
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3522  | https://doi.org/10.1038/s41598-024-53528-9

www.nature.com/scientificreports

Navigating the nuances: 
comparative analysis 
and hyperparameter optimisation 
of neural architectures 
on contrast‑enhanced MRI for liver 
and liver tumour segmentation
Felix Quinton 1*, Benoit Presles 1, Sarah Leclerc 1, Guillaume Nodari 2, Olivier Lopez 3, 
Olivier Chevallier 3, Julie Pellegrinelli 2, Jean‑Marc Vrigneaud 1,2, Romain Popoff 1,2, 
Fabrice Meriaudeau 1 & Jean‑Louis Alberini 1,2

In medical imaging, accurate segmentation is crucial to improving diagnosis, treatment, or both. 
However, navigating the multitude of available architectures for automatic segmentation can be 
overwhelming, making it challenging to determine the appropriate type of architecture and tune 
the most crucial parameters during dataset optimisation. To address this problem, we examined and 
refined seven distinct architectures for segmenting the liver, as well as liver tumours, with a restricted 
training collection of 60 3D contrast-enhanced magnetic resonance images (CE-MRI) from the ATLAS 
dataset. Included in these architectures are convolutional neural networks (CNNs), transformers, and 
hybrid CNN/transformer architectures. Bayesian search techniques were used for hyperparameter 
tuning to hasten convergence to the optimal parameter mixes while also minimising the number of 
trained models. It was unexpected that hybrid models, which typically exhibit superior performance 
on larger datasets, would exhibit comparable performance to CNNs. The optimisation of parameters 
contributed to better segmentations, resulting in an average increase of 1.7% and 5.0% in liver and 
tumour segmentation Dice coefficients, respectively. In conclusion, the findings of this study indicate 
that hybrid CNN/transformer architectures may serve as a practical substitute for CNNs even in small 
datasets. This underscores the significance of hyperparameter optimisation.

Medical image segmentation is a crucial and extensive research domain, acknowledged in both the computer 
vision and medical image analysis communities1. It plays a critical role throughout the healthcare process, includ-
ing clinical diagnosis, treatment planning and follow-up1–3.

Accurate tumour segmentation is crucial in the context of Selective Internal Radiation Therapy (SIRT). SIRT 
is a specialised treatment approach commonly utilised for liver tumours, whereby radioactive microspheres are 
delivered directly into the blood vessels supplying the tumour, precisely targeting it while sparing healthy tissue. 
In this procedure, an exact segmentation of the liver and the tumour ensures an optimal dosimetry calculation, 
which leads to the efficacy and safety of the SIRT treatment. Therefore, enhancing segmentation results in more 
accurate dosimetry4, leading to a more efficient treatment approach.

In recent years, deep learning methods have emerged as the primary approach to achieve state-of-the-art 
results in various medical image segmentation operations, including organ and tumour segmentation5–7. This 
aspect makes them relevant for SIRT treatment planning.
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Initially, architectures based on Convolutional Neural Networks (CNNs) designed for classification, including 
AlexNet8, ResNet9, VGG10, and Inception11, were adapted and used as basic units for segmentation. Subsequently, 
the structured “U-shaped” encoder-decoder model, exemplified by U-Net12, was introduced. This method has 
proven to be an efficient answer to the problems of semantic segmentation, consistently yielding excellent results. 
However, there has been a recent application of transformer-based structures13, originating from natural lan-
guage processing, to the field of computer vision, resulting in a new group of architectures exhibiting superior 
performance as compared to CNN architectures in certain tasks14,15. Transformer-based architectures have been 
applied in medical imaging16–18. Nonetheless, the superiority of transformers compared to CNNs has not been 
established yet in small datasets, where CNNs can still outperform transformer-based architectures due to the 
requirement of a large amount of data to exploit the full capacity of this type of architecture. Thus, the circum-
stances in which transformers can outperform CNNs are unclear. This proliferation of models complicates the 
selection of a candidate for a specific application.

In addition to architectures, the training strategy can also impact model performance. In this paper, the 
combinations of the proposed architecture and the proposed training strategy will be referred as a pipeline. 
Figure 1 illustrates the most common categories and subcategories involved in a tailored deep learning pipeline 
for medical imaging. Each of these choices can lead to noteworthy improvements in the precision and clinical 
utility of the final network output.

Now, examining individually each block illustrated in Fig. 1, pre-training a model8 enables the model to ini-
tialise with weights adjusted to a similar data distribution, potentially leading to faster convergence and improved 
performance. The sub-field of pre-training known as self-supervised learning19 is highly beneficial in medical 
imaging. Unlike pre-training, it can be implemented on images without annotations20.

Handling 3D medical images that potentially exhibit noteworthy differences between images necessitates 
data preprocessing in order to standardise the dataset. Such preprocessing usually includes procedures such as 
normalising intensity levels and re-sampling to guarantee that the input data are of homogeneous throughout 
the entire dataset.21.

Data augmentation methods22–25 including random rotation, scaling, and flipping can be used to artificially 
enhance the size of the training dataset and enhance the generalisation capabilities of models.

Learning paradigms are utilised to regulate model progression in training. In particular, supervised loss 
functions play a crucial role in computing the difference between predictions and labels. Subject to the task and 
intended results, the choice of loss function varies. The most commonly employed options include cross-entropy-
based and dice coefficient-based losses26,27. Similarly, the chosen optimiser can greatly affect both the speed of 
training and the final performance. Its role is to optimise the model weights based on the derivative value of the 
loss function in order to minimise the value of the function itself. Among various optimisers, stochastic gradient 
descent (SGD)28, Adam29, and AdamW30 are the most popular choices.

Finally, the segmentation results can be refined and any remaining artefacts or noise can be removed by using 
post-processing techniques, such as region growing31, conditional random fields32, or mathematical morphology 
operations, including dilation, erosion, opening, or keeping the largest connected component.

When deep learning pipelines are published, they are typically optimised and designed for a specific task, 
which can lead to a decrease in performance when applied to different tasks or datasets. In an effort to address 
this issue, frameworks like nnUNet33 have been introduced to enhance generalisation across heterogeneous 
datasets. Building on this idea, the objective of this study is to combine and compare the training strategies of 
seven promising deep learning pipelines for 3D medical image segmentation specifically within the context of 
SIRT treatment planning, with a focus on liver and tumour segmentation. To this end, this study combines the 
different elements of the seven pipelines into a single one, and optimises the performance of the seven corre-
sponding architectures by varying and adapting the value of each hyperparameter using Bayesian search. With 
this approach, the study aims to identify the most effective strategies for 3D liver tumour segmentation. This 
study focuses on network selection, pre-processing, data augmentation and learning paradigm. All models are 
trained and optimised on the A Tumor and Liver Automatic Segmentation (ATLAS)34 dataset, which consists 
of 3D contrast-enhanced magnetic resonance images (CE-MRI) of the liver and tumour with annotations for 
patients presenting hepatocellular carcinoma (HCC).

Several studies using comparable datasets have been documented in the scientific literature but on private 
datasets. Christ et al.35 performs Diffusion-Weighted MRI (DW-MRI) segmentation on 31 patients with HCC 
using cascaded fully convolutional neural networks, Zhao et al.36 proposed liver tumour detection through 
the using of generative adversarial networks on 131 patient with HCC, and similarly, Kim et al.37 performed 
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Figure 1.   A visual representation of a deep learning pipeline for medical imaging, divided into six key stages: 
1) Network Selection, 2) Pre-training, 3) Pre-processing, 4) Data Augmentation, 5) Learning paradigm, and 6) 
Post-processing.
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region-of-interest detection of HCC on a multi-centre CE-MRI dataset containing 545 patients. Xiao et al38 
introduced a liver tumour segmentation solution employing radiomic features from T2 delay-phase CE-MRI 
over 200 patients. Zhao et al.39 contributed to liver tumour segmentation on multi-modal non-contrast MRI 
on 255 HCC patients, while Zheng et al.40 leveraged multi-phase dynamic 4D CE-MRI for segmentation on a 
dataset including 190 HCC patients.

This study distinguishes itself from the existing literature by providing a comprehensive and unbiased compar-
ison of the most promising architectures for 3D medical image segmentation. In addition, it explores the impact 
of different training strategies. In particular, this work goes further than previous publications by examining 
the impact of each hyperparameter in relation to both the other hyperparameters and the network architecture. 
This approach provides a more nuanced understanding of the factors that contribute to the performance of deep 
learning models for medical image segmentation.

The main contribution of this work can be summarised as follows:

•	 Training strategies optimisation: This work presents a detailed study of the impact of various training strate-
gies on seven advanced architectures for 3D medical image segmentation.

•	 Comparative analysis using publicly available CE-MRI data: The study offers a unique comparative analysis of 
liver and tumour segmentation using publicly available CE-MRI data, distinguishing it from prior research.

•	 In-depth architectural comparison: It provides a comprehensive comparison of CNN, transformer, and hybrid 
architectures using the ATLAS dataset, contributing to a better understanding of their relative strengths and 
weaknesses in medical image segmentation.

•	 Hyperparameter evaluation: The research evaluates critical hyperparameters and contributes to the under-
standing of their role in optimising segmentation models.

•	 Resources: A GitHub repository containing code that facilitates the training and tuning of the seven deep 
learning architectures for 3D segmentation tasks and reproduces the results: gitlab.in2p3.fr/iftim/public-
projects/navigating-the-nuances.

These contributions provide valuable insights into the factors that influence the performance of deep learning 
models in medical image segmentation along with practical tools and recommendations to improve their accu-
racy and generalisability. The objective of this study is to determine the optimal configuration (architecture and 
training strategy) on the ATLAS dataset.

Materials and methods
Dataset
The ATLAS34 dataset was used in this study to design and evaluate the complete optimisation process. The ATLAS 
dataset was chosen for this study on MRI-based liver tumour segmentation due to the lack of research in this 
area, unlike CT, where the LiTS41 dataset is popular. This choice aims to address the research gap, especially 
since MRI is widely used in clinical environment. The study also compares transformer and CNN models on 
smaller datasets, exploring the potential of transformers in a field dominated by CNNs. This decision reflects 
a strategy to provide new insights in under-researched areas and test various neural network architectures in 
clinically relevant, scenarios.

The dataset is made up of 90 contrast-enhanced magnetic resonance images (CE-MRI), collected from 90 
patients with hepatocellular carcinoma (HCC). Alongside the CE-MRI, label images of the liver and tumours 
were provided. The labels were manually delineated by an experienced MRI radiologist using the MIM SurePlan 
LiverY90 software42 from the transversal view CE-MRIs. As shown in Fig. 2, there are three classes in this dataset: 
background, liver and tumour.

Figure 2.   Axial slices of six contrast-enhanced magnetic resonance images from six different patients with the 
corresponding image labels superimposed. The liver appears in green and tumour in yellow.
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The ATLAS dataset contains 3D CE-MRI of the whole liver and tumour, consisting of 44 to 136 transverse 
slices of the thorax and abdomen. The pixel spacing of each slice in the dataset ranges from 0.68× 0.68mm2 
to 1.41× 1.41mm2 , with a slice thickness of 2 mm to 4 mm. Bias field correction was applied to every image.

The ATLAS dataset is composed of two distinct sets. The training set which contains 60 images and the testing 
set with 30 images. To evaluate the performance of each model in this study, we randomly divided the training 
dataset into two sets: 48 images were used to train the models, and 12 images were reserved to validate them. 
The test set was used to measure the optimisation process’s impact.

Model baselines
This work groups seven different deep learning-based pipelines, optimised for seven different deep learning tasks. 
Each of the pipelines has demonstrated remarkable efficacy for their respective task.

All the seven chosen architectures have been designed using an encoder/decoder scheme illustrated in Fig. 3, 
to process 3D images for the purpose of medical image segmentation of MR or CT images. These architectures 
are described in Table 1. Two are CNNs, one is a pure transformer network, and the remaining four are hybrid 
CNN/transformer architectures.

To achieve a fair comparison between the seven chosen deep learning architectures, a consistent methodology 
was introduced. Individual components from every pipeline were extracted and then merged to create a com-
bined pipeline. This procedure enables us to fairly evaluate the impact of each component of the deep learning 
pipeline on the quality of the segmentation.

Optimisation strategy
To optimise a model’s performance through hyperparameters tuning, three optimisation strategies can be con-
sidered: random search, grid search, and Bayesian search51,52. Random search involves randomly sampling hyper-
parameter values within specified ranges, whereas grid search exhaustively explores all possible combinations 
of hyperparameters. By contrast, Bayesian search is a hyperparameter optimisation technique that utilises a 
probabilistic model to improve the new hyperparameter combinations based on previous evaluations. The search 
is guided by information from earlier trials towards promising areas in the hyperparameter space where optimal 
configurations are more likely to be located. Through iterative selection of new hyperparameter configurations 
for evaluation based on the model’s predictions, Bayesian search effectively reduces the search space and identi-
fies the most suitable hyperparameters for a machine learning model. Thus, all the selected architectures were 
trained multiple times using various hyperparameter configurations, in compliance with the Bayesian search 
optimisation strategy from WandB53, which is based on the scikit-learn implementation54.

Due to the considerable number of hyperparameter combinations, the optimisation process was carried out 
in several consecutive phases and some hyperparameters were fixed. This approach extends Bayesian search, 
providing a further decrease in the number of combinations and enables for a deeper exploration of the impact 
of similar hyperparameters relative to one another.

Therefore, the studied hyperparameters were categorised into three groups and optimised during three suc-
cessive optimisation phases: the patch size optimisation phase, the data pre-processing and data augmentation 
optimisation phase, and the learning paradigms optimisation phase. During each phase, for each of the seven 
architectures, the same set of hyperparameters was optimised. The optimised configuration of hyperparameter 
per architecture is then saved and carried forward into the next optimisation phase.

Table 1.   Main characteristics of the models studied.

Model Category Main characteristics

nnFormer43 Hybrid Local and global attention blocks, convolutionnal down-sampling

nnUNet33 CNN U-Net featuring five encoder and decoder blocks

SegmentationNet44 CNN U-Net featuring four encoder-decoder blocks

Swin-UNetr45,46 Hybrid Swin-Unet47 based encoder, CNN decoder, pre-trained with SSL

Transbts48 Hybrid Large transformer bottleneck, CNN encoder/decoder

UNetr49 Hybrid Transformer based encoder, CNN decoder

VT-UNet50 Transformer Alternates regular and shifted attention windows layer, pre-trained 
with Swin T14  

... ...

Encoder Latent space Decoder Output segmentationInput image

Figure 3.   Classic encoder / decoder pattern for image segmentation.
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Validation metrics
The model’s performance was measured on the validation set at each epoch during training. Due to the incapacity 
of the models to process large 3D images at once on a 32 GB Graphics Processing Unit (GPU), a sliding window 
approach was adopted in validation with a 50% overlap. In this study, inspired by the nnUNet pipeline, we utilise 
an exponential moving average of the Generalised Dice (GD)55 score as our validation metric for evaluating seg-
mentation quality. This method is specifically chosen to select models at a phase of their training that consistently 
exhibit strong generalisation capabilities across the test dataset. The GD metric, adjusted for class imbalance, 
ensures a balanced assessment between different classes. Using an exponential moving average, we blend both 
historical and current evaluation of the performances, offering a more comprehensive and stable evaluation of 
the model’s generalisation ability. This approach lessens the risk of over-fitting on a small validation set, thus 
providing a more trustworthy indicator of the model’s performance on unseen data. The GD is defined as follow:

where N is the number of classes (three in our case), A and B are two sets representing the predictions and labels, 
respectively. Ai and Bi ( ∀i ∈ �1,N� ) represent the predictions and labels for class i, respectively and |.| denotes the 
cardinality or number of elements. The weight wi ( ∀i ∈ �1,N� ) is used to handle class imbalance, and is usually 
set to the inverse of the square of the number of pixels in each label class wi = 1/|Bi|

2.
With GDi , the generalised dice at epoch i, the validation metric (VM) at the same epoch is defined as:

Evaluation metrics
To quantitatively analyse the quality of the segmentation on the test set, the following metrics were selected: 

1.	 Dice Coefficient It measures the similarity between two sets. Given a prediction and a ground truth per pixel 
for a fixed class the Dice is defined as: 

 where TP, FP and FN respectively corresponds to the number true positives, false positives and false 
negatives.

2.	 5mm Surface Dice This metric provides a variant of the Dice coefficient which is calculated within a 5mm 
distance from the surfaces of the structures: 

 where TP5 , FP5 and FN5 correspond to the number of true positives, false positives, and false negatives 
subsets of pixels located within 5mm of the surfaces from the structure studied.

3.	 Precision Also known as the positive predictive value, it quantifies the accuracy of positive predictions. 
Precision can be defined: 

 where TP and FP respectively corresponds to the number true positives, false positives.
4.	 Recall Also known as sensitivity or true positive rate, it quantifies the ability to detect positive instances. 

Recall is defined as: 

 where TP and FN respectively corresponds to the number true positives, false negatives.
5.	 Hausdorff Distance (HD) It represents the greatest of all the distances from a point in one set to the closest 

point in the other set. Mathematically, for two-point sets A and B : 

 where d(a, b) is the Euclidean distance between points a and b.
To assess the significance of each metric, a Shapiro-Wilk test was first conducted on the paired differences 
between the results before and after optimisation. Based on the results of this test, either a paired t-test or a 
Wilcoxon signed-rank test was then applied to each metric to determine its statistical significance.

(1)GD(A,B) =
2
∑N

i=1 wi|Ai ∩ Bi|
∑N

i=1 wi(|Ai| + |Bi|)
,

(2)VM0 = GD0

(3)VMi = 0.9× VMi−1 + 0.1× GDi

(4)Dice =
2× TP

TP+ FP+ FN
,

(5)SD5mm =
2× TP5

TP5 + FP5 + FN5
,

(6)Precision =
TP

TP+ FP
,

(7)Recall =
TP

TP+ FN
,

(8)HD(A,B) = max

(

max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)

)

,
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Experiments
Baseline
Prior to any optimisation, each architecture was trained as described in the published articles. These baseline 
results are used as a starting point to measure the impact of the optimisation process.

Patch size influence
If studies indicate that a larger patch size leads to improved performance56–59, this gain may be negligible and 
would result in a significant increase in training time. Therefore, using intermediate patch sizes could potentially 
be more efficient. To this end, three patch size configurations (small, intermediate, and large) were tested for 
each architecture.

The largest patch size compatible with a 32GB GPU and a batch size of two was selected. For each patch size, 
the depth was fixed at 64, which covers a substantial portion of the images along that axis. This is because the 
images have a median size of 80 pixels in that dimension. Width and height patch sizes vary in different configu-
rations. The intermediate patch size is one-fourth the size of the largest patch size, and the small patch size is 16 
times smaller than the largest configuration. Consequently, the overall patch size ranges from 64× 64× 64 to 
384× 304× 64 , depending on the architecture.

Table 2 gives the detailed patch sizes used in this study. The values in italic represent the baselines patch sizes 
that are the closest to those proposed by the authors of the seven pipelines on similar datasets. Since only three 
patch size combinations were tested, Bayesian search was not applied during this phase.

Data pre‑processing and data augmentation influence
Data pre-processing and data augmentation are among the most important aspects of the learning process in 
deep learning algorithms, as they provide robustness to the models21–25.

The main objective of data pre-processing is to standardise a dataset21. Therefore, a range of pre-processing 
techniques could be employed such as image resampling, image cropping, and image normalisation. The large 
part of the studied pipelines uses median resampling since it appears as a fair compromise between image qual-
ity and memory consumption. Thus, all images were resampled to the median spacing of the dataset: 1.04 × 
1.04 × 3.00 mm3 leading to images after resampling between 320× 250× 44 pixels ( 320× 250× 132 mm) to 
512× 512× 136 pixels ( 512× 512× 408 mm). The ATLAS dataset presents a significant class imbalance among 
the different structures (background >> liver >> tumour). To address this, an oversampling strategy60 was also 
fixed for every training iteration.

During the optimisation process, the only studied hyperparameter that affected the pre-processing was 
the image normalisation strategy. Pixel intensities vary significantly across different images due to the various 
machines and sequences used to acquire the ATLAS dataset. Consequently, inter-image normalisation strategies 
were not taken into consideration. However, two intra-normalisation strategies, namely, min–max normalisation 
and Z-score normalisation, were analysed.

Min–max normalisation consists of re-scaling the pixel intensities of an image between 0 and 1 and is defined as:

where x is the original pixel intensity value, x′ is the normalised pixel intensity value, and X the ensemble of 
pixel values in the image.

Z-score normalisation, is another widely-used technique to re-scale the pixel intensities of images. Z-score 
normalisation involves re-scaling the pixel intensities to have zero mean and unit variance and is defined as:

where x is the original pixel intensity value, x′ is the normalised pixel intensity value, µ(X) is the mean pixel 
intensity value in the image, and σ(X) is the standard deviation of pixel intensity values in the image.

(9)x′ =
x −min(X)

max(X)−min(X)
,

(10)x′ =
x − µ(X)

σ (X)
,

Table 2.   Details of the different patch sizes tested in this study. Italic correspond to baseline configurations.

Hyperparameter Small  Intermediate  Large

nnFormer patch size 64× 64× 64 128× 128× 64 224× 224× 64

nnUNet patch size 96× 96× 64 192× 160× 64 384× 288× 64

Swin-UNetr patch size 64× 64× 64 128× 128× 64 256× 224× 64

Transbts patch size 64× 64× 64 128× 128× 64 224× 224× 64

UNetr patch size 96× 96× 64 192× 160× 64 384× 304× 64

UNet3d patch size 96× 96× 64 192× 160× 64 384× 304× 64

VT-UNet patch size 64× 64× 64 128× 128× 64 256× 224× 64
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Data augmentation enables the artificial expansion of a training dataset, resulting in more resilient algorithms 
with superior generalisation capabilities. This is particularly crucial when working with medical image datasets, 
which usually have limited data. Data augmentation can be categorised into two forms, image transformation 
augmentation23 and image generation-based augmentation61. In this study, unlike62, only image transformation 
strategies were considered.

Image transformation-based augmentation involves applying a set of transformation to the images. Trans-
formations such as image flipping, image rotation, intensity scaling, and intensity shifting are widely accepted 
in the literature62 and are already utilised in most of the seven original pipelines. Therefore, they were systemati-
cally applied.

In addition to these standard transformations, six other data augmentation transformations were imple-
mented in the seven selected pipelines. To simplify the optimisation process, we divided this augmentation 
techniques into three distinct groups: the image fidelity group (IF) with Gaussian noise and Gaussian blur, the 
scaling and resolution group (SR) with zoom and low image quality simulation and the luminance and contrast 
group (LC) with contrast and gamma (inverted and non-inverted) alterations.

Each group consists of two closely related augmentation methods, that help to reduce the combinatorial 
complexity. This leads to three hyperparameters to tune during the optimisation process. The detailed param-
eterisation for each augmentation method is provided in Table 3.

Thus, the impact of four hyperparameters was considered for this optimisation phase (normalisation, image 
fidelity, scaling and resolution, luminance and contrast). The normalisation parameter being either min–max or 
z-score and each data augmentation hyperparameter was either on or off, it leads to 16 possible combinations. 
Eight of these combinations were tested for each architecture using a Bayesian search optimisation strategy. The 
best hyperparameter configuration identified during the patch size optimisation phase was used for comparison.

Learning paradigms influence
Learning paradigms control a model’s progression during the training. In supervised segmentation learning, a 
loss function quantifies the difference between the model’s prediction and a label. Loss functions for medical 
image segmentation can be categorised into four categories: distribution-based, region-based, boundary-based 
(they are not covered in this paper), and compound-based27.

Distribution-based losses: the objective of distribution-based loss functions is to reduce the differences 
between two distributions, namely the predicted and target distributions. The cross-entropy (CE) loss based 
on the Kullback-Leibler divergence serves as the foundation for other functions in this category. CE loss can be 
defined as:

where I is the number of voxels, J is the number of classes, yij is the binary indicator for the class j according to 
the ground truth and ŷij the probability of the pixel i to belong to the class j according to the prediction.

Region-based losses: region-based losses minimise discrepancies between predicted segmentation and 
ground truth by optimising overlap. Functions of this category are derived from the Dice loss function, which 
involves optimising the Dice Similarity Coefficient. This metric is commonly used to evaluate medical image 
segmentation tasks. The Dice loss is defined as:

(11)CE Loss = −
1

I

J
∑

j=1

I
∑

i=1

yij log(ŷij),

Table 3.   Detailed parameterisation per augmentation method. The selected values were based on the values 
used in the selected pipelines.

Data augmentation Probability Range

Fixed hyperparameters

 Rotations 0.1 0 – 45◦

 Flipping 0.1 _

 Intensity shifting 0.1 0 – 0.1

 Intensity scaling 0.1 0 – 0.1

Optimised hyperparameters

 Gaussian noise 0.1 _

 Gaussian blur 0.1 _

 Zoom 0.1 0.7 – 1.4

 Low image quality simulations 0.5 0.5 – 1.0

 Contrast 0.1 0.75 – 1.25

 Gamma non-inverted images 0.3 0.7 – 1.5

 Gamma-inverted images 0.1 0.7 – 1.5
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where J represents the number of classes, I the number of pixels in the images, and ŷij and yij represent the 
predicted probability and the ground truth label for each pixel i in the image to belong to class j. The ǫ term is 
added for numerical stability and is usually set to a small positive value (e.g., 1e − 5 ). If a second version of the 
Dice loss exists with square terms at the denominator, this version will not be discussed here according to the 
results of Ma et al.27.

Compound losses: compound losses combine previous losses, including losses from different categories. The 
DiceCE loss33 is defined as the addition of the CE loss and the Dice loss. The joint use of Dice loss and cross-
entropy loss can improve segmentation performance by taking advantage of each loss function27. Combining 
both loss functions allows to consider both local accuracy and global consistency in segmentation, maximising 
segmentation similarity while minimising class probability distribution. The DiceCE loss is defined as follows:

Although the literature presents numerous loss functions across these three categories, this study will exclusively 
focus on the two loss functions, Dice and DiceCE, as they are the only two loss functions utilised by the seven 
pipelines analysed.

Choosing a loss function includes deciding whether to include or not the background class in the loss calcula-
tion. Consequently, the effect of the background on performance was also investigated.

While a loss function allows the measurement of the difference between ground truth and prediction, the 
optimiser controls how the model evolves with respect to that difference. The seven pipelines deploy three 
distinct optimisers: the Stochastic Gradient Descent (SGD) with Nesterov momentum28, the Adaptive Moment 
Estimation (Adam)29 and AdamW30.

The SGD optimiser computes the gradients for each parameter and modifies the parameters of the model 
based on a fraction of the gradient dependent on the value of the learning rate. Utilising a momentum term to 
consider the preceding gradient enhances convergence and retains momentum in a particular direction. The 
Nesterov version of the momentum algorithm is an enhancement to the basic momentum update as it computes 
the gradient after the momentum update, resulting in a more precise direction towards the minimum of the 
loss function.

Adam combines the concepts of momentum and adaptive learning rates in order to maintain two moving 
averages for every parameter and adjust the learning rates for each parameter as training progresses. The uti-
lisation of these moving averages aids in stabilising the updates and countering the problems of vanishing or 
exploding gradients, leading to faster and more stable convergence.

AdamW builds upon Adam by introducing a weight decay regularisation term. This term aids in preventing 
overfitting by applying a penalty to the magnitude of the weights, steering the model towards simpler, more 
general representations. AdamW decouples the weight decay from the adaptive learning rate updates, allowing 
the model to use the benefits of Adam while also employing weight decay for improved generalisation.

The impact of the three optimisers is studied in this phase, and their configurations are detailed in Table 4.
Overall, the three parameters (two losses, inclusion or not of the background class, and three optimisers) lead 

to 12 possible hyperparameter configurations. During this optimisation phase, eight different combinations per 
model were tested using Bayesian search. The optimal hyperparameter configuration identified during the data 
pre-processing and data augmentation optimisation phase was used as point of comparison.

Once the optimisation process completed through the three optimisation phases, the best configuration for 
each model according to the value of the validation metric is evaluated on the test set and compared to the initial 
baseline configuration.

Implementation Details
All experiments described in this document were conducted using the PyTorch63 library (version 1.11.0) along 
with the NVIDIA Compute Unified Device Architecture (CUDA) toolkit64 (version 11.3.1). The training and 
inference of the different architectures were performed using Tesla V100S-PCIE-32GB GPUs. Data processing 
was performed using the Medical Open Network for Artificial Intelligence (MONAI)65 frameworks (version 
0.8.1).

Regarding the hyperparameters not mentioned so far, the models were trained in their original configuration 
optimised by the authors for their own datasets. No post-processing was applied.

(12)Dice Loss = 1−
2

J

J
∑

j=1

I
∑

i=1
yijŷij + ǫ

I
∑

i=1
yij +

I
∑

i=1
ŷij + ǫ

,

(13)DiceCE Loss = 0.5× CE Loss+ 0.5× Dice Loss

Table 4.   Optimiser configuration.

Optimiser Learning rate Regression weight

Adam 1e
−4 3e

−5

AdamW 1e
−4

1e
−2

SGD 1e
−2 3e

−5
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Results
Baseline
When examining the baseline inter-model performance outlined in Table 5, a significant discrepancy is observed. 
There is a considerable gap in performance as the validation metric value ranges from 39.4 points for UNETR to 
69.0 points for nnUNet. Whilst UNETR appears to be a performance outlier, there remains a difference of 19.4 
points between nnUNet and Swin-UNETR, the second lowest performing model.

Figure 4 highlights that the majority of the models struggle to accurately identify the tumour’s location in the 
most complex cases. In one of the two images, nnUNet is able to classify a few pixels as tumour, but mid-range 
models such as SegmentationNet are unable to correctly classify any pixels as tumour.

Patch size influence
The effect of the influence of the patch size on the validation set is detailed in Table 5. Online Appendices 
Tables S1 and S2 provide the test set results. Analysis of intra-model performance reveals that, for five of the 
seven architectures tested, larger patch sizes correspond to higher performance on the validation set. Regarding 
the validation metric value, there is an average difference of 2.6 points when comparing the performance of the 
larger patch size to the intermediate patch size and up to 5.5 points for nnUNet. Nevertheless, for two of the 
seven architectures (namely UNETR and VT-UNet), a gain in performance is observed with an intermediate 
patch size. For all architectures except nnFormer, the small patch size results in lower performance than the 
intermediate and large configurations.

Looking at Fig. 5, it can be observed that smaller patch sizes lead to a significantly higher number of arte-
facts, even for the best performing architectures. In particular, most segmentation models tend to misclassify 
the spleen as the liver when using small patch sizes. Larger patches lead to an improvement in the delineation of 
liver and liver tumour. Nevertheless, even with a large patch size, low-performing models encounter difficulty 
in eliminating all artefacts.

(a) CE-MRI (b) label (c) SegmentationNet (d) nnUNet

(e) CE-MRI (f) label (g) SegmentationNet (h) nnUNet

Figure 4.   Complex tumour segmentation cases with SegmentationNet and nnUNet. The liver appears in green, 
and the tumour in yellow.

Table 5.   Performance per model over validation metric value (VMV) per patch size. Baselines appear in Italic 
and best-performing configurations in bold.

Model

VMV

Small Intermediate Large

nnFormer 64.2 64.1 70.4

nnUNet 63.1 63.5 69.0

SegmentationNet 50.3 60.2 63.6

Swin-UNETR 52.3 59.8 60.4

TransBTS 44.4 49.6 56.1

UNETR 36.3 39.4 37.1

VT-UNet 54.8 58.1 56.4

Average 52.2 ± 9.2 56.4 ± 8.2 59.0 ± 10.3



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3522  | https://doi.org/10.1038/s41598-024-53528-9

www.nature.com/scientificreports/

Pre‑processing and data augmentation influence
The effects of optimising the pre-processing and data augmentation for each model on the validation set are 
summarised in Table 7 with the best configuration per architecture in Table 6. The detailed results on the test set 
are given in Online Appendices Tables S3 and S4.

In terms of validation metric value, this optimisation leads to an average gain of 2.5 points when compared to 
the previous phase. Specifically, TransBTS and UNETR models experienced gains above four points. Nevertheless, 
a decrease in performance of 1.3 points can be observed for the nnFormer architecture.

Regarding the impact of each parameter across all tested combinations on the validation metric value, 
min–max normalisation results in an average gain of 2.3 points as compared to the standard-score normalisation. 
Incorporating scaling and resolution augmentations led to an average gain of 1.7 points and the image fidelity 
augmentation in an average gain of 1.9. However, the implementation of luminance and contrast augmenta-
tions caused a loss of 2.9 points. Figure 6 shows the variation of the performance of each tested combination per 
architecture during this phase.

Learning paradigm influence
The effects of optimising the learning paradigm for each model are summarised in Table 9 and the best configura-
tion in Table 8. Detailed results on the test set can be found in Online Appendices Tables S5 and S6.

(a) CE-MRI (b) UNETR small (c) swinunetr small (d) nnUNet small

(e) label (f) Unetr intermediate (g) Swin-UNETR intermediate (h) nnUNet intermediate

(j) UNETR large (k) Swin-UNETR large (l) nnUNet large

Figure 5.   Illustration of the impact of the patch size on the segmentation performance for three different 
models: UNETR, Swin-UNETR and nnUNet.

Table 6.   Selected data pre-processing and data augmentation configuration per architecture with 
normalisation (norm), image fidelity (IF), scaling and resolution (SC) and luminance and contrast (LC) 
groups.

Model Norm IF SR LC

nnFormer Range/std ✓ ✓ ✓

nnUNet Min/max ✗ ✗ ✓

SegmentationNet Min/max ✓ ✗ ✗

Swin-UNetr Min/max ✗ ✓ ✓

Transbts Min/max ✗ ✓ ✓

UNetr Range/std ✗ ✓ ✓

VT-UNet Range/std ✗ ✗ ✗
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In terms of the validation metric value, this optimisation results in an average gain of 0.6 points in comparison 
to the previous phase. However, for four out of the seven architectures, there is a reduction in performance up 
to 2.6 points for VT-UNet. Nevertheless, this phase results in a gain of 6.0 points for TransBTS.

Looking at the average of all the parameter combinations studied during this phase, the use of the Adam 
optimiser led to an average improvement of 1.4 points over AdamW and 2.6 points over SGD based on the vali-
dation metric value. Notably, the DiceCE loss outperformed the Dice loss with an average gain of 0.9 points. On 
the other hand, the choice to incorporate the background in the loss calculation appears to have an insignificant 

Table 7.   New validation metric value (VMV) obtained during the pre-processing and data augmentation 
optimisation compared to the initial VMV obtained after the patch size optimisation.

Model Initial VMV New VMV Difference

nnFormer 70.4 69.1 −1.3

nnUNet 69.0 69.7 +0.7

SegmentationNet 63.6 66.3 +3.3

Swin-UNETR 60.4 63.2 +2.8

TransBTS 56.1 60.4 +4.3

UNETR 39.4 43.8 +4.4

VT-UNet 58.1 61.1 +3.0

Average 59.6 ± 9.6 61.9 ± 8.1 +2.5

Figure 6.   Performance variability across the validation metric value  for seven deep learning architectures 
during the pre-processing and data augmentation optimisation phase.

Table 8.   Selected learning paradigm configuration per architecture.

Model Loss Optimiser Include background

nnFormer DiceCE SGD ✗

nnUNet DiceCE Adam ✗

SegmentationNet DiceCE Adam ✓

Swin-UNetr DiceCE AdamW ✓

Transbts Dice SGD ✗

UNetr Dice Adam ✗

VT-UNet DiceCE AdamW ✗
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impact on the models’ performance, with an average difference of only 0.2 points supporting its inclusion. 
Figure 7 shows the variation of the performance of each tested combination per architecture during this phase.

Overall progression on the test set
Upon optimising the models, we identified the best hyperparameter sets for each. We then evaluated their per-
formance on the test set. The following sections detail how these models fared in liver and tumour segmentation 
tasks, offering an analysis of the chosen parameters’ efficacy.

In Table 10, we present the progression of the performance throughout the entire optimisation process when 
testing on the liver dataset. The table highlights the differences between the initial baseline results and the highest 
performance achieved during training, based on the validation criteria. Improvements can be observed across all 
models leading to significant improvement for most of the calculated metrics, with an average increase of 1.7% 
in the Dice coefficient and a reduction of 36.7 mm in the Hausdorff distance. Nevertheless, the improvements 
in the nnUNet model - the leading baseline for this task - are marginal. Despite varying baseline performances, 
the optimisation process levelled the playing field, with all seven models achieving Dice coefficients within a 
narrow range of 92.3–95.1%. Although initially different, the baselines’ performances became similar after the 
optimisation process, as indicated by all seven models presenting a Dice coefficient between 92.3% and 95.1%.

Figure 8 offers a visual representation of the evolution of the performances on the test set between baseline 
(in red) and optimised (in blue) models on the liver segmentation task. This figure clearly highlights the positive 
impact of the optimisation process in particular for initially low-performing models. For TransBTS and Swin-
UNETR for instance, before optimisation, respectively 12 and 14 images have a dice score below 90% against 
only one after optimisation.

Table 11 details the progression of performance achieved through the optimisation process on the tumour 
segmentation task of the test set. The optimisation process enhanced every model’s performance, demonstrated 

Table 9.   Final validation metric value (VMV) obtained after the learning paradigm optimisation phase 
compared to the initial VMV obtained after the pre-processing and data augmentation phase.

Model Initial VMV Final VMV Difference

nnFormer 70.4 69.7 −0.7

nnUNet 69.7 70.9 +1.2

SegmentationNet 66.3 65.2 −1.1

Swin-UNETR 63.2 62.8 −0.4

TransBTS 60.4 66.4 +6.0

UNETR 43.8 45.8 +2.0

VT-UNet 61.1 58.5 −2.6

Average 62.1 ± 8.3 62.8 ± 7.9 +0.6

Figure 7.   Performance variability across the validation metric value for seven deep learning architectures 
during the learning paradigm optimisation phase.
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through higher Dice coefficient and Hausdorff distance scores. On average, the models gained an increase of 
4.8% and 31mm in these metrics after the optimisation process. On low-performing models, this is traduced 
by a significant improvement in performance according to the paired t-test / Wilcoxon signed-rank test on the 
majority of the metrics. High-performing models such as nnUNet and nnFormer still show a gain in perfor-
mance. They recorded Dice coefficients of 68.1% and 69.7%, respectively, making them the clear front runners 
by a considerable margin.

Figure 9 offers a visual representation of the evolution of the performances on the test set between the 
baseline (in red) and the optimised models (in blue) on the tumour segmentation task. In contrast to the liver 

Table 10.   Performance evolution per model on the test dataset, for the liver between the baseline (BS) and the 
optimised hyperparameter combination (OP). Italic indicates the best inter-model value for each metric. Stars 
indicate the level of significance of differences between baseline and optimised results based on paired t-test 
and Wilcoxon signed-rank test depending on the distribution of the results on the test set according to the 
Shapiro-Wilk test (no star means not significant, * means p < 0.05, ** means p < 0.01, and *** means p < 0.001).

Model

Dice 5 mm SD Precision Recall HD (mm)

BS OP p BS OP p BS OP p BS OP p BS OP p

nnFormer 94.2 95.0 ** 91.9 94.5 *** 94.6 95.6 * 93.9 94.5 _ 72.9 48.8 ***

nnUNet 95.1 95.0 _ 94.6 95.0 _ 94.7 94.9 _ 95.4 95.1 _ 38.8 39.0 _

SegmentationNet 94.6 94.3 _ 93.9 93.7 _ 94.8 95.0 _ 94.5 93.7 ** 52.0 30.0 *

Swin-UNETR 89.6 94.4 *** 82.9 93.1 *** 85.0 96.4 *** 95.4 92.5 *** 131.5 42.5 ***

TransBTS 90.5 95.1 *** 86.7 95.1 *** 88.9 95.9 *** 92.8 94.4 *** 134.0 24.9 ***

UNETR 91.9 92.3 – 86.8 87.7 _ 91.3 93.1 *** 92.9 91.9 *** 104.8 117.3 _

VT-UNet 92.8 94.4 ** 89.1 93.3 *** 91.4 94.6 *** 94.6 94.3 _ 86.1 41.0 _

Figure 8.   Comparison of the dice performance on liver segmentation of the models across the 30 images of the 
test set for the seven deep learning architectures between the baseline models and the optimised models.

Table 11.   Performance evolution on the test dataset, for the tumour between the baseline (BS) and the 
optimised hyperparameter combination. Italic indicates the best inter-model value for each metric. Stars 
indicate the level of significance of differences between baseline and optimised results based on paired t-test 
and Wilcoxon signed-rank test depending on the distribution of the results on the test set according to the 
Shapiro-Wilk test (no star means not significant, * means p < 0.05, ** means p < 0.01, and *** means p < 0.001).

Model

Dice 5mm SD Precision Recall HD (mm)

BS OP p BS OP p BS OP p BS OP p BS OP p

nnFormer 68.5 69.7 _ 67.6 67.7 _ 78.9 82.9 _ 65.7 64.4 _ 66.7 72.3 _

nnUNet 68.1 68.1 _ 67.5 67.8 _ 78.8 84.2 _ 67.9 63.9 _ 60.2 60.1 _

SegmentationNet 55.8 61.7 _ 52.5 58.3 _ 61.6 74.2 _ 55.1 59.2 _ 91.5 84.8 _

Swin-UNETR 47.7 55.1 _ 42.0 50.9 *** 48.7 78.2 * 57.2 48.0 *** 162.9 58.5 **

TransBTS 51.4 62.1 ** 46.2 59.2 _ 58.4 73.1 *** 53.6 59.9 * 176.7 73.7 ***

UNETR 33.1 41.5 *** 30.0 35.3 * 40.9 50.7 _ 31.9 39.2 ** 121.7 138.1 *

VT-UNet 54.3 56.6 _ 49.6 53.9 _ 61.1 71.6 _ 55.8 56.0 ** 98.0 72.7 _
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segmentation task, the performance per image presents a high variability from one to another ranging from 0% 
to 95% of Dice.

Discussion
Impact of the different hyperparameters
In this study, a set of hyperparameters has been optimised through Bayesian search for seven distinct deep 
learning segmentation architectures. The hyperparameters were categorised into three sections: patch size, pre-
processing and data augmentation, as well as learning paradigms.

Patch size influence
It is worth noting that traditional CNNs typically allows larger image inputs compared to transformer-based 
architectures. Thus, with CNN, we were able to load a large part of the images which provide significant context 
to the network. In contrast, transformers face difficulty to load images with patch sizes larger than 224× 224× 64 
pixels. Tests on the influence of patch size have revealed that a larger patch size results in a considerable enhance-
ment in overall performance. In medical imaging, a significant context is vital in achieving optimal results. As 
a consequence, there is a need for more substantial GPUs. However, depending on the training architecture, 
training models with larger patch sizes for convergence has taken up to twice as much time compared to models 
with intermediate patch sizes.

Pre‑processing and Data Augmentation influence
As illustrated in Fig. 6, the effects of pre-processing and data augmentation appear to rely heavily on the inherent 
performance capabilities of the particular deep learning model. The resilience of high-performing models like 
nnFormer and nnUNet is remarkable, as evidenced by their validation metric’s relatively low standard deviations. 
Architectures with lower inherent performance, such as UNETR and VT-UNet, show a significant sensitivity 
to these strategies. Consequently, customised optimisation methods that are tailored for specific deep learning 
architectures and contingent on their baseline performance become crucial.

Learning Paradigm influence
In contrast to data augmentation, the influence of the learning paradigm on the baseline performance of the 
model is not striking, as demonstrated in 7. When examining nnFormer and nnUNet, both models showed a 
greater sensitivity to these parameters. In contrast, models with lower baseline scores, namely SegmentationNet 
and TransBTS, exhibited comparatively stable results, potentially possibly indicating less influence of the learning 
paradigm or saturation of their performance capabilities within the current parameters.

The nuances observed highlight the complexity involved in optimising deep learning architectures. Selecting 
an appropriate learning paradigm is not simply a matter of best fitting the available data, but requires considera-
tion of the unique characteristics and inherent capabilities of each architecture. A single strategy may not be 
sufficient, adapting it to the architecture can, in some cases, lead to notable performance improvements.

Overall optimisation impact
Although almost all the model present progress over the different metrics on the liver and tumour segmenta-
tion according to Tables 10 and 11, the analysis of Figs. 8 and 9 exposes a different pattern in the impact of the 
optimisation on the two tasks.

In the context of liver segmentation, the optimisation process not only minimises the number of outliers in 
lower-performing models but also offers a noticeable improvement in performance, even for images that were 
already well segmented. Regarding tumour segmentation, most models show a modest improvement for each 
image analysed. However, it is important to note that images that initially demonstrated low performance prior 
to optimisation rarely show a significant increase in performance after optimisation. Therefore, these cases can 
still be classified as outliers.

Figure 9.   Comparison of the dice performance on tumour segmentation of the models across the 30 images of 
the test set for the seven deep learning architectures between the baseline models and the optimised models.
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On an inter-model point of view, after optimisation, if the performance on the liver is similar between the 
tested models, the performance on tumour is highly variable. Looking at Fig. 9, the images of the test set can be 
separated into two distinct categories based on performance: those with dice exceeding 60% and those falling 
below this threshold. While the models tend to exhibit comparable performances in the former group, it is in 
the latter category where performance disparities become more pronounced. This variance can be attributed to 
the ability of the best-performing models to excel in handling more complex cases, thus outperforming their 
average counterparts.

CNN, transformer and hybrid models comparison
This study conducts a categorical comparison between CNNs, transformers, and hybrid models, revealing some 
noteworthy insights. It is evident that, following optimisation, hybrid networks not only compete with CNNs but 
can also surpass them, despite having a significantly smaller patch size. Additionally, advancements in GPU tech-
nology, particularly in terms of enhanced memory capacity, allowing for larger patch size could further cement 
hybrid networks as the predominant model in the field. Since VT-UNeT stands as the sole purely transformer-
based network in this study, making definitive conclusions is challenging. However, the current data suggests 
that convolution-free models may not yet be a completely reliable alternative.

Literature comparison
In the field of liver and liver tumour segmentation, there is a dearth of studies providing results on mono-modal 
MRI. Comparisons with other datasets are not consistently applicable due to distinctive imaging protocols and 
patient groups. Nevertheless, the work by Christ et al.35, as the only study conducted within a similar imaging 
modality (diffusion weighted MRI), remains relevant. They reported a Dice coefficient of 87% for liver and 
69.7% for tumour segmentation across 31 patients. On the liver, the CHAOS segmentation challenge66 saw a 
dice score of 95.2%.

Bayesian search time requirements
The specifics regarding the number of parameters, training duration, and inference time for the optimised config-
urations are meticulously outlined in Table 12. Each model exhibits an acceptable inference time per image from 
a clinical perspective, ranging between 0.6 and 3.0 s. However, there is considerable variability in training times, 
spanning from 17 to 144 h. This wide range could present challenges in the context of Bayesian optimisation.

Although Bayesian search offers an elegant strategy for fine-tuning hyperparameters, it has inherent limi-
tations when it comes to training models in parallel. Unlike grid or random search methods, which can train 
numerous hyperparameter combinations simultaneously, the Bayesian approach works sequentially while deter-
mining the next evaluation based on the findings of previous ones. In our research context, evaluation neces-
sitated testing 19 unique combinations. Due to the maximum training duration of 6 days per combination, the 
overall process lasted approximately 16 weeks. This restriction poses obstacles especially when dealing with 
complicated models or extensive datasets, and can markedly extend the tuning phase.

Limitations
The primary objective of this study was to identify the best hyperparameter configuration without utilising 
external data. However, due to the need to limit the computational expenses, several hyperparameters were 
intentionally not examined in this study. Here are the limitations of our study:

•	 Image generation techniques: hyperparameters that were not examined in this study involve generating 
images for data augmentation and the effect of pre-training or self-supervised learning. Although a self-
supervised version of SWIN-UNETR was applied, its impact on performance was not assessed. According 
to Shin et al.67, if image generation is achievable without external data, its impact is negligible when other 
sources of data augmentation are employed

•	 Mono-centre dataset: all images in the ATLAS dataset were obtained from patients at the University Hospital 
of Dijon, France. As a result, conclusions reached in this study may vary with a more diverse dataset.

Table 12.   Number of parameters, training time and inference time per model after optimisation.

Model nb parameters Training time (h) Inference time per image (s)

nnFormer43
3.7× 10

7 144 1.7

nnUNet33
3.0× 10

7 121 0.8

SegmentationNet44
1.8× 10

7 28 0.6

Swin-UNetr45,46
6.2× 10

7 77 2.4

Transbts48
3.4× 10

7 69 1.1

UNetr49
9.3× 10

7 17 0.7

VT-UNet50
1.2× 10

7 77 3.0
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•	 Cross-validation omission: cross-validation was not utilised in our study due to the extended training period 
of the deep learning architectures examined. This choice could influence the reliability of our performance 
metrics and their applicability to diverse data samples.

•	 Loss functions: our focus was limited to the techniques employed in the seven tested pipelines. In particular, 
we did not examined loss functions customised for specific assignments such as tumour segmentation. These 
encompassed the Dice topK loss, the boundary loss, and the Hausdorff distance loss.

•	 Architecture modifications: our study refrained from altering the original architectures in relation to depth, 
width or layer order. The majority of these architectures were developed with datasets of different complexi-
ties in mind. Consequently, deviations to these architectures could result in diverse outcomes, particularly 
when applied to datasets of simpler or more complex natures than originally anticipated.

Conclusion
Our study emphasises the significance of hyperparameter optimisation in the field of medical imaging, par-
ticularly in the 3D segmentation of the liver and liver tumour on CE-MRI. By implementing Bayesian search 
on a subset of hyperparameters, it was possible to clearly measure the effects of patch size, pre-processing, data 
augmentation and learning paradigms, whilst still keeping the quantity of tested combinations reasonable. An 
average gain per architecture of 1.7% for the liver and a remarkable 5.0% for the liver tumour using the Dice coef-
ficient illustrates the significance of hyperparameter tuning. Indeed, on such complex tasks, only a few methodo-
logical suggestions have resulted in analogous progressions in segmentation quality. However, although among 
the tested architectures all of them appear to be effective in the literature, it is important to note that significant 
performance discrepancies have been observed between them, which does not depends on the hyperparameter 
configurations. Nevertheless, hybrid transformer architectures, typically associated with large datasets, have 
shown their capability to match CNN performance even with limited data. Thus, for future directions, it appears 
promising to expand the dataset size through image generation, self-supervised and mixed supervised learning. 
This is especially true given the potential of transformers to benefit from such expansions. This study encourages 
a re-evaluation of the role of transformers in scenarios with limited data and highlights their emerging relevance 
in medical image segmentation. Such an improvement in automatic segmentation represents a significant step 
towards the potential automation of this process, reducing the reliance on manual segmentation performed by 
radiologists. This advancement not only streamlines the workflow but also promises to improve patient care by 
ensuring more precise and timely diagnoses and SIRT treatment planning.

Data availibility
The data that support the findings of this study are publicly available at https://​atlas-​chall​enge.u-​bourg​ogne.​fr.
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