in 

DNA

– Examples of predicted significant anchors: sequences preceding 

structural variants or mutations

• Cancer genomics e.g. BCR-ABL fusions

– Examples of predicted significant anchors: sequences preceding fusion 

breakpoints

• Transposon or retrotransposon insertions or mobile DNA/RNA

– Examples of predicted significant anchors: (retro)transposon arms or 

boundaries of mobile elements

• Adaptation

– Examples of predicted significant anchors: sequences flanking regions 

of DNA with time-dependent variation

• Novel virus’ and bacteria; emerging resistance to human immunity or drugs

– Examples of predicted significant anchors: sequences flanking rapidly 

evolving or recombined RNA/DNA

• Alternative 3’ UTR use

– Examples of predicted significant anchors: 3’ sequences with targets 

including both the poly(A) or poly(U), or adapters in cases of libraries 

prepared by adapter ligation versus downstream transcript sequence

• Hi-C or any proximity ligation
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– Examples of predicted significant anchors: for Hi-C, DNA sequences 

with differential proximity to genomic loci as a function of sample; 

similarly, for other proximity ligation anchors would be predicted when 

the represented element has differential localization with other elements

• Finding combinatorially controlled genes e.g. V(D)J

– Examples of predicted significant anchors sequences in the constant, D, 

J, or V domains

SPLASH can use alternative anchor, target and consensus construction—
SPLASH can function on any biological sequence and does not need anchor-target pairs 

to take the form of gapped k-mers, and can take very general forms. For example, one 

could consider schemes that respect triplet codons: X1X2Y1 X3X4Y2 X5X6Y3 … where Xi are 

bases in the anchor and Yi are bases in the target, this would focus specifically on variation 

in the wobble position, the fastest to diverge; similar schemes might be appropriate for 

mechanisms with known patterns of diversity, such as diversity generating retroelements79. 

X and Y could also be amino acid sequences or other discrete variables considered 

in molecular biology. Much more general forms of anchor-target pairs (or tensors) can 

be defined and analyzed, including other univariate or multivariate hash functions on 

targets or sample identity. SPLASH can also be further developed to analyze higher 

dimensional relationships between anchors, where statistical inference can be performed 

on tensors across anchors, targets, and samples. Similarly, hash functions can be optimized 

under natural maximization criterion, which is the subject of concurrent work. The hash 

functions can also be generalized to yield new statistics, optimizing power against different 

alternatives.

Computational benchmarking for SPLASH—SPLASH is computationally much more 

efficient than other approaches, due to its use of k-mers rather than reference alignment, 

and its closed-form statistics obviating compute-intensive significance testing. SPLASH 

is implemented as a fully containerized and parallelized workflow that requires only the 

FASTQ read files and no parameter tuning by the user. We ran SPLASH on a 2015 Intel 

laptop with an Intel® Core™ i7-6500U CPU @ 2.50GHz processor, generating significance 

calls for single cell RNA-seq totaling over 10 million reads in only 1 hour 45 min. When 

performed on a compute cluster, the same analysis is completed in an average of 22.8 

minutes with 750 MB of memory for 10 million reads.

Because code was run on a server with dynamic memory, we report summary statistics as 

follows. For the steps parallelized by FASTQ file, such as anchor and target retrieval, total 

time for dataset run, as reported by Nextflow, was parsed per cell. Thus, the average time per 

cell is reported. For the steps parallelized by 64 files (q-value calculations), total extracted 

times were summed and divided by number of cells. For steps that consisted of aggregating 

files, total run time was divided by number of cells. Thus, the total time and memory should 

be multiplied by the total number of cells to achieve an estimate of the pipeline time for this 

dataset.

Laptop specs:  An Intel® Core™ i7-6500U CPU @ 2.50GHz (launched in 2015)
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2 cores, total of 4 threads, 3 of which SPLASH was allowed to use.

8 GB DDR3 RAM

SODIMM DDR3 Synchronous 1600 MHz (0.6 ns)

Laptop analysis dataset:  Ten B and T cells from donor 2 blood sequenced by Smart-Seq2 

were used for the laptop benchmarking. These files totalled 43,870,027 reads, averaging 

4.3M reads per cell. The fastq files for the Tabula Sapiens data were downloaded from 

https://tabula-sapiens-portal.ds.czbiohub.org/. Files used:

TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A13_S73_R1_001.fastq.gz

TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A18_S78_R1_001.fastq.gz

TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A19_S79_R1_001.fastq.gz

TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A21_S81_R1_001.fastq.gz

TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A3_S63_R1_001.fastq.gz

TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A5_S65_R1_001.fastq.gz

TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A6_S66_R1_001.fastq.gz

TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A8_S68_R1_001.fastq.gz

TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_A9_S69_R1_001.fastq.gz

TSP2_Blood_NA_SS2_B114581_B133053_Lymphocytes_B10_S94_R1_001.fastq.gz

Anchor and target sequences, with q-values and binomial p-values—Targets are 

numbered by decreasing abundance, unless otherwise stated.

q-values are the BY-corrected p-values output by SPLASH, as detailed in Quantification 

And Statistical Analysis, below.

Binomial p-value calculations are described above, and are with respect to target 1, unless 

otherwise stated.

SARS-CoV-2 mutation K417N (Figure 2A)—q-value: 9.4e-05

binomial p-value: 6.4e-07

>anchor

ATTCATTTGTAATTAGAGGTGATGAAG

>target_1_Delta

ACTGGAAAGATTGCTGATTATAATTAT
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>target_2_K417N_Omicron

ACTGGAAATATTGCTGATTATAATTAT

SARS-CoV-2 mutations V213G, NL211I, R214REPE (Figure 2B)—q-value: 8.3e-08

binomial p-value: 1e-13

>anchor

TTTAAGAATATTGATGGTTATTTTAAA

>target_1_Delta

TAATTTAGTGCGTGATCTCCCTCAGGG

>target_2_V213G_BA.2

TAATTTAGGGCGTGATCTCCCTCAGGG

>target_3_NL211I-R214REPE_BA.1

TATAGTGCGTGAGCCAGAAGATCTCCC

SARS-CoV-2 mutations P681R, N679K, P681H (Figure 2C)—q-value: 1.2e-04

binomial p-value: 4.9e-12

(reverse-complements are shown in Figure 1C)

>anchor

GTGACATAGTGTAGGCAATGATGGATT

>target_1_P681R_Delta (abundance order = 1)

CGACGAGAATTAGTCTGAGTCTGATAA

>target_2_P681R-Q677H (abundance order = 3)

CGACGAGAATTAGTATGAGTCTGATAA

>target_3_P681R-Q677H (abundance order = 4)

CGACGAGAATTAGTGTGAGTCTGATAA

>target_4_N679K-P681H_Omicron (abundance order = 2)

CGATGAGACTTAGTCTGAGTCTGATAA

MYL12A / MYL12B (Figure 3A, S4B)—P2 q-value: 2.5e-08

P2 binomial p-value: 9.9e-37 (with respect to target 2)

P3 q-value: 2.3E-42

P3 binomial p-value: 2.2e-45 (with respect to target 1)

>P2_anchor

AAGAGGCCTTCAACATGATTGATCAGA

>P2_target_2_MYL12A
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TTCATTGGGGAAGAATCCAACTGATGA

>P2_target_1_MYL12B

TTCTCTAGGGAAGAATCCCACTGATGC

>P2_consensus_MYL12A_macrophage

ACAGAGATGGTTTCATCGACAAGGAAGATTTGCATGATATGCTTGCTTCATTGGGGAAGAATCCAACTGA

TGAGTATCTAGATGCCATGATGAATGAGGCTCCAGGCCCCATCAATT

>P2_consensus_MYL12B_capillary

ACAGAGATGGCTTCATCGACAAGGAAGATTTGCATGATATGCTTGCTTCTCTAGGGAAGAATCCCACTGA

TGCATACCTTGATGCCATGATGAATGAGGCCCCAGGGCCCATCA

>P3_anchor

AAGAGGCCTTCAACATGATTGATCAGA

>P3_target_1_MYL12A

GAAGATTTGCATGATATGCTTGCTTCA

>P3_target_2_MYL12B

GAAGATTTGCATGATATGCTTGCTTCT

>p3_consensus_MYL12A_macrophage

ACAGAGATGGTTTCATCGACAAGGAAGATTTGCATGATATGCTTGCTTCATTGGGGAAGAATCCAACTGA

TGAGTATCTAGATGCCATGATGAATGAGGCTCCAGGCC

>p3_cons_MYL12B_capillary

ACAGAGATGGCTTCATCGACAAGGAAGATTTGCATGATATGCTTGCTTCTCTAGGGAAGAATCCCACTGA

TGCATACCTTGATGCCATGATGAATGAGGCCCCAGGGCCCATCAATTT

HLA-DRB1 / HLA-DRB4 (Figure 3B)—P2 q-value: 4.0e-10

P2 binomial p-value: 2e-17

P3 q-value: 1.2e-4

P2 binomial p-value: 1.6e-08

(reverse-complements are shown in Figure 3B)

>P2_anchor

GGAAGCCACAAGGGAGGACATTTTCTG

>P2_target_1_DRB1

GTGGAAGAATAACTGCCAAGCAGGAAA

>P2_target_2_DRB4

GGAAGAATAAGAGCCAAGTGGGAAAGC

>P2_consensus_DRB1_macrophage

GGAAGCCACAAGGGAGGACATTTTCTG

CAGTTGCCGAACCAGTAGCAACCAGGTCCTGAGAAAGCCCTCTCTTGTGGAAGAATAACTGCCAAGCAGG

AAAGCTTTTCATTCTGCAAAGCTGGGACAGAAGGTTCTTCCTTGAATGT

>P2_consensus_DRB4_capillary

CAGAGTTGCTGAACCAGTAACAACCTGGTCCTGACAAAGCTCTTGTGGAAGAATAAGAGCCAAGTGGGAA

AGCTTTTCATCTTGCAAAGCTGGGGCAGAAGGTTCTTCCTTGAATGT
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>P3_anchor (same sequence as P2_anchor)

GGAAGCCACAAGGGAGGACATTTTCTG

>P3_target_1_DRB1

AGGTCCTGAGAAAGCCCTCTCTTGTGG

>P3_target_3_DRB4

CCTGGTCCTGACAAAGCTCTTGTGGAA

>P3_consensus_DRB1_macrophage

CAGTTGCTGAACCAGTAGCAACCAGGTCCTGAGAAAGCCCTCTCTTGTGGAAGAATAACAGCCAGGAGGG

AAAGCTTTTCATCCTGCAAAGCTGGGGCAGAAAGTTCTTCT

>P3_consensus_DRB4_capillary

GGAAGCCACAAGGGAGGACATTTTCTG

CAGAGTTGCTGAACCAGTAACAACCTGGTCCTGACAAAGCTCTTGTGGAAGAATAAGAGCCAAGTGGGAA

AGCCTTTCATCTTGCAAAGCTGGGGCAGAAGGTTCTTCCTTGA

HLA-DPA1 / HLA-DPB1 (Figure 3C, S4C)—P3 q-value: 7.9e-22

P3 binomial p-value: 9.15e-18

(anchor as given here is sense strand for DPA1, antisense strand for DPB1)

>P3_anchor

AGATGTATCTCTCCAGGAAGCGCTGTG

>P3_target_1_DPA1

TGCCGTCCCTGGAAAAGGTGAATCCCA

>P3_target_2_DPB1

TGCCGTCCCTGGAAAAGGTAATTCTCT

>P3_consensus_DPB1_macrophage

TCCCATTAAACGCGTAGCATTCCTGCCGTCCCTGGAAAAGGTAATTCTCTGGAGTGGCCCTGCCCTGGAC

CACAGATGTGAGCAGCACCATCAGTAACGCCGTCAGAGCCACT

>P3_consensus_DPA1_capillary

TCCCATTAAACGCGTAGCATTCCTGCCGTCCCTGGAAAAGGTGAATCCCAGCCATGCTGATTCCTCTCCA

CCCATTTCCAGTGCTAGAGGCCCACAGTTTCAGTCTCATCTGC

HLA-B (Figure 3D, S4D)—q-value: 2.7e-05

binomial p-value: 1.7e-25

>anchor

TTGGGACCGGAACACACAGATCTTCAA

>target_1_HLA-B

AGAGCCTGCGGAACCTGCGCGGCTACT

>target_2_HLA-B

AGAACCTGCGGATCGCGCTCCGCTACT

>consensus_1_HLA-B
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TTGGGACCGGAACACACAGATCTTCAAGACCAACACACAGACTGACCGAGAGAGCCTGCGGAACCTGCGC

GGCTACTACAACCAGAGCGAGGCCGGGTC

>consensus_2_HLA-B

TTGGGACCGGAACACACAGATCTTCAAGACCAACACACAGACTTACCGAGAGAACCTGCGGATCGCGCTC

CGCTACTACAACCAGAGCGAGGCCGGGTC

human Ig-kappa C-region (Figure 4B)—q-value = 1.6E-35

>anchor

TGGCGGGAAGATGAAGACAGATGGTGC

>Targ0

GCTTGGTCCCCTGGCCAAAAGTCCCGG

>Targ1

GCTTGGTCCCCTGGCCAAAAGGGCTAC

>Targ2

GCTTGGTCCCCTGGCCAAAAGTGTACG

>Targ3

CCTTGGTCCCTCCGCCGAAAGAAGGTG

>Targ4

GCTTGGTCCCCTGGCCAAAAGTGTCGT

>Targ5

GCTTGGTCCCCTGGCCAAAAGTGCCCG

>Targ6

CTTTGGTCCCAGGGCCGAAAGTGAATA

>Targ7

CCTTGGTCCCTTGGCCGAACGTCCACC

human TCR-alpha C-region (Figure 4B)—q-value = 3.4E-5

>anchor

GTACACGGCAGGGTCAGGGTTCTGGAT

>Targ1

TGCCTTTGCCGAAGTTGAGTGCATACC

>Targ2

TCCCTGATCCAAAGATTATCTTGGAAG

>Targ3

TGCCTGTCCCAAAGGTGAGTTTGTTTC

>Targ4

TCCCAGCGCCCCAGATTAACTGATAGT

>Targ5

TCCCCCTTGCAAAGAGCAGCTTCTGGC

>Targ6

TTCCTCCTCCAAAAGTTAGCTTGTTGC
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>Targ7

TCCCTGTCCCAAAATAGAACTGGTTAC

>Targ8

TTCCTCTTCCAAAGTATAGCCTCCCCA

>Targ9

TTCCCTTTCCAAAGACCAGCTTTTCAG

>Targ10

TTCCCTGTCCGAAGATAAGCTTTCCTC

>Targ11

TCCCTGCTCCAAAGCGCATGTCATTGT

>Targ12

TTCCCTTCCCAAAGATCAGAGCAGTTC

>Targ13

TCCCAGATCCAAAGTAAAATTTGTTGA

>Targ14

TCCCTTGCCCAAAGATTAGTTTGCCTG

>Targ15

TTCCTCTTCCAAATGTAGGTATGTAGC

>Targ16

TTCCATCTCCAAACATGAGTCTGGCAT

>Targ17

TTCCACTCCCAAAAGTAAGTGCTCTCC

>Targ18

TTCCTTTTCCAAATGTCAGTTTATAGT

>Targ19

TGCCTGTTCCAAAGATGTATTTGTAGG

>Targ20

TTCCAGTTCCAAAGGTAACTTTCTGGT

>Targ21

TCCCTTGTCCAAATGTCAGCTTTCCAT

>Targ22

TCCCCTTCCCGAAAGTGAGTTGGTAAC

>Targ23

TGCCAGTTCCAAAGATGAGCTTGTTTG

lemur Ig-heavy V-region (Figure 4B)—q-value = 1.3E-11

>anchor

AGCCTGGGGGGTCCCTGAGACTCTCCT

>Targ0

AGTGACTACTACATGAGCTGGGTCCGC

>Targ1

AGCAGCTATGGGATGAACTGGGTCCGC

>Targ2
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AGCAACTACTGGATGAGCTGGGTCCGC

>Targ3

AAGAACTATGAGATAAACTGGGTCCGC

>Targ4

AGCAGCTACTACATGCACTGGGTCCGC

>Targ5

AGCAGCTACGATATGAACTGGGTCCGA

>Targ6

AGTGACTACTACATGAACTGGGTCCGC

>Targ7

AGCAGCCATGGAATGCACTGGGTCCGC

>Targ8

AGCAGCTACGATATGAACTGGGTCCGC

>Targ9

AGCAGCTATGATATGCATTGGGTCCGC

>Targ10

AGTGACCACCACATGAGCTGGGTCCGC

>Targ11

GATGACTACCTCATGCACTGGATCCGC

>Targ12

AGCAGCTATGCCATGAGCTGGGTCCGC

>Targ13

AGTAGTTACTGGATGAACTGGGTCCGC

>Targ14

GATTACTATGGCATGAACTGGGTCCGC

>Targ15

ACCAATTTTGGGATGAACTGGGTCCGC

>Targ16

AGCAGCTATGGGATGCACTGGGTCCGC

>Targ17

ACCAGTTATGGGATGAACTGGGTCCGC

lemur TCR-alpha C-region (Figure 4B)—q-value = 4.1E-7

>anchor

TCAGCTGGTACACGGCGGGGTCAGGGT

>Targ0

AGTCTGGTCCCTGCTCCAAAGCGCAGA

>Targ1

AGCCTGGTCCCTGCTCCAAAAATCAAC

>Targ2

AGCAGAGTGCCAGTCCCAAAGATGAGC

>Targ3

ACGGTGGTTCCTTTCCCAAAGATCAAC
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>Targ4

AGTTGGGTGCCAGTTCCAAACACGGGT

>Targ5

AACTGGGTCCCGGATCCAAAGGTCAGT

>Targ6

AGTTGTGTCCCTTTTCCAAAGGTGACT

>Targ7

AGTTTGGTCCCAGATCCAAAGTAAAAT

>Targ8

AATCTGGTCCCAGTCCCAAAGATGAGC

>Targ9

AGTCTGGTCCCTGATCCAAAGATTAGC

Octopus bimaculoides Myo-VIIa (Figure 5A)—q-value = 4.0e-03

(reverse-complements shown in Figure 5A)

>anchor

CCATTTTTGCTTTTTGTTTAAAATCCA

>target_1

ATTATATCACAAGTTATAAGGCATGCC

>target_2

ATTATATCTTAATAAATGGATACACTA

fucoxanthin chlorophyll a/c protein, diatom (Figure 5C)—q-value = 6.0e-08

(reverse-complements shown in Figure 5C)

>anchor

AAGTATCCAACAACGGCAAGCATGGAG

>target_1 (abundance order = 1)

ATACGTCCGTGCTTGAGCTCGACAAAT

>target_2 (abundance order = 6)

ATACGGCCGTGCTTGAGCTCGACAAAT

>target_3 (abundance order = 2)

ATACGTCCGTGCTTGATCTCGACGTAT

>target_4 (abundance order = 4)

ATACGTCCGTGCTTGATCTCAACGTAT

>target_5 (abundance order = 5)

ATACGTCCGTGCTTGATCTCGACGTAC

>target_6 (abundance order = 3)

ACACGTCCATGCTTAATTTCGACATAT
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Zostera marina NADPH quinone oxidoreductase subunit L (NdhL) (Figure 5D)
—q-value = 6.5e-56

(reverse-complements shown in Figure 5D)

>anchor

AATCGAAGCCAATTCATGATGATAGGC

>target1

GGCATGATAAGGAAGTAGAAGAAAGCA

>target2

GGCATGATAAGGAAGTAGAAGAAAACA

>target3

GGCATGACAAGGAAGTAGAAGAAAGCA

>target4

TTCGATCATGCAGTTCAATCAATGATC

human MYL6 (Figure S4A)

>P2_anchor

AAGGTCCTCAGCCATTCAGCACCATGC

>P2_consensus1_macrophage

GGACGAGCTCTTCATAGTTGATACAACCATTGCTGTCCTCATGCCCTGCCACCAGCATCTCTACTTCTTC

CTCTGTCATCTTCTCACCCAGTGTGACAAGAACATGCCGGATTTC

>P2_consensus2_capillary

GGACGAGCTCCGCCCCATGGGCCCGTCACCCCGACAGGATATGCCTCACAAACGCTTCATAGTTGATACA

ACCATTGCTGTCCTCATGCCCTGCCACCAGCATCTCTACTTCTTCC

>P2_target1

TGCCACCAGCATCTCTACTTCTTCCTC

>P2_target2

CACAAACGCTTCATAGTTGATACAACC

>P3_anchor (same as P2)

AAGGTCCTCAGCCATTCAGCACCATGC

>P3_consensus_macrophage

AAGGTCCTCAGCCATTCAGCACCATGCGGACGAGCTCTTCATAGTTGATACAACCATTGCTGTCCTCATG

CCCTGCCACCAGCATCTCTACTTCTTCCTCTGTCATCTTCTCACCCAGTGTGACAAGAACATGCCGGA

>P3_consensus_capillary

AAGGTCCTCAGCCATTCAGCACCATGCGGACGAGCTCCGCCCCATGGGCCCGTCACCCCGACAGGATATG

CCTCACAAACGCTTCATAGTTGATACAACCATTGCTGTCCTCATGCCCTGCCACCAGCATCTCTACTTCT

TCCT

>P3_target1

CAACCATTGCTGTCCTCATGCCCTGCC

>P3_target2

CGTCACCCCGACAGGATATGCCTCACA
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mouse lemur COX2 (cytochrome c oxidase subunit II) (Figure S5A)—(reverse-

complements are shown in Figure S5A)

>anchor

ATTTAGGCGCCCTGGGATAGCATCTGT

>target_1

TTCATGAATGTAGTACGTCTTCTGAAG

>target_2

TTCATGAATGTAATACGTCTTCTGAAG

lemur IGLC3 with 97 targets (Figure S5B)

>anchor

ACCGAGGGGGCGGCCTTGGGCTGACCT

>Targ0

GCCGAACACCCCAGTGCCACCACTCCT

>Targ1

GCCGAAGATATGACCACTCAGGCTGTC

>Targ2

GCCGAACACATGATTGTAGCTGCCATC

>Targ3

GCCGAATACATTAACACCACTGTTGTC

>Targ4

GCCGAACACATAACCATATGAATCACC

>Targ5

GCCGAACACACCACCACTGCTGTCCCC

>Targ6

GCCGAACACATTAACACCACCGTCCCA

>Targ7

GCCGAATACAGCACTGTTGTGCCACAC

>Targ8

GCCGAAGATATAAGTGTTCCTGCCCGC

>Targ9

GCCGAACACACCAACACCACTGCTGTC

>Targ10

GCCGAACACACCAACACCAGTTTCCCA

>Targ11

GCCGAAGATAACACCACTGTTGTCCCA

>Targ12

GCCGAACACACTGTAGCTGCCATCATA

>Targ13

GCCGAACACATAACCATATGAACCACC

>Targ14
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GCCGAAGATATACTGAATGCTGCTCCC

>Targ15

GCCGAAGATATAAGTATTAGAGCTGCC

>Targ16

GCCGAACACCCGAGCATCAAGACTGCT

>Targ17

GCCGAATACATAAGCACTCAGGCTTTT

>Targ18

GCCGAACACCCGACCATTCAGGCTGCT

>Targ19

GCCGAATACATAAGTGCCACTGTTGGC

>Targ20

GCCGAAGATATACGCACTCAGGCTACT

>Targ21

GCCGAACACCTGACCACTCAGGCTACT

>Targ22

GCCGAACACACCAACACCACTGTTGTC

>Targ23

GCCGAACACCCAACTAGCACTGGCATC

>Targ24

GCCGAACACACCAGCACGTAGGCTGCT

>Targ25

GCCGAACACATGACCACTCAGGCTACT

>Targ26

GCCGAACACATGAGCACTCAGGCTTCT

>Targ27

GCCGAACACCCGACTGTAGCTGCCATC

>Targ28

GCCGAAGATATTAACACCACTGTTGTC

>Targ29

GCCGAAGATATCACTCAGGCTACTGTC

>Targ30

GCCGAACACCCAACTCTTAGAGCTGCC

>Targ31

GCCGAACACATCAGCACTGTTGTGCCA

>Targ32

GCCGAACACAAGATTGTAGCTGCCATC

>Targ33

GCCGAACACATAACTCTTAGAGCTGCC

>Targ34

GCCGAACACCCCAGTGCCACCACTCTT

>Targ35

GCCGAACACATCACCACTCAGGCTACT

>Targ36
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GCCGAACACCCTGCTGTCATAGGACTG

>Targ37

GCCGAACACCCAATTAACACCACTGCT

>Targ38

GCCGAACACCCAAGCATCAAGACTGGT

>Targ39

GCCGAACACACGAGCATCAAGACTGCT

>Targ40

GCCGAACACCCAACCATATGAATCACC

>Targ41

GCCGAACACACCATGACCACTCAGGCT

>Targ42

GCCGAACACACCATAGTTTCCATAACC

>Targ43

GCCGAACACCGCATTAAGACTGCTGTC

>Targ44

GCCGAAGATATACTGGTTGCTGAACCA

>Targ45

GCCGAACACACCATGAGTACCAGTGCT

>Targ46

GCCGAATACATGACCACTCAGGCTGTC

>Targ47

GCCGAACACACCATCAAGACTGCTGTC

>Targ48

GCCGAAGATATAAGTGCCGCTGCCCGC

>Targ49

GCCGAACACATGACCACTCAGGCTTCT

>Targ50

GCCGAACACACCAGCATCAAGACTGCT

>Targ51

GCCGAAGATATAAGTGTTGCTGCCCGC

>Targ52

GCCGAACACCCAAGCATCAAGACTGCT

>Targ53

GCCGAACACACCATGACTCAGGCTGCT

>Targ54

GCCGAACACCCAAACACCACTGTTGTC

>Targ55

GCCGAACACATGAGCACTCAGGCTACT

>Targ56

GCCGAACAGACCACTCAGGCTACTATC

>Targ57

GCCGAAGATATACCCATATGAACCACC

>Targ58
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GCCGAAGATATGACCACTCAGGCTACT

>Targ59

GCCGAACACCCAACCATATGAACCACC

>Targ60

GCCGAATACATAATTGTAGCTGTCATC

>Targ61

GCCGAACACACCACCACTCAGGCTGTC

>Targ62

GCCGAACACAAAATTAACACCACTGCT

>Targ63

GCCGAACACAGCACGCAGACTGCTGTC

>Targ64

GCCGAACACCCAAGTGCCGCTGCCCGC

>Targ65

GCCGAACACCCAGCACTGTTGTGCCAC

>Targ66

GCCGAAAACATAAGTCTTAGACCTGCC

>Targ67

GCCGAAGATATACGTATCAAGACTGCT

>Targ68

GCCGAAGATATTGTTTTCACTAACCCA

>Targ69

GCCGAAGATAGCACTGTTGTGCCACAC

>Targ70

GCCGAACACACGAGCACCCAGACTACT

>Targ71

GCCGAATACATGACCATTCAGGCTGCT

>Targ72

GCCGAATATATAACTCTTAGAACTGCC

>Targ73

GCCGAACACAAAACGGTTGCTGAACCA

>Targ74

GCCGAACATCCAACTCTTAGAGCTGCC

>Targ75

GCCGAACACCCAAGTCTTAGAGCTGCC

>Targ76

GCCGAACACATGACTGTAGCTGTCATC

>Targ77

GCCGAACACCCAATGGTTGCTGAACCA

>Targ78

GCCGAACACCCAAAGTGCCGCTGCCCG

>Targ79

GCCGAACACACCAGTCTTAGAGCTGCC

>Targ80
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GCCGAAGATATTAACACCAGTTTCCCA

>Targ81

GCCGAACACACTGTAGCTGTCATCATA

>Targ82

GCCGAATACAAATGGTTGCTGAACCAC

>Targ83

GCCGAACACCCTATTAACACCACTGCT

>Targ84

GCCGAACACAGCATCAAGACTGCTGTC

>Targ85

GCCGAATACATAATCAAGACTGCTGTC

>Targ86

GCCGAACACACCACTCAGGCTACTATC

>Targ87

GCCGAAGATAGCATGAGTACCAGTATT

>Targ88

GCCGAAGATAAGACCACTCAGGCTACT

>Targ89

GCCGAACACAATAGCTGCCATCATAAG

>Targ90

GCCGAACACCTGATTGTAGCTGTCATC

>Targ91

GCCGAACACAAGACTAACACTGTCATC

>Targ92

CAGAGGCCTGTGTCCACCTGGGGAGCC

>Targ93

GCCGAACACACCTAGAGCTGCCATTCC

>Targ94

GCCGAATACATTAACACCACTGCTGTC

>Targ95

GCCGAATACATAATTGTAGCTGCCATC

>Targ96

GCCGAAGACAAACATCGACTGAGGCTC

lemur TCR-beta J-region (Figure S5C)

>anchor

CCGGGTCCCTGGCCCGAAGAACTGCTC

>Targ0

TGCCGCTGCAGATGTAGACGCCGCTGT

>Targ1

CGCAGAGATACAGGGCCGAGTCCCCCA

>Targ2

TGGCACAGAGGTACGTGGCGGAGTCTT
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>Targ3

TGCTGGCACAGAGGTACGTGGCAGAGT

>Targ4

AGAGGAACAGGGCCGAGTCCCCCAGCG

lemur TCR-gamma V-region (Figure S5D)

>anchor

ACCCTCACCATTCACAATGTAGAGAAA

>Targ0

TGCCCGTGAACTCTTCAGTAATGGAAC

>Targ1

TGCCTCCTGGGAGTCTAGGAAACTCTT

>Targ2

TGCCTCCTGGGACTGACGACTTACCAA

>Targ3

TGCCTCCTGGGAGTTGAATTTTTATAG

>Targ4

TGCCTCCTGGGAGTTGCACAGTGTCAC

>Targ5

GCCCGTGAACTCTTCAGTAATGGAACA

>Targ6

TGCCTCCTGGGAGTCGCTCTCTAATAT

>Targ7

TGCCTCCTGGGAGTTGCACAGAAGATT

Octopus bimaculoides carboxypeptidase D (Figure S6A)—(reverse-complements 

are shown in Figure S6A)

>anchor

GGAATTAGAAGAAAAATCTATTATGAA

>target_1

AAATGTTTAGGCCAATATCTAAAGGCA

>target_2

AAATGTTTAGGAAAAATTTTCTGCCAA

Octopus bimaculoides Upf2 (regulator of nonsense transcripts 2) (Figure S6B)
—(reverse-complements are shown in Figure S6B)

>anchor

GTATTGCACTGCATTGTACTGCACTGT

>target_1

CGCTGCTGCTGCTGCTGCTGCCAATTG
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>target_2

CGCTGCTGCTGCTGCTGCCAATTGCCT

Octopus bimaculoides netrin receptor / DCC (Figure S6C)—(reverse-complements 

are shown in Figure S6C)

>anchor

TCTATTACAGCTATCATCAATACACTT

>target_1

TTGGATGTCTTCGTGTTCTCACTGCAG

>target_2

TTGGATGTCTTTGTGTTCTCACTGCAG

HMG-box (diatom) (Figure S7A)—(reverse-complements are shown in Figure S7A)

>anchor

TGCGGTCCTTGAATTCTTGCTTCTCTT

>target_1

TATCCGAAAGAGCCCTCCACATTTCAC

>target_2

CGTCCGTCAGAGCTCTCCACATTTCTC

ferredoxin (diatom) (Figure S7B)—(reverse-complements are shown in Figure S7B)

>anchor

ACGGCACGAGTAGGGAAGTTCAATTCC

>target_1

GGCTTCTTCAGCAGCGTCGACAATGAA

>target_2

GGCTTCTTCGGCAGCGTCGACAATGAA

Open-source figure attributions—Person graphic, by Tanguy Krl: https://

thenounproject.com/icon/person-1218528

Virus graphic, by Nuttapon Pohnprompratahn: https://thenounproject.com/icon/

virus-2198681.

Gears graphic, by Tresnatiq: https://thenounproject.com/icon/gears-1088494.

Clock graphic, by sudan: https://thenounproject.com/icon/clock-5677937.

Book graphic, by Arjan: https://thenounproject.com/icon/open-book-1361747.
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SARS-CoV-2 virion, by Centers for Disease Control and Prevention (CDC): 

https://commons.wikimedia.org/wiki/File:SARS-CoV-2_without_background.png Octopus 

bimaculatus, by United States Fish Commission (1910): https://commons.wikimedia.org/

wiki/File:Octopus_bimaculatus1.jpg

Diatom, by George Swann: https://commons.wikimedia.org/wiki/File:Diatom_4.png

Zostera marina, by Carl Axel Magnus Lindman: https://commons.wikimedia.org/wiki/

File:491_Zostera_marina.jpg

Gray mouse lemur, by Gabriella Skollar: https://commons.wikimedia.org/wiki/

File:Gray_Mouse_Lemur_1.JPG

QUANTIFICATION AND STATISTICAL ANALYSIS

SPLASH p-values—SPLASH’s analysis is based on a new statistical method for 

analyzing contingency tables, to reject the null hypothesis that row (target) counts are drawn 

from the same distribution for all samples. Despite its rich history, the field of statistical 

inference for contingency tables still has many open problems80. The field’s primary focus 

has been on either small contingency tables (2×2, e.g. Fisher’s exact test81), high counts 

settings where a chi-square test yields asymptotically valid p-values, or computationally 

intensive Markov-Chain Monte-Carlo (MCMC) methods. While contingency tables have 

been widely analyzed in the statistics community80,82,83, to our knowledge no existing tests 

provide closed form, finite-sample valid statistical inference with desired power for the 

application at hand. In this work, we develop a flexible statistical test that provides closed 

form p-value bounds, meaning that no permutation, resampling or numerical solutions 

to complex likelihoods are required for significance tests. In subsequent work, more 

sophisticated (optimization-based) approaches to computing improved f and c have been 

developed, leveraging a linear algebraic perspective on the test statistic52.

We develop a test statistic S that has power to detect many forms of sample-dependent 

sequence variation and is designed to have low power when there are a few outlying samples 

with low counts. Considering the target × sample contingency table, we first randomly draw 

a vector f, which maps each target independently to {0,1} equiprobably. We then compute 

the mean value of targets with respect to this function. Next, we compute the mean target 

value within each sample with respect to f. Then, an anchor-sample score is constructed 

for sample j, Sj, as a scaled version of the difference between these two (scaled by the 

square root of the total counts for this sample). Finally, the test statistic S is computed as 

the weighted sum of these Sj, with weights cj (which denote class-identity in the two-group 

case with metadata and are chosen randomly without metadata, see below). In the below 

equations, Dj, k denotes the sequence of the k-th target observed for the j-th sample (for 

analysis purposes, we assume that the targets are drawn in a random order), nj is the number 

of observations in this sample, and M denotes the total number of observations of this 

anchor.
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μ = 1
M ∑

j, k
f Dj, k

μj = 1
nj

∑
k = 1

nj
f Dj, k

Sj = nj μj − μ

S = ∑
j = 1

p
cjSj

Statistically valid p-value bounds (non-asymptotic, providing control of Type I error for 

finite number of observations) are computed as:

P = 2 exp − 2(1 − a)2S2
∑j:nj > 0 cj

2 + 2exp − 2a2MS2

∑j cj nj
2 with a = 1 + M∑j cj

2

∑j cj nj
2

−1

by applying Hoeffding’s inequality on these sums of independent random variables (under 

the null). We provide a graphical description of this procedure in (Figure S1A), and details 

the derivation below.

First, observe that S has mean 0 under the null hypothesis. This allows us to bound 

the probability that the random variable S is larger than our observed anchor statistic as 

follows. Since f and c are fixed, and are independent of the data, we have that since f Dj, k

are bounded between 0 and 1 we can apply Hoeffding’s inequality for bounded random 

variables. Defining μ as the expectation with respect to the common underlying distribution 

of f Dj, k  (unknown), we center our random variables by subtracting the sample mean μ, 

our estimate of the true mean μ. Standard bounds can now be applied to decompose this 

deviation probability into two intuitive and standard terms, which we then bound with 

Hoeffding’s inequality for bounded random variables:

1. the probability that the statistic S, constructed with unavailable knowledge of the 

true

S = ∑
j

cj μj − μ

μ, is large

2. the probability that μ is far from μ.
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ℙ( S ≥ ϵ)

= ℙ ∑
j, k

cj
f Dj, k − μ

nj
≥ ϵ

= ℙ ∑
j, k

cj
f Dj, k − μ

nj
+ (μ − μ)∑

j
cj nj ≥ ϵ

≤ min
a ∈ (0, 1)

ℙ ∑
j, k

cj
f Dj, k − μ

nj
≥ (1 − a)ϵ + ℙ (μ − μ)∑

j
cj nj ≥ aϵ

=(a) min
a ∈ (0, 1)

ℙ ∑
j, k

cj

nj
f Dj, k − μ ≥ (1 − a)ϵ + ℙ 1

M ∑
j, k

f Dj, k − μ ≥ aϵ
∑jcj nj

≤
(b)

min
a ∈ (0, 1)

2exp − (1 − a)2ϵ2

2∑j, k
cj

2

4nj

+ 2exp −

a2M2ϵ2

∑j cj nj
2

2M 1
4

= min
a ∈ (0, 1)

2exp − 2(1 − a)2ϵ2
∑j:nj > 0 cj

2 + 2exp − 2a2Mϵ2

∑j cj nj
2 .

The bound is optimized to within a factor of 2 by equating the two terms, with a 

as stated.

This statistic is computed for K different random choices of f, and in the case where sample 

group metadata is not used or available, jointly for each of the L random choices of c
(each entry drawn independently as ±1), here with K = 10 and L = 50. The choice of f and 

c that minimize the p-value bound are reported, and are used for computing the p-value 

bound for this anchor. To control Type I error we apply Bonferroni correction over the 

L × K multiple hypotheses tested (just K when sample metadata is used and randomization 

on c is not performed). Then, to determine the significant anchors, we apply Benjamini-

Yekutieli (BY) correction84 to the list of p-value bounds (one for each anchor), yielding 

valid FDR controlled q-values reported throughout the manuscript implemented with the 

statsmodels.api.stats.multipletests functionality in python. Additional theoretical properties 

of this statistic, and an improved p-value bound, have been developed in follow-up work52.

SPLASH effect size—SPLASH provides a measure of effect size when the cj’s used 

are ±1, to allow for prioritization of anchors with large inter-sample differences in target 

distributions (as the p-value bound is heavily impacted by the number of observations). 

Effect size is calculated based on the split c and vector f that yield the smallest SPLASH 

p-value bound. Fixing these, the effect size is the absolute value of the difference between 

the mean target value (with respect to f) across those samples with cj = + 1 denoted A+, and 

the mean target value (with respect to f) across those samples with cj = − 1 denoted A−.

1
∑j ∈ A+ nj

∑
j ∈ A+

njμj − 1
∑j ∈ A− nj

∑
j ∈ A−

njμj
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The effect size should be thought of under the alternative hypothesis where the columns 

follow multinomial distributions with probability vector p1 or probability vector p2, 

depending on the group identity cj. The effect size we compute can be thought of in this 

scenario as measuring the difference between the expectation of f under p1 and p2. In the 

case of maximizing the effect size over all possible {0,1}-valued f, the effect size will be 

equal to the total variation distance between the empirical distributions of the group cj = + 1
and cj = − 1. Thus, the effect size will be 1 if and only if the two sample groups partition 

targets into 2 disjoint sets on which the function f takes opposite values, as to be expected 

from the total variation distance interpretation (Figure S1B). This f will place a value of 1 

on targets where the empirical frequency of the +1 group p1, t is larger than that of the −1 

group p2, t. Since p1 and p2 are probability distributions, this ends up being exactly the total 

variation distance between them (i.e. half the vector ℓ1 distance).

Binomial p-value bound computation for plots depicting target fraction 
abundance—We provide p-values to quantify the visually striking nature of the plots 

depicting fraction abundance per a specific target (target 1 by default). Under a null model, 

where all samples are expressing this target with the same probability, the number of times 

each sample expresses target 1 is binomial(nj,p), for common p. As seen from the plots, 

many samples exhibit highly deviating occurrences (number of observations of target 1 that 

are far from the expected pnj. The p-values we provide to this effect are not used in any 

SPLASH discovery or analysis, and are just used to quantify the visuals.

p-values are constructed as follows: first, we compute p, the average occurrence of target 

1 for this anchor (sum of counts of observations of target 1 divided by the total number 

of observations). Then, for all possible nj, we compute 1% and 99% quantiles (confidence 

bounds) for a binomial distribution with nj trials and heads probability p. If the fraction of 

target 1 in each sample was independent of sample identity, and were indeed binomially 

distributed, then each sample would have at least a 98% probability of falling within this 

confidence interval. Thus, we compute our test statistic X as the number of samples that fall 

outside of the [1,99] quantiles, and compute as our p-value the probability that a binomial 

random variable Bin(m, q)≥ X, where with m = number of samples and q = .02.

While intuitive, the above analysis is loose. Firstly, since binomials are discrete distributions, 

we will rarely be able to compute exact 1% and 99% quantiles. Thus, the probability that for 

any given nj a sample will fall outside of the [1,99] quantiles, which we denote qj, is almost 

always substantially less than .02. The true distribution of X is then poisson binomial, with 

this vector of probabilities (all at most .02), one for each sample. However, as this p-value is 

numerically difficult to compute, we bound this p-value as the probability that Bin(m, q’)≥X, 

where m = number of samples with q’ = maxj qj, where q’ ≤ .02.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Paradigm for statistical detection of sample-dependent variation in sequencing 

data

• Computationally efficient, widely applicable, without need for reference 

genomes

• Finds viral strain mutations; cell-type specific isoforms; Ig and TCR diversity

• Finds octopus tissue isoforms; eelgrass/diatom seasonal, geographic variation
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Figure 1. Overview of SPLASH
A. An anchor is a sequence of length k (k-mer) in a read; its target is the k-mer that follows 

it after a fixed offset of length R. An anchor may occur with different targets, which can 

capture many types of variation; examples are depicted schematically, with the anchor as a 

blue box and the targets as orange or violet boxes.

B. SPLASH compiles a table for each anchor, where the columns are samples, the rows are 

targets, and the entries are the respective occurrence counts. SPLASH tests multiple random 

splits of the samples, calculating a test statistic that measures the deviations between each 
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sample’s target distribution and the average target distribution over all samples, searching 

for the most discriminating split. For the best split identified, SPLASH reports a p-value 

bound.

C. Alignment-based pipelines are limited by the need for a reference genome, compute-

intensive, and difficult to model statistically due to their complexity. SPLASH detects 

variation directly from raw reads with rigorous statistics, is compute-efficient, and detects 

many kinds of variation at once.

D. Some considerations of when SPLASH may be most useful, which reflect its design 

characteristics.
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Figure 2. SPLASH identifies strain-defining and other variation in SARS-Cov2
In A-C, sets of targets that distinguish SARS-CoV-2 strains are shown; all are in the spike 

protein (S) gene. Each heatmap has columns for different samples (patients) and rows for 

different targets; the coloring indicates the fraction of that target observed in that patient. 

Summary anchor counts are given for rows and columns. Also shown is a map of the 

categorical metadata of what strains (primary and secondary) were identified in each patient 

in the original study; this data was not used by SPLASH, but there is evident agreement 
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between the heatmap and the metadata strain assignment. Binomial p-value bounds were 

computed per STAR Methods.

A. Distinguishing at the major strain level: target 1 (no mutation) matches Delta; target 

2 contains K417N, found in all Omicron (both BA.1 and BA.2 sub-strains); two patients 

co-infected with Delta and Omicron show both targets. (p = 6.4E−07).

B. Distinguishing at the sub-strain level: target 1 (no mutation) matches Delta; target 2 with 

V213G is specific for BA.2; target 3 with a deletion (NL211I) and insertion (R214REPE) is 

specific for BA.1. (p = 1.0E−13)

C. Distinguishing non-strain related mutations: target 1 has P681R, Delta specific; targets 2 

and 3 encode Q677H (by different mutations) and P681R; target 4 has N679K and P681H, 

Omicron specific. (p = 4.9E−12)

D. Protein domain profiling in SARS-CoV-2. The top four and bottom four Pfam protein 

domain hits are shown. S1 Receptor binding domain (RBD) and S2 domain show high 

variation by SPLASH in both datasets. Other Pfam abbreviations: bCoV = beta-coronavirus; 

CoV = coronavirus, nucleocap = nucleocapsid N = N-terminal domain, SARS = Severe 

acute respiratory syndrome coronavirus, M, NS7A, NSP1, NSP8, 3b, NSP10 = viral 

proteins.
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Figure 3. Cell-type specific expression of paralogs and HLA from single-cell data
Figures A-C show spread plots, each dot representing the relative isoform expression in a 

single cell; bar marks average relative expression across all cells.

A. Human MYL12A and MYL12B lie adjacent on chromosome 18, a region syntenic in 

mammals, chickens, and reptiles. The sequence alignment shows the two genes are very 

similar in the coding region, and marks the anchor and two targets for individual P2 (P3 has 

a distinct anchor). Macrophages express relatively more MYL12A and capillary cells more 

MYL12B, consistent in two individuals.

B. The HLA-DRB locus occurs as several different haplotypes, all containing DRB1 but 

differing in paralog (DRB3, DRB4, DRB5, or none; hg38 reference has DRB5). The anchor 

and its targets lie in the 3’ untranslated regions of DRB1 and DRB4; the two individuals 

have distinct alleles at both DRB1 and DRB4. Macrophages express mainly DRB1 and 

capillary cells mainly DRB4.

C. HLA-DPA1 and HLA-DPB1 overlap in head-to-head arrangement as shown in the UCSC 

Genome Browser diagram, which also shows the BLAT mapping of the anchor consensuses 

for DPA1 and DPB1, which lie on opposite strands. This is also depicted in the alignment; 

the targets are best assigned to opposite strands. An anchor simultaneously reporting on 

DPA1 and DPB1 was only found for individual P3; its targets show that macrophages 

exclusively express DPB1, while capillary cells mainly express DPA1.
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D. The polymorphic HLA-B gene contains many SPLASH anchors from T cells, as depicted 

in the UCSC Browser diagram. The hg38 reference is the B*07:02 allele, whereas this 

individual matches best to B*08 and B*51 (consensus sequences 1 and 2). We investigated 

one HLA-B anchor, which lies in exon 2. In the alignment, differences from hg38 in the 

anchor and lookahead region are in lowercase. In the scatterplot, cells show a wide range 

of allele expression ratios, some expressing a single allele. Dashed lines mark a 98% 

confidence interval for the binomial distribution based on the population average expression 

(confidence depends on anchor counts); the observed data deviates significantly (binomial 

p = 1.73E−25), and some cells express almost exclusively one allele.
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Figure 4. B and T cell receptor diversity from human and lemur single cell data
A. The “transcript mapping” plots show the number of anchors that align to a given 

gene name, for SPLASH on y-axis and Controls on x-axis, with immune receptor genes 

highlighted in red. For B cells, Ig genes (kappa = IGK and lambda = IGL) predominate 

among SPLASH anchors, but are not found at all in Control anchors. For T cells, TCR 

genes (alpha = TRA, beta = TRB) predominate, and are not found in Controls. The inset 

histograms show that immunoglobulin-type “V-set” and “C1-set” are among the top protein 

domain annotations identified by Pfam on anchor consensuses (for B cells, the top four and 
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bottom four domains are shown; for T cells, all domains are shown). Mobile element activity 

is suggested by Pfam domains Tnp_22_dsRBD (“L1 transposable element dsRBD-like 

domain”) in B cells and RVT_1 (“Reverse transcriptase”) in T cells.

B. Targets associated with Ig/TCR anchors are clonotypically expressed, in both human and 

lemur: heatmaps show that most targets (rows) are expressed only in a single cell (columns). 

Target sequences are shown as bp color-maps (rows are targets, matching the heatmap; 

columns are bp positions, colored by base), for quick visualization of sequence diversity. 

Lemur NKT cells show shared TCR usage – see top two rows; the shared target sequence is 

different in the two individuals.
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Figure 5. Discovery of regulated variation in non-model organisms: octopus and eelgrass
A. SPLASH identified alternative transcripts in the O. bimaculoides Myo-VIIa motor protein 

that are expressed mutually exclusively; the target 2 isoform is only found in statocyst. 

The transcripts have different first exons; the start codon lies in the shared second exon. 

The anchor and exon 2 are missing from the O. bimaculoides genome assembly, but are 

in the closely related O. sinensis genome. Targets 1 and 2 are in both genomes, but the 

statocyst-specific transcript is not annotated. The O. sinensis assembly has the Myo-VIIa 

gene in two inverted pieces (broken at the point marked by ‘??’ in protein domain schematic; 

Data S2).

B. The top four and bottom four domains identified by protein domain profiling in eelgrass 

(Z. marina) are plotted. The SPLASH domains chlorophyll A-B binding protein (Chloroa_b-

bind) and silicon transporter (Silic_transp) derive from diatoms, based on BLAST protein 

alignment (Figure 7; Table S6). The other two top SPLASH domains, actin and ubiquitin, 

derive neither from diatoms nor eelgrass, so may be from other epiphytic species.

C. A Chloroa_b-bind anchor, identified by BLASTP as “fucoxanthin chlorophyll a/c 

protein” from diatoms (Figure 7C), has several differentially abundant targets. The most 

common target (top row) is mainly found in France/June samples; three targets that encode 

the same protein sequence (middle) are found in France/December samples; and one target 

(bottom row) is only in Norway/December samples.
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D. An anchor in the eelgrass photosynthetic gene NdhL has four major targets. Targets 

1–3 are allelic coding variants. Target 4 represents intron retention and gives a shortened 

protein. The scatterplot shows that Norway samples of June vs. December (red vs. green) are 

perfectly segregated by the fraction of target 4 (intron retention). A similar but less marked 

trend is seen for France samples of June vs. December (yellow vs. blue) – at the right edge, 

fraction target 4 values are collapsed to one dimension, with averages marked by bars.
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Figure 6. O. bimaculoides 3’ UTR anchors show tissue-specific expression, related to Figure 5.
In the heatmaps, the parenthetical numbers are summed anchor counts.

A. Carboxypeptidase D (CPD). The anchor and targets align to the 3’ UTR of the O. 
sinensis CPD mRNA (XM_029795433.2), but are not in the O. bimaculoides genome 

assembly. The NCBI Browser screenshot at lower-right shows that the 3’ UTR of the O. 
bimaculoides CPD gene (LOC106880679, Ch.25) is entirely missing from the assembly: 

immediately after the coding region, a run of Ns begins (red box). Target 2 is identical to O. 
sinensis except for two mismatches; target 1 has a 12-nt deletion relative to target 2. Target 
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1 is only expressed in dissociated cells from sucker rims, and at a low level in one olfactory 

organ sample. All other tissues express only target 2.

B. Upf2 (regulator of nonsense transcripts 2). The alignment of Upf2 mRNAs from 

O. bimaculoides (XM_014915650.2) and O. sinensis (XM_036513028.1) shows that they 

diverge just before the stop codon, with unrelated 3’ UTRs. Our O. bimaculoides anchor-

targets map only to O. sinensis Upf2 but not to the O. bimaculoides genome. The alignment 

also shows the downstream portion of the O. sinensis 3’ UTR where the anchor-targets map. 

Target 1 and 2 have six and five tandem CAG repeats, respectively. Target 1 is expressed in 

dissociated cells from sucker rims, and in olfactory organ; the other tissues express target 2.

C. Netrin receptor/DCC. Alignment of the O. bimaculoides genome (gene 

LOC106883766) and O. sinensis mRNA (XM_036508072.1) shows that the two diverge 

shortly after the stop codon. The O. bimaculoides gene ends in dinucleotide repeats just 

before the genome becomes a run of Ns. Our O. bimaculoides anchor-targets map to the O. 
sinensis netrin receptor 3’ UTRbut not to the O. bimaculoides genome. The targets differ at 

a single nucleotide: target 1 and 2 have G and A, respectively; O. sinensis has a G in this 

position. If the O. bimaculoides genome encodes A, then target 1 is consistent with A-to-I 

RNA editing (inosine read as G during reverse transcription). The majority of tissues express 

target 2 only, while target 1 is only expressed in dissociated cells of sucker rims.
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Figure 7. Diatom anchors in eelgrass samples show variation with location/season or Day vs 
Night, related to Figure 5.
A. HMG (high mobility group) box domain. The two targets show several nucleotide 

differences that result in two coding differences. The translation of the consensus sequence 

has its best two BLASTP matches to HMG box proteins from diatom species, shown in the 

inset. Target 1 is found only in Norway/December samples, while target 2 is found only in 

France/June samples.
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B. Ferredoxin. The two targets show a silent single nucleotide polymorphism. The 

translation of the consensus sequence has its best BLASTP matches to ferredoxin from 

several diatom species, the top two are shown in the inset. Target 1 is found only in France/

June samples, while target 2 is found only in Norway/December samples.

C. Fucoxanthin chlorophyll a/c protein (FCP). This anchor and its targets are also 

presented in Figure 5C. At left, the translated consensus sequence has its best protein 

BLAST matches to several diatom species, two are shown in the inset. The amino acid 

identity for Phaeodactylum tricornutum is 42/44 (95%). The consensus also BLASTs to the 

P. tricornutum genome, nucleotide identity 107/132 (81%) (not shown). At right, histogram 

shows total anchor counts for Night are ~60% lower than for Day, indicating circadian 

regulation of this gene. All are samples from France in December (where this anchor had 

both Day and Night representation).
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

SARS-CoV-2 France Bal 20229 NCBI: SRP365166

SARS-CoV-2 South Africa Viana 20228 NCBI: SRP348159

Rotavirus Simsek 202117 NCBI: SRP328899

Human Lung Cell Atlas Travaglini 201920 European Genome-
phenome Archive: EGAS00001004344

Tabula Sapiens Tabula Sapiens Consortium 202232 https://tabula-sapiens-portal.ds.czbiohub.org/

Tabula Microcebus The Tabula Microcebus
Consortium 202134

https://tabula-microcebus.ds.czbiohub.org

Octopus bimaculoides RNA-Seq data van Giesen 202041 NCBI: SRP327909

Zostera marina RNA-Seq data Jueterbock 202140 NCBI: SRP327909

Pfam database (Pfam-A) Mistry 202114 https://www.ebi.ac.uk/interpro/download/pfam/

Software and algorithms

SPLASH (commit 1b73949) This study https://doi.org/10.5281/zenodo.8271159https://github.com/
salzmanlab/nomad

FASTP v0.23.2 (installed with bioconda,
2/15/23)

Chen 201853 https://github.com/OpenGene/fastp

STAR Dobin 201354 https://github.com/alexdobin/STAR

bowtie2 Langmead 200955 https://bowtie-bio.sourceforge.net/bowtie2/index.shtml

bedtools Quinlan 201056 https://github.com/arq5x/bedtools

seqkit (installed with bioconda) Shen 201657 https://bioinf.shenwei.me/seqkit/

HMMer3 Eddy 201158 http://hmmer.org/

BLAST Camacho 200959 https://blast.ncbi.nlm.nih.gov/Blast.cgi
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