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Abstract
Although the benefits of electroacupuncture (EA) for peripheral nerve injury (PNI) are well accepted in clinical practice, 
the underlying mechanism remains incompletely elucidated. In our study, we observed that EA intervention led to a reduc-
tion in the expression of the long non-coding RNA growth-arrest-specific transcript 5 (GAS5) and an increased in miR-21 
levels within the injured nerve, effectively promoting functional recovery and nerve regeneration following sciatic nerve 
injury (SNI). In contrast, administration of adeno-associated virus expressing GAS5 (AAV-GAS5) weakened the therapeutic 
effect of EA. On the other hand, both silencing GAS5 and introducing a miR-21 mimic prominently enhanced the prolifera-
tion activity and migration ability of Schwann cells (SCs), while also inhibiting SCs apoptosis. On the contrary, inhibition 
of SCs apoptosis was found to be mediated by miR-21. Additionally, overexpression of GAS5 counteracted the effects of 
the miR-21 mimic on SCs. Moreover, SCs that transfected with the miR-21 mimic promoted neurite growth in hypoxia/
reoxygenation-induced neurons, which might be prevented by overexpressing GAS5. Furthermore, GAS5 was found to be 
widely distributed in the cytoplasm and was negatively regulated by miR-21. Consequently, the targeting of GAS5 by miR-
21 represents a potential mechanism through which EA enhances reinnervation and functional restoration following SNI. 
Mechanistically, the GAS5/miR-21 axis can modulate the proliferation, migration, and apoptosis of SCs while potentially 
influencing the neurite growth of neurons.
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Introduction

Approximately five million cases of peripheral nerve injury 
(PNI) annually occur in the USA alone, requiring over $1.5 
billion in nerve reconstruction treatments [1]. Despite the 
relatively robust regenerative capacity of the adult peripheral 

nervous system (PNS) compared to the central nervous sys-
tem, the outcomes of nerve regeneration and functional 
recovery remain unsatisfactory [2]. Autogenous nerve graft-
ing currently serves as the gold standard in the treatment for 
PNI [3]; however, the insufficient donor nerve source is the 
major limitation [4]. Electroacupuncture (EA), a therapeu-
tic modality involving the electrical stimulation of specific 
acupoints on the body, has a long-standing history of appli-
cation in the Eastern world for treating various disorders 
[5]. Although the clinical benefits of EA in PNI are widely 
acknowledged [6, 7], the underlying mechanism remains 
incompletely understood.

MicroRNAs (miRNAs) are short RNA molecules, 
approximately 21 nucleotides in length, that play a crucial 
role in posttranscriptional gene regulation [8]. They are 
involved in a wide range of physiological processes and 
pathological conditions [9, 10]. Emerging evidence indi-
cates that miRNAs play a significant role in recovery process 
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after nerve injury. Among these miRNAs, miR-21 has been 
extensively investigated and has been found to possess mul-
tiple critical regulatory functions. For example, miR-21 has 
been shown to increase in response to spinal cord injury 
(SCI) and exerts various protective effects against SCI [11]. 
Notably, our previous study also demonstrated that the over-
expressed miR-21 promoted neurite outgrowth [12]. Most 
importantly, miR-21 has been implicated in the mechanism 
through which EA promotes functional recovery and nerve 
regeneration after sciatic nerve injury (SNI) [13]. However, 
the precise mechanisms underlying the upregulation of miR-
21 induced by EA after PNI remain unknown.

Long non-coding RNAs (lncRNAs) are transcripts that 
are longer than 200 nucleotides, generally without protein-
coding potential [14]. Recently researchers have suggested 
that lncRNAs may function as ceRNAs that compete with 
miRNAs for binding sites [15, 16]. The role of GAS5, as 
a lncRNA, in the repair of brain injury has been widely 
reported [17]. Several researchers have reported that GAS5 
acts as an inhibitory factor in axon regeneration [18, 19]. 
Specifically, the knockdown of GAS5 has been shown to 
enhance neurite growth in dorsal root ganglion (DRG) neu-
rons in rats [20]. Consistently, GAS5 knockout mice exhib-
ited enhanced nerve regeneration capacity following SNI 
[20]. However, the potential role of GAS5 in the context of 
EA-mediated promotion of repair in SNI remains to be fur-
ther elucidated. Additionally, previous studies have indicated 
the presence of a complementary region between GAS5 and 
miR-21, suggesting a potential regulatory relationship [21]. 
Thus, we hypothesized that GAS5 may regulate the repair 
process after PNI by targeting miR-21.

SCs are the principal glial cells in PNS and form a myelin 
sheath to provide metabolic and nutritional support to neu-
ronal axons [22]. In addition, SCs are involved in guiding 
neurite growth through their migration and proliferation 
[23], and they contribute to the clearance of axon and myelin 
debris after PNI [24]. However, the specific mechanisms by 
which GAS5 regulates the SCs proliferation, migration, and 
apoptosis of SCs in vitro remain unclear. To address this, 
we utilized the NG108-15 cell line, which is a hybrid cell 
line derived from the fusion of mouse neuroblastoma cells 
with rat glioma cells [25]. This cell line retains the essential 
biological characteristics of neuronal cells [26] and serves 
as a valuable tool for simulating the physiological and patho-
logical conditions of neuronal cells [27]. In our study, we 
observed the differential expressions of GAS5 and miR-21 
after EA intervention following PNI and aimed to determine 
the effect of EA and its potential mechanism in regulating 
GAS5. Specifically, our findings suggest that GAS5, by tar-
geting miR-21, has the potential to promote the proliferation 
and migration of SCs while inhibiting apoptosis. Further-
more, GAS5 may also contribute to the neurite growth of 
NG108-15 cells.

Materials and Methods

Animals

Male SPF-grade Wistar rats weighing approximately 200 g 
were purchased from the Shanghai Slack Laboratory Ani-
mal Co Ltd (Shanghai, China). The rats were housed in the 
Laboratory Animal Center of Shanghai University of Tra-
ditional Chinese Medicine (TCM) under controlled condi-
tions, including a 12-h light/dark cycle, a temperature of 
22 ± 2 °C, and libitum access to food and water. All experi-
mental procedures were performed following the guidelines 
of the National Institutes of Health Guide for the Care and 
Use of Laboratory Animals (revised in 1978). All surgical 
and experimental procedures on rats were approved by the 
Animal Ethics Committee, Shanghai University of TCM 
(PZSHUTCM211129006).

Establishment of Sciatic Nerve Injury Model

Thirty rats were randomly assigned to three groups: the sham 
group, the model group, and the EA group, with each group 
comprising 10 rats. The SNI was employed as a commonly 
used model of PNI [28]. Briefly, all rats were intraperito-
neally anesthetized with sodium pentobarbital at a dose of 
50 mg/kg. The right lower limb of the rats was disinfected, 
and a posterior lateral thigh incision was made to expose the 
sciatic nerve. Following the sciatic nerve incision, the sciatic 
nerve epineuria and the skin were sutured separately using 
9–0 and 3–0 silk threads under a stereomicroscope, except 
for the rats in the sham group.

AAV‑GAS5 Administration

Forty rats were randomly allocated into four groups: the 
model group, EA group, EA + AAV-GAS5 group, and 
EA + AAV-negative control (NC) group, with each group 
consisting of 10 rats. The SNI model was established as 
described earlier in each group. Adeno-associated virus 9 
carrying GAS5 (AAV9-GAS5, AAV-GAS5) (6.5 × 1011 viral 
particles/mL) or a scramble control construct (AAV9 Scram-
ble, AAV-NC) (BrainVTA, Wuhan, China) was injected into 
the site of the sciatic nerve injury at a dosage of 10 μL for 
the EA + AAV-GAS5 group and EA + AAV-NC group.

EA Intervention

In the first experiment, on the second day following the 
establishment of the model, rats in the EA group under-
went EA intervention. EA stimulation was administered 
for a duration of 20 min per day, targeting the “Huantiao” 
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(GB30) and “Zusanli” (ST36) acupoints. The 0.25 × 13 mm 
needles were inserted into these acupoints, and the G6805A 
electroacupuncture apparatus was utilized to connect the 
needles. The positive pole and the negative pole were sepa-
rately attached to GB30 and ST36, delivering an intermittent 
wave that induced slight muscle vibration. The treatment 
continued for a period of 3 weeks, with a suspension after 
continuous treatment for 6 days.

Sciatic Nerve Conduction Velocity Recovery Rate 
(NCV)

The NCV was assessed in the sciatic nerves as previously 
mentioned [13]. To detect NCV, the ARM6240 biological 
signal acquisition system from Chengdu Instrument Factory 
was utilized. Electrical stimulation was induced by a stimu-
lating electrode connected to the proximal end of the sciatic 
nerve. The compound motor action potentials in the dis-
tal sciatic nerve were tested using a receiving electrode, to 
which the acupuncture needles were attached. Subsequently, 
sciatic nerve conduction velocity was calculated by deter-
mining the distance/time between the stimulating electrode 
and the receiving electrodes. The NCV of the sciatic nerve 
was then evaluated by calculating the ipsilateral NCV to the 
contralateral NCV.

Sciatic Nerve Function Index (SFI)

A rectangular box was prepared, and the bottom was cov-
ered with white A4 paper. Once the hind paws of the rats 
were fully stained with ink, they were allowed to walk freely 
within the box. The footprints left by the rats were then uti-
lized for the analysis of the SFI. In this analysis, PL referred 
to the distance from the heel to the toe, TS represented the 
width between toes 1 and 5, and the breadth between toes 
2 and 4 was used to characterize IT. Moreover, the letter N 
indicates the measurements taken from the ipsilateral side, 
while the letter E signifies the measurements obtained from 
the contralateral side. The formula of SFI is as follows:

The Wet Weight Ratio of the Gastrocnemius Muscle 
(WWRG)

The bilateral gastrocnemius muscles were meticulously 
separated, and their wet weight was measured. WWRG was 
calculated by determining the ratio of the weight on the ipsi-
lateral side to the weight on the contralateral side.

SFI = −38.3 ×
EPL − NPL

NPL
+ 109.5 ×

ETS − NTS

NTS
+ 13.3 ×

EIT − NIT

NIT
− 8.8

Cell Culture

RSC96 cells were cultured in Dulbecco’s Modified Eagle 
Medium (DMEM; 10–013-CV, Corning, USA) supple-
mented with 10% fetal bovine serum (FBS; C0235, Invit-
rogen, USA). The cells were maintained at 37 °C with 5% 
CO2. NG108-15 cells were cultured in DMEM supplemented 
with 10% FBS and 0.1 mM hypoxanthine (H9377, Sigma-
Aldrich, USA). Moreover, 400 nM aminopterin (A5159, 
Sigma-Aldrich, USA) and 16 μM thymidine (T9250, Sigma-
Aldrich, USA) were added to induce differentiation into the 
neuron cell lineage. Cell passaging was performed when the 
cells reached 90% confluency.

Hypoxia/Reoxygenation (H/R) Administration 
of NG108‑15 Cells

A H/R model of NG108-15 was established to simulate 
the H/R environment of neurons in vitro under pathologi-
cal conditions. Specifically, NG108-15 cells were seeded 
into a 12-well plate with a confluence degree of 30%. Fol-
lowing 24 h of routine culture, the growth density of the 
NG108-15 cells typically reached 50 to 60%. At this point, 
the H/R intervention was initiated. When the confluence 
rate of NG108-15 cells was 50 to 60%, the conventional 
medium in the wells was replaced with a glucose- and FBS-
free medium and the cells were cultured for 6 h at 37 °C 
under anoxic conditions in a cell incubator with 90% N2, 5% 
CO2, and 5% O2. Subsequently, the medium was removed, 
and the cells were cultured with the conventional medium 
in a 37 °C incubator with 5% CO2 for 3 h.

Cell Transfection

SCs were transfected with 50 nM of miR-21-5p mimic/
inhibitor and their respective NCs (miR10000790-1–5; 
miR20004711-1–5, Ribobio Biotech, Guangzhou, China). 
Furthermore, for knockdown gene analysis, siRNAs tar-
geting GAS5 and a non-targeting siRNA (si-NC) were 
chemically synthesized (Ribobio Biotech, Guangzhou, 
China). The cells were transfected with lncRNA GAS5-

siRNA#1, lncRNA GAS5-siRNA#2, and lncRNA GAS5-
siRNA#3, respectively. After culturing for 24–48 h, the 
knockdown efficiency was determined by RT-qPCR. The 
target sequences of these siGAS5s are shown in Table 1. 
All transfections were performed using lipofectamine 2000 
(11668019, Invitrogen, USA) following the manufacturer’s 
instructions. Furthermore, RSC96 cells were infected with 
a lentiviral vector overexpressing GAS5 (OE-GAS5) or a 
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lentiviral vector with an NC (OBiO Biotech, Shanghai, 
China) at a multiplicity of infection of 50. Cells in the 
control group were treated with PBS only.

Cell Co‑culture

After 48 h of transfection, the RSC96 cells were digested 
and centrifuged to obtain a 200 μL single cell suspension. 
This suspension was then inoculated into the upper cham-
ber of the Transwell (0.4 μM, CLS3401, Corning, USA) 
at a density of 106 cells/mL. NG108-15 cells in the lower 
chamber were subjected to the H/R administration. The 
co-culture was carried out at 37 °C with 5% CO2 for 24 h.

Transwell Migration Assay

RSC96 cells following completion of transfection were 
inoculated in the upper chamber (8 μM, CLS3428, Corn-
ing, USA) as previously mentioned. In the lower cham-
ber, 500 μL of DMEM medium containing 10% FBS was 
added. The co-culture was then carried out at 37 °C with 
5% CO2 for 12 h. After the co-culture, the cells at the bot-
tom of the upper chamber were wiped away using a cotton 
swab. The remaining cells were stained with 0.1% crystal 
violet and imaged. The cell count was performed under a 
microscope.

Cell Counting Kit‑8 (CCK‑8)

RSC96 cells were seeded onto 96-well plates at an appropri-
ate density (appropriately 30%). After 48 h of transfection, 
10 μL of CCK-8 reagent (40203ES60, YEASEN Biotech, 
Shanghai, China) was injected into each well, followed 
by the inoculation of cells for 2 h at 37 °C with 5% CO2. 
To measure cell viability, the absorbance at 450 nm was 
detected using a microplate reader (Synergy 2, BioTek, 
USA).

The Terminal Deoxynucleotidyl Transferase dUTP 
Nick End Labeling (TUNEL) Staining

At 48 h after transfection of RSC96 cells, the cells were 
fixed for 30 min on ice. After washing with PBS, the cells 
were incubated with 0.3% Triton X-100 (30188928, Sin-
opharm Chemical Reagent Co., Ltd, Shanghai, China) for 
5 min at room temperature. Next, 50 μL of TUNEL (C1089, 
Beyotime, Shanghai, China) reaction buffer was added to 
the RSC96 cells and incubated for 1 h at 37 °C in the dark. 
Nuclei were stained with Hoechst 33342. To calculate the 
apoptotic index, the number of TUNEL-positive cells was 
counted and divided by the total number of cells.

Real‑Time Quantitative PCR (RT‑qPCR)

For the extraction of total RNA, the Trizol reagent (San-
gon Biotech, Shanghai, China) was used. The miRcute Plus 
miRNA First-Strand cDNA Kit (KR211-02, Tiangen Bio-
tech, Beijing, China) was utilized to synthesize first-strand 
cDNA for miRNA. The miRcute Plus miRNA qPCR Kit 
(FP411-01, Tiangen Biotech, Beijing, China) was used for 
the quantification of qPCR. For GAS5, the total RNA was 
extracted using the same method as mentioned above. The 
FastKing gDNA Dispelling RT SuperMix (KR118, Tiangen 
Biotech, Beijing, China) was used for the synthesized first-
strand cDNA. The Hieff® qPCR SYBR Green Master Mix 
(High Rox Plus) (11203ES08, YEASEN Biotech, Shanghai, 
China) was used for RT-qPCR. The primer sequences for 
miR-21-5p/U6 and GAS5/GAPDH are provided in Table 2. 
The amplification reaction conditions should be followed as 
per the instructions. The RT-qPCR data were analyzed using 
the 2−ΔΔCT method.

Western Blotting

To extract the proteins from SCs and NG108-15 cells, the 
whole protein extraction kit (BC3710, Solarbio, Beijing, 
China) was used. The protein lysates obtained were quan-
tified using a BCA protein assay kit (P0010, Beyotime, 
Shanghai, China) according to the manufacturer’s instruc-
tions. Subsequently, 12.5% SDS-PAGE (P2013, NCM 

Table 1   Target sequences of siGAS5

Genes Primer sequence

Lnc-siGAS5-1 Sense (5′-GAU​GGA​UGC​UUG​AAC​AGA​ATT-3′)
Antisense (5′-UUC​UGU​UCA​AGC​AUC​CAU​CTT-

3′)
Lnc-siGAS5-2 Sense (5′-GAC​AUU​GUG​CUG​UCA​AGA​ATT-3′)

Antisense (5′-UUC​UUG​ACA​GCA​CAA​UGU​CTT-
3′)

Lnc-siGAS5-3 Sense (5′-CAA​AGA​UGG​AUG​AAA​GCU​ATT-3′)
Antisense (5′-UAG​CUU​UCA​UCC​AUC​UUU​GTT-

3′)

Table 2   Primer sequence list

Genes Primer sequence

miR-21-5p GTA​GCT​TAT​CAG​ACT​GAT​GTTGA​
U6 CTC​GCT​TCG​GCA​GCACA​
GAS5 Forward: 5′-GCA​AGC​CTA​ACT​CAA​GCC​ATTG-3′

Reverse: 5′-CTT​GCT​CCA​CAC​AGT​GTA​GTC-3′
GAPDH Forward: 5′-ATG​ACT​CTA​CCC​ACG​GCA​AG-3′

Reverse: 5′-GGA​AGA​TGG​TGA​TGG​GTT​TC-3′
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Biotech, Suzhou, China) was used to separate the protein 
samples. The separated proteins were then electrophoreti-
cally transferred onto a polyvinylidene difluoride (PVDF) 
membrane (IPVH00010, Millipore, USA). The membrane 
was incubated with 5% skim milk at room temperature for 
1 h. Primary antibodies, including anti-Bcl-2, anti-Bax, 
anti-cleaved caspase-3 (C-cas3), and anti-GAPDH, were 
then added and incubated overnight at 4 °C. The secondary 
antibodies (anti-rabbit or anti-mouse) were then incubated 
at room temperature for 2 h. Detailed information of the 
antibodies was presented in Table 3. Protein bands were 
detected using an enhanced chemiluminescence system 
and a Bio-Spectrum Gel Imaging System (4500F, Tanon, 
Shanghai, China). GAPDH was used as an internal control. 
The gray values of the protein bands were analyzed using 
ImageJ software.

Luciferase Reporter Assay

The pmir-GLO-GAS5-Wt luciferase vector and pmir-GLO-
GAS5-Mut luciferase vector (Ribobio Biotech, Guangzhou, 
China) were constructed. Subsequently, the pmir-GLO-
GAS5-Wt/Mut vectors were co-transfected into RSC96 cells 
with miR-21-5p mimics/mimic NC using lipofectamine 2000 
according to the manufacturer’s instructions. Following 48-h 
incubation period, the luciferase reporter assay system was 
deployed to evaluate the outcomes.

RNA Fractionation

Separation of nuclear and cytoplasmic fractions of NG-108 
followed by RNA isolation was carried out using PAR-
ISTM Kit (AM1921, Invitrogen, USA). Briefly, the cultured 
NG-108 cells were washed with 1 × PBS and then lysed in 
an ice-cold cell fractionation buffer. After incubating on ice 
for 10 min, the lysate was centrifuged at 1000 × g for 10 min 
at 4 °C to separate the nuclear and cytoplasmic fractions. 

Following the manufacturer’s instructions, the total RNA 
of each particle was extracted. Various gene/transcript 
expression levels in both nuclear and cytoplasmic fractions 
of all samples were quantified by quantitative RT-qPCR as 
described above.

Immunofluorescence Staining

NG108-15 cells were fixed with ice-cold 4% paraformal-
dehyde (PFA) and frozen sections of the sciatic nerve were 
permeated with 0.5% Triton X-100. To block non-specific 
binding, goat serum was utilized. The primary antibodies 
were then incubated overnight at 4 °C in appropriate pro-
portions. β-III tubulin, a primary antibody, was employed 
to stain the cytoskeleton of NG108-15 cells. Neurofilament 
200 (NF200) and myelin basic protein (MBP) were used 
to stain the axons and myelin sheath of the sciatic nerve. 
The secondary antibody was blocked with the same spe-
cies as the primary antibody. Detailed information of the 
antibodies was presented in Table 3. Subsequently, fluores-
cence inverted microscope was employed to observe and 
capture images as soon as possible, followed by sealing with 
an anti-fluorescence quench agent. Statistical analysis of the 
obtained images was performed using ImageJ software.

Statistical Analysis

Statistical analyses were conducted using GraphPad Prism 9 
software. All the data are presented as the mean ± standard 
deviation (SD). The intergroup difference was tested by one-
way analysis of variance (ANOVA) followed by Scheffe’s 
post hoc multiple-comparison test. Two-way ANOVA analy-
sis was utilized to determine the impact of GAS5 and miR-
21 on SCs, and neuronal neurite growth followed by Tukey’s 
post hoc multiple-comparison test. P < 0.05 was considered 
to be statistically significant.

Table 3   Antibody list Antibody Concentration Catalog No. R Supplier

Rabbit anti-NF200 1:200 N4142 Sigma-Aldrich
Rabbit anti-MBP 1:200 ab40390 Abcam
Rabbit anti-βIII tubulin 1:200 ab18207 Abcam
Rabbit anti-Bcl-2 1:1000 ab59348 Abcam
Rabbit anti-Bax 1:1000 2772 CST
Rabbit anti-cleaved caspase-3 1:1000 9664 CST
Mouse anti-GAPDH 1:1000 60,004 Proteintech
Anti-rabbit HRP 1:1000 7074 CST
Anti-mouse HRP 1:1000 7076 CST
Anti-mouse antibody Alexa 555 1:200 A-21428 Thermo
Anti-rabbit antibody Alexa 488 1:800 A-11034 Thermo
Anti-mouse antibody Alexa 488 1:800 A-11001 Thermo
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Results

Electroacupuncture Promotes Nerve Function 
Recovery and Regeneration After Sciatic Nerve 
Injury and Induces Differential Expression of GAS5 
and miR‑21

The effect of EA on functional recovery and axon regen-
eration following SNI remains to be further verified. First, 

the behavioral assays were used to assess the functional 
recovery of the sciatic nerve. The results indicated a sig-
nificant improvement in sciatic functional index (SFI) 
(Fig. 1A), nerve conductive velocity (NCV) (Fig. 1B), 
and wet weight ratio of the gastrocnemius (WWRG) 
(Fig. 1C) following EA intervention. Subsequently, the 
immunofluorescence staining of NF200 and MBP was 
performed to evaluate the effects of EA on axon and 
myelin regeneration after SNI. The findings revealed a 
substantial increase in the number of regenerated axons 

Fig. 1   Electroacupuncture promotes nerve function recovery and 
regeneration after sciatic nerve injury and induces differential 
expression of GAS5 and miR-21. A–C The nerve function recov-
ery index detection of SFI, NCV, and WWRG of rats. D, F Immu-
nofluorescence staining of sciatic nerve reflected the morphology of 
myelin (MBP, green) and axons (NF200, green). Scale bar = 50 μm. 

E, G The statistical analysis of the number of myelin and axons. 
H RT-qPCR was used to detect the expression of GAS5 in the sci-
atic nerve. I RT-qPCR was used to detect the level of miR-21 in 
the sciatic nerve. For the above, data are represented as mean ± SD 
(one-way ANOVA, Scheffe’s post hoc test: *P < 0.05, **P < 0.01, 
***P < 0.001)
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(Fig. 1D, E), along with an increase in the number of 
myelin sheaths increased and improved structure follow-
ing EA intervention (Fig. 1F, G). Moreover, to further 
investigate the underlying repair mechanism of EA fol-
lowing nerve injury, RT-qPCR analysis was conducted. 
The results demonstrated a significant upregulation of 
miR-21 expression (Fig. 1H) and a significant down-
regulation of GAS5 expression after EA intervention 
(Fig. 1I). Collectively, these findings not only confirmed 
the reparative effects of EA after SNI but also suggested 
the potential involvement of differential expression of 
GAS5 and miR-21 in mediating the therapeutic effects 
of EA intervention.

miR‑21 Mimic Promote Proliferation and Migration 
and Suppresses Apoptosis of SCs In Vitro

To explore the potential role of miR-21 in SCs in vivo, we 
transfected RSC96 (rat SCs line) cells separately with miR-
21 mimic, miR-21 inhibitor, and their respective negative 
controls (NCs). Cell Counting Kit-8 (CCK-8) and Tran-
swell assays were performed to assess cell proliferation and 
migration. The results demonstrated that the miR-21 mimic 
significantly promoted the proliferation and migration of 
SCs compared to the miR-21 inhibitor (Fig. 2A–C). Addi-
tionally, terminal deoxynucleotidyl transferase dUTP nick 
end labeling (TUNEL) staining revealed that the miR-21 
mimic led to a significant decrease in the number of apop-
totic SCs, while the miR-21 inhibitor had the opposite effect 

Fig. 2   miR-21 mimic promotes proliferation and migration and sup-
presses apoptosis of SCs in vitro. A CCK-8 assay was used to exam-
ine the proliferation of SCs. B Crystal violet staining was used to 
trace the migration ability of SCs. C The number of cell migration 
statistics analysis. D TUNEL assay was used to detect the number 
of apoptotic SCs (green). Scale bar = 50 μm. E The statistics analy-

sis apoptosis index of SCs. F Western blot was used to detect the 
expression of cleaved caspase-3/Bcl-2/BAX and GAPDH. G Statis-
tics analysis of gray value for protein bands. For the above, data are 
represented as mean ± SD (one-way ANOVA, Scheffe’s post hoc test: 
*P < 0.05, **P < 0.01, ***P < 0.001)
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(Fig. 2D, E). Results of western blot further showed that the 
miR-21 mimic reduced the expression of the pro-apoptotic 
protein cleaved caspase-3, increased the expression of the 
anti-apoptotic protein Bcl-2, and subsequently enhanced the 
Bcl-2/Bax ratio compared to the mimic NC. In contrast, the 
miR-21 inhibitor exhibited contrasting effects (Fig. 2F, G). 
Accordingly, these findings indicated that miR-21 may exert 
beneficial effects on SCs and contribute to the improvement 
of the nerve injury repair process.

Silencing GAS5 Promotes SCs Proliferation 
and Migration and Suppresses SC Apoptosis In Vitro

To further investigate the role of GAS5 in SCs, we con-
structed the chemically synthesized double-stranded 
small interfering RNA (siRNA) that knockdown GAS5 
(siGAS5), and the lentiviral vector that overexpresses 

GAS5 (OE-GAS5). Following transfection/infection 
of SCs in vitro, the CCK-8 assay and Transwell assay 
revealed that silencing of GAS5 significantly promoted 
the proliferation and migration of SCs compared to the 
overexpression of GAS5 (Fig. 3A–C). Furthermore, using 
TUNEL staining, we observed a significant decrease in the 
number of apoptotic SCs with siGAS5 treatment (Fig. 3D, 
E). In addition, we examined the expression of Bcl-2/Bax 
and cleaved caspase-3 proteins, key regulators of cell 
apoptosis. Western blot analysis demonstrated that the 
knockdown of GAS5 downregulated the pro-apoptotic pro-
tein cleaved caspase-3 and upregulated the anti-apoptotic 
protein Bcl-2, resulting in an improved Bcl-2/Bax ratio 
and reduced the apoptosis in SCs (Fig. 3F, G). Collec-
tively, these findings indicate that GAS5 is not conducive 
to SCs and may serve as an inhibitory factor in the nerve 
injury repair process.

Fig. 3   Silencing of GAS5 promotes SCs proliferation and migration 
and suppresses SC apoptosis in  vitro. A CCK-8 assay was used to 
examine the proliferation of SCs. B Crystal violet staining was used 
to trace the migration ability of SCs. C The number of cell migra-
tion statistics analysis. D TUNEL assay was used to detect the num-
ber of apoptotic SCs (red). Scale bar = 50 μm. E The statistics anal-

ysis apoptosis index of SCs. F Western blot was used to detect the 
expression of cleaved caspase-3/Bcl-2/BAX and GAPDH. G Statis-
tics analysis of gray value for protein bands. For the above, data are 
represented as mean ± SD (one-way ANOVA, Scheffe’s post hoc test: 
*P < 0.05, **P < 0.01, ***P < 0.001)
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Overexpression of GAS5 Prevented the Effect 
of miR‑21 Mimic on SC Proliferation, Migration, 
and Apoptosis

To elucidate the interaction between GAS5 and miR-21 in 
SC, the miR-21 mimic was transferred into stable lentivirus 
SCs strains that overexpressed GAS5. In comparison to the 
control group, the miR-21 mimic resulted in enhanced pro-
liferation and migration of SCs. However, when OE-GAS5 
was introduced, it reversed the effects of the miR-21 mimic 
on SCs (Fig. 4A–C). The TUNEL assay demonstrated that 
the miR-21 mimic decrease the number of apoptotic cells, 
while OE-GAS5 attenuated this effect (Fig. 4D, E). Western 
blot analysis revealed that OE-GAS5 prevented the impact 
of miR-21 mimic, leading to the downregulation of Bcl-2/
Bax and the upregulation of cleaved caspase-3 (Fig. 4F, G). 

Based on these findings, it can be inferred that there may 
exist a potential targeting relationship between GAS5 and 
miR-21, which may play a role in the pathological process 
of PNI.

SCs Transfected miR‑21 Mimic Promoted Neurite 
Growth of Hypoxia/Reoxygenation (H/R)‑Induced 
NG‑108 Neurons, While Overexpression GAS5 
Reversed the Effect

To investigate the impact of GAS5 and miR-21 on neurite 
outgrowth in neurons, we utilized the H/R damage model. 
Immunofluorescence staining demonstrated that the over-
expression of miR-21 significantly enhanced the neurite 
growth of H/R-induced neurons compared to the miR-21 
inhibitor group (Fig. 5A, B). Conversely, overexpression of 

Fig. 4   Overexpression of GAS5 prevented the effect of miR-21 
mimic on SCs proliferation, migration, and apoptosis. A CCK-8 assay 
was used to examine the proliferation of SCs. B Crystal violet stain-
ing was used to trace the migration ability of SCs. C The number of 
cell migration statistics analysis. D TUNEL assay was used to detect 
the number of apoptotic SCs (green). Scale bar = 50 μm. E The sta-

tistics analysis apoptosis index of SCs. F Western blot was used to 
detect the expression of cleaved caspase-3/Bcl-2/BAX and GAPDH. 
G Statistics analysis of gray value for protein bands. For the above, 
data are represented as mean ± SD (two-way ANOVA, Tukey’s post 
hoc test: *P < 0.05, **P < 0.01, ***P < 0.001)
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GAS5 significantly inhibited neurite outgrowth. Notably, the 
overexpression of GAS5 reversed the promoting effect of 
miR-21 mimic on neurite outgrowth to some extent (Fig. 5C, 
D). These findings support that GAS5 and miR-21 poten-
tially interact with the neurite growth in neurons.

GAS5 Negatively Regulates miR‑21 Expression, 
and miR‑21 Is the Direct Target of GAS5

To investigate the potential role of GAS5 in regulating miR-21 
and nerve repair, we measured miR-21 levels in SCs trans-
fected with a siGAS5 or LV-GAS5 using RT-qPCR. Firstly, 
three specific siRNAs targeting GAS5 were used to assess 
the knockdown efficiency of GAS5 knockdown in RSC96 
cells. The results revealed that all three siRNAs decreased 

the expression of GAS5, leading to a simultaneous upregu-
lation of miR-21 expression (Fig. 6A, B). Among the siR-
NAs, the si-lnc-GAS5-3 demonstrated better efficiency and 
was selected for further experiments. On the other hand, the 
LV-GAS5 infection in SCs significantly increased the expres-
sion of GAS5, while the level of miR-21 was downregulated 
(Fig. 6C, D). To gain further insight into the mechanism of 
GAS5, it is necessary to determine the subcellular localization 
of GAS5. RNA fractionation results showed that GAS5 was 
predominantly located in the cytoplasm (Fig. 6E), suggesting 
it may act as a miRNA sponge. Additionally, potential bind-
ing sites between GAS5 and miR-21 were identified (Fig. 6F). 
Notably, the dual-luciferase reporter gene assay demonstrated 
that the miR-21 mimic had a significant impact on the lucif-
erase activity of wild-type GAS5 (Fig. 6G). In summary, these 

Fig. 5   SCs transfected miR-21 
mimic promoted neurite growth 
of H/R-induced NG-108 neu-
rons, while OE-GAS5 reversed 
the effect. A, C Immunocy-
tochemistry staining of beta 
III tubulin (green) to observe 
neurite outgrowth of NG108-15 
cells. Scale bar = 25 μm. B, D 
Neurite length quantification 
and analysis containing the 
longest and average neurite 
length of NG108-15 cells. For 
the above, data are repre-
sented as mean ± SD (two-way 
ANOVA, Tukey’s post hoc 
test: *P < 0.05, **P < 0.01, 
***P < 0.001)
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experimental data demonstrated that miR-21 is the direct target 
of GAS5.

Effect of EA on Nerve Regeneration and Functional 
Recovery Following Sciatic Nerve Injury Is 
GAS5‑Dependent

To further confirm the role of GAS5 in the repair of SNI 
induced by EA, the adeno-associated viruses overexpressing 
GAS5 (AAV-GAS5) were injected into the injured area of SNI 
rats simultaneously treated with EA. The behavioral assay data 
revealed that the injection of AAV-GAS5 effectively reversed 
the function recovery of EA compared to both the EA group 
and the EA + AAV-NC group (Fig. 7A–C). Additionally, the 
immunofluorescence staining demonstrated that nerve regen-
eration was impeded upon the administration of AAV-GAS5 
(Fig. 7D–G). Collectively, our findings provide compelling 
and direct evidence supporting the involvement of GAS5 par-
ticipates in the EA-induced of SNI repair.

Discussion

PNI is a common disease in the nervous system, which sig-
nificantly impairs the life quality of patients [29]. Despite 
ongoing efforts, the repair and treatment of SNI is still a 

problem today [30]. Acupoint stimulation, a traditional 
superficial peripheral stimulation approach with a history 
spanning over 2500 years, has been widely utilized in clini-
cal practice for the treatment of various diseases [31, 32]. 
EA, a technique that combines acupuncture with modern 
electrical stimulation, has shown promising results in prov-
ing dysfunctions associated with PNI [33]. Moreover, EA 
offers advantages such as safety, ease of use, and affordabil-
ity, making it a potentially preferred therapeutic intervention 
for PNI. In this study, we established an SNI rat model and 
administered EA intervention. Consistent with the results 
of previous studies [34, 35], our findings demonstrated that 
EA promotes axonal extension, regeneration of myelin, and 
functional recovery following SNI. These results provide 
further direct evidence supporting the effectiveness of EA in 
the treatment of PNI. In this study, we aimed to investigate 
the underlying cellular and molecular mechanism of EA for 
nerve repair after SNI.

The PNS is primarily composed of axons of motor neu-
rons and the myelin sheath formed by SCs. In addition to 
the inherent regenerative capacity of neurons, SCs create 
a favorable microenvironment for axon regeneration, pro-
moting the regeneration and repair of PNI. Despite these 
regenerative mechanisms, the rate of nerve regeneration 
after PNI is often slow, leading to less satisfactory outcomes 
in terms of repair. Precise regulation of gene expression is 

Fig. 6   GAS5 negatively regulates miR-21 expression, and miR-21 is 
the direct target of GAS5. A RT-qPCR was used to detect the expres-
sion of GAS5 with different siRNA segments in SCs. B RT-qPCR 
was used to detect the level of miR-21 with different knocking effi-
ciency of GAS5 in SCs. C RT-qPCR was used to detect the expres-
sion of GAS5 when infected lentivirus expression of GAS5 in SCs. D 
RT-qPCR was used to detect the expression of miR-21 when infected 

lentivirus that expression of GAS5 in SCs. E Subcellular fractiona-
tion assay measured the localization of GAS5 in SCs. F The binding 
sites between GAS5 and miR-21 are depicted in this diagram. G The 
dual-luciferase reporter gene assay was used to detect the luciferase 
activity of GAS5 when SCs transfected miR-21 mimic or NC. For the 
above, data are represented as mean ± SD (one-way ANOVA, Schef-
fe’s post hoc test: *P < 0.05, **P < 0.01, ***P < 0.001)
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essential for long-distance axon regeneration following PNI. 
Recent experiments have highlighted the significant impact 
of differentially expressed non-coding RNAs (ncRNAs), 
particularly miRNAs and lncRNAs on axon regeneration 
during PNI [36]. MiRNAs have been shown to play a role 
in regulating the biological behaviors of neurons and SCs 
[37], including neuronal survival, axonal outgrowth, and 
SCs phenotype [38, 39]. Among these miRNAs, miR-21 has 
emerged as one of the most commonly upregulated miR-
NAs and plays a crucial role in various cellular biological 
processes under physiological and pathological conditions 
[40]. Our findings demonstrate a significant upregulation of 
miRNA-21 expression following EA. According to the exist-
ing research, miR-21 promotes axon growth and facilitates 

nerve function recovery [41]. Notably, Strickland et al. [42] 
also observed a substantial enhancement in axon growth of 
DRG in vitro upon overexpression of miRNA-21. Collec-
tively, these results highlight the involvement of miR-21 in 
nerve injury and repair processes.

Recently, it has been reported that the expression lev-
els of certain lncRNAs changes after PNI potentially affect 
nerve regeneration [43, 44]. In our study, we observed a 
decrease in the expression of GAS5 following EA treat-
ment. This led us to propose that EA may exert its effects 
by downregulating GAS5. To gain a deeper understanding 
of the role of GAS5 in EA treatment after PNI, we utilized 
overexpressed GAS5 (AAV-GAS5). The results demon-
strated that AAV-GAS5 weakened the effects of EA, which 

Fig. 7   Effect of EA on nerve regeneration and functional recovery 
after sciatic nerve injury is GAS5-dependent. A–C The nerve func-
tion recovery index detection of SFI, NCV, and WWRG of the SNI 
rats. D, F Immunofluorescence staining of the sciatic nerve reflected 
the morphology of myelin (MBP, red) and axons (NF200, green). 

Scale bar = 50 μm. E, G Statistical analysis of the number of myelin 
and axons in the sciatic nerve. For the above, data are represented 
as mean ± SD (one-way ANOVA, Scheffe’s post hoc test: *P < 0.05, 
**P < 0.01, ***P < 0.001)
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further confirmed that EA promotes SNI repair through the 
regulation of GAS5. The mechanisms of lncRNAs are com-
paratively complex, involving miRNA sponges, regulation of 
transcription factor activity, interactions with RNA binding 
proteins, and so on. The mechanism of lncRNAs depends 
on their subcellular localization. Only lncRNAs located in 
the cytoplasm can function as miRNA sponge. Our results 
indicated that GAS5 was primarily located in the cytoplasm, 
suggesting a potential regulatory mechanism for GAS5. 
Previous studies by Zhang et al. [45] have shown that in 
humans, GAS5 directly interacted with the assumed binding 
site of miR-21 at exon 4, making it a direct target of miR-21. 
This study also identified that GAS5 negatively regulated 
miR-21, possibly through its interaction with the RNA-
induced silencing complex (RISC), suggesting a reciprocal 
repression feedback loop between miR-21 and GAS5 [45]. 
Recently, numerous studies have reported a negative corre-
lation between miR-21 and GAS5 in various diseases [46]. 
Based on our findings in this study, it could be inferred that 
EA may exert its therapeutic effects by regulating the GAS5/
miR-21 axis. However, further investigation is required to 
elucidate the detailed cellular mechanism of the GAS5/miR-
21 axis in vitro.

The activation of SCs plays a crucial role in maintaining 
neuron survival, guiding axon regeneration, and promoting 
myelin sheath formation after PNI. The quantity and func-
tional level of SCs determine the extent of peripheral nerve 
regeneration and repair. Insufficient numbers of SCs are 
often unable to support complete nerve regeneration, lead-
ing to the formation of nerve scars. Therefore, we conducted 
further investigations to explore the effects of GAS5 and 
miR-21 on SCs in vitro. MiR-21 has previously been exten-
sively studied for its involvement in nerve injury repair. In 
our study, we demonstrated that the upregulated miR-21 pro-
motes the proliferation and migration of SCs while prevent-
ing their apoptosis. Conversely, knockdown of the miR-21 
has the opposite effect. This is consistent with the findings 
of Ning et al. [47], who reported that miRNA-21 promoted 
SCs proliferation during nerve injury repair. GAS5 has been 
widely recognized as an inhibitor of axon growth. Interest-
ingly, our data revealed that the knockdown of GAS5 pro-
motes the proliferation and migration of SCs while inhibit-
ing apoptosis. Furthermore, we found that overexpression of 
GAS5 reversed the effects of miR-21 upregulation on SCs. 
In addition, the dual-luciferase reporter assay confirmed the 
targeted interaction between GAS5 and miR-21. Thus, the 
interaction between miR-21 and GAS5 becomes more appar-
ent. Previous studies have demonstrated that GAS5 acted 
as a sponge for miR-21, influencing the proliferation and 
migration of cancer cells [48]. Additionally, GAS5 has been 
shown to mediate H/R-induced cardiomyocyte apoptosis via 
targeting miR-21 [49]. Overall, SCs play a crucial support-
ive role in nerve repair after injury, and their quantity and 

function are essential for successful nerve regeneration and 
repair. Our data provided evidence that the GAS5/miR21 
axis may be involved in regulating the function and activity 
of SCs.

In addition, enhancing the outgrowth of neuronal axons is 
crucial for achieving structural and functional recovery after 
nerve injury. NG108-15 cells, a neuronal cell line, have been 
extensively used in the literature [27, 50]. To simulate the 
neuronal injury, the H/R model was applied to NG108-15 
to mimic the injury of neurons [51]. Our data demonstrated 
that the upregulation of miR-21 promotes neurite growth 
in H/R-induced NG108-15 neurons. This is consistent with 
the findings of Wang et al. [52], who showed that miR-21 
reduced H/R-induced neuron damage and apoptosis. Other 
studies have also reported that miR-21 could regulate apop-
tosis, differentiation [53], and neurite growth of neurons 
[12, 54]. Furthermore, recent studies have shown that GAS5 
overexpression could inhibit axon growth in DRG neurons 
[20]. Silencing GAS5 has been found to inhibit neuron cell 
apoptosis [55] and improve neurological function [19]. Our 
findings further revealed that overexpression of GAS5 coun-
teracts the effect of miR-21. This is consistent with previ-
ous research demonstrating that GAS5 has a complemen-
tary region with miR-21, allowing it to suppress miR-21 
expression [45]. These results suggest that GAS5 may play 
a regulatory role in neuronal neurite growth by modulating 
the activity of miR-21.

There were several limitations. Compared to cell lines 
in this study, primary cells might be able to more closely 
simulate the physiological and pathological conditions of 
cells, thereby providing more convincing evidence. Besides, 
the exploration of the target genes and signaling pathways 
of miR-21 has remained incomplete, warranting further 
investigation to enhance our understanding of its precise 
mechanism.

Conclusion

In conclusion, our findings provided compelling evidence 
that EA, as a peripheral stimulation technique, effectively 
enhanced motor function and promoted nerve regeneration 
in rats with SNI through the regulation of GAS5. Notably, 
GAS5 was involved in this process by targeting miR-21. 
These results established a solid experimental foundation 
for the application of EA in the treatment of PNI, highlight-
ing acupuncture as a promising therapeutic intervention to 
facilitate nerve repair following nerve injury.
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