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ABSTRACT: Current thermally conductive and electrically insulating insulation
systems are struggling to meet the needs of modern electronics due to increasing
heat generation and power densities. Little research has focused on creating insulation
systems that excel at both dissipating heat and withstanding high voltages (i.e., have
both high thermal conductivity and a high breakdown strength). Herein, a
polyelectrolyte-based multilayer nanocomposite is demonstrated to be a thermally
conductive high-voltage insulation. Through inclusion of both boehmite and vermiculite
clay, the breakdown strength of the nanocomposite was increased by ≈115%. It was also
found that this unique nanocomposite has an increase in its breakdown strength,
modulus, and hydrophobicity when exposed to elevated temperatures. This readily
scalable insulation exhibits a remarkable combination of breakdown strength (250 kV/
mm) and thermal conductivity (0.16 W m−1 K−1) for a polyelectrolyte-based
nanocomposite. This dual clay insulation is a step toward meeting the needs of the
next generation of high-performance insulation systems.
KEYWORDS: vermiculite, boehmite clay, thermal conductivity, dielectric breakdown strength, layer-by-layer assembly

■ INTRODUCTION
Various high-voltage electronics for aerospace, defense, and
energy storage and conversion have experienced a significant
increase in complexity, power draw, and heat generation.1 This
rapid development has resulted in a significant amount of
research focusing on creating and improving materials that can
be used as electrical insulation, energy storage devices, thermal
management systems, and combinations thereof.2 One critical
sector of research focuses on a new generation of dielectrics
that have higher dielectric breakdown strengths, as well as
improved through-plane thermal conductivity.3 This is driven
by the rapid miniaturization and increasing power draw (i.e.,
higher operating voltages) of high-voltage electronics, that in
combination, results in larger amounts of heat generation.
While these efforts have made acceptable strides, break-
throughs in this field are impeded by the inverse relationship
between the material’s thermal conductivity and breakdown
strength.
Through-plane thermal conductivity of electrical insulation

is becoming a prominent property to optimize as modern
technology produces far more heat due to higher power
densities, power draws, and decreased thermal capacitance.2

With these elevated temperatures, insulation can experience
thermal breakdown, which occurs when the material is
subjected to temperatures above its operation limits, leading
to thermal runaway and potential catastrophic electrical

failure.4 While state-of-the-art technology will reduce power
density and power draw when temperatures get too high,
thermal runaway still occurs.5 Another approach, commonly
employed in aviation and electronics for limiting dielectric
materials’ temperature exposure, is implementing a cooling
system. While this approach historically has been successful, it
adds (1) unwanted weight that decreases power density, and
(2) can significantly increase the cost.6 In tandem with power
throttling and cooling systems, more emphasis should be
placed on the design of thermal management systems at a
molecular level (i.e., chemical composition) so that the
through-plane thermal conductivity can be increased. By
increasing through-plane thermal conductivity, more heat can
be dissipated, which allows for higher operating temperatures
(due to lower risk of thermal runaway) and higher power
densities and power draws.1 If the dielectric material suffers
from high dielectric loss that results in electrical energy’s
transformation to thermal energy (ultimately adding to the
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systems’ heat generation), higher thermal conductivity will
dissipate the heat and decrease the likelihood of thermal
runaway.
While polymer-based dielectrics provide outstanding proper-

ties such as high dielectric breakdown strength (>200 kV/
mm), low losses, and high dielectric constants, they are
plagued with extremely low through-plane thermal conductiv-
ity.2 Polymer nanocomposites offer an attractive solution by
adding thermally conductive inorganics such as aluminum
oxides, boron nitride, and silicon nitride, thereby increasing the
materials’ thermal conductivity.7 However, traditional polymer
nanocomposites prepared through blending, co-extrusion, and
shear mixing suffer from particle aggregation at high loadings.8

Huang et al. presented a nanofiber/boron nitride nanosheet
paper-nanocomposite, which led to a staggering combination
of a breakdown strength of 440 kV/mm and a thermal
conductivity of 22 W m−1 K−1.9 While this paper-nano-
composite displays remarkable properties, its preparation is
complex, time-consuming, and difficult to apply to substrates
with complex three-dimensional geometries.
Polyelectrolyte-based dielectrics have long been investigated

for their use in pressure sensing organic transistors owing to
their low-voltage operation and high charge-carrier densities.10

In recent years, however, polyelectrolytes have gained attention
in the field of insulating thin-film dielectrics due to their ease of
processing and low costs. Che et al. prepared a polyelectrolyte-
based dielectric material comprising polyvinylidene fluoride
latex and chitosan that demonstrated a remarkable breakdown
strength and energy density of 630 kV/mm and 10.1 J/cm3,
respectively.11 One drawback of this work is that these
properties are only achievable after exposure to high pressures
(30 MPa), which could limit thickness options and prove
catastrophic for substrates with complex geometries. To
combat the issue of conformability and limited thickness
options, we previously investigated multilayer dielectrics
utilizing layer-by-layer (LbL) assembly of polyelectrolytes
and nanoplatelets to demonstrate proof-of-concept.12,13

LbL assembly is believed to hold great promise in the realm
of dielectrics due to its near perfect conformability on surfaces
of any topography, film thickness scalability, and its multilayer
composition, which is known to enhance breakdown strength

and polarization.14,15 LbL processing typically consists of
exposing a charged substrate to aqueous solutions of cationic
and anionic materials in an alternating fashion. These solutions
can consist of charged polymers (i.e., polyelectrolytes), small
molecules, nanoplatelets, or a combination thereof. This
coating technique can be employed industrially via roll-to-
roll processing or spray coating.16,17 LbL-assembled nano-
composites most commonly are employed as gas barrier, heat
shielding, and/or corrosion protection treatments due to their
high inorganic loading (≥70 wt %).18,19 Furthermore, LbL
nanocomposites are attractive due to their ambient processing
conditions and ability to be applied to a variety of substrates. It
is believed that these LbL films, containing a tortuous path
created by nanoplatelets, will greatly help improve the
dielectric properties if loaded with electrically insulating fillers.
While LbL assembly of polyelectrolyte-based composites has
been investigated for dielectrics and thermal conductivity
independently,12,13,20 a nanocomposite created to exploit both
of these properties has yet to be investigated.
In the present study, the thermal conductivity and dielectric

properties of a dual clay nanocomposite are investigated at
room temperature and elevated temperatures (simulating
operation conditions). Through the inclusion of both
boehmite and vermiculite clay, the breakdown strength is
increased ∼110% when compared to the polyethyleneimine/
poly(acrylic acid) matrix. It was found that the dielectric
breakdown strength and thermal conductivity of the nano-
composite is approximately 250 kV/mm and 0.16 W m−1 K−1,
respectively, a combination comparable to that of Kapton.
Additionally, it was found that with elevated temperatures, the
dielectric breakdown strength of the nanocomposite increases,
likely due to expulsion of molecular water. This study
evaluates, for the first time, a LbL-generated nanocomposite
that possesses a difficult to achieve combination of through-
plane thermal conductivity and dielectric breakdown strength.
These findings should spur further development of thermally
conductive yet electrically insulating nanocomposites that will
protect high-voltage electronics.

Figure 1. (a) Schematic of the LbL deposition process and cross-sectional TEM image of the nanocomposite. (b) Chemical structures of PEI, PAA,
BMT, and VMT.
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■ EXPERIMENTAL SECTION

Materials
Branched polyethylenimine (PEI, Mw = 25 kg/mol) and poly(acrylic
acid) (PAA, Mw = 250 kg/mol in a 35 wt % aqueous solution) were
purchased from Sigma-Aldrich (Milwaukee, WI, USA). Microlite
963++ vermiculite clay (VMT, 7.8 wt % aqueous solution) was
purchased from Specialty Vermiculite Corp. (Cambridge, MA, USA)
and boehmite clay (BMT) was purchased from Esprix Technologies
(Sarasota, FL, USA). All molecular weight information was obtained
from chemical suppliers and chemicals and clays were used without
further manipulation. Aqueous solutions and rinses utilized 18 MΩ
deionized (DI) water. All solutions were composed of a mixture of
polymer and clay. Cationic solutions were prepared as 0.1 wt % PEI +
0.5 wt % BMT aqueous solutions. The PEI + BMT solution was
rolled for 24 h to ensure homogeneous dispersion, after which the pH
was determined to be ≈9. Previous reports have determined BMT to
have an average characteristic length of 180 nm, in aqueous
dispersions, and a hexagonal schistose shape.21 Anionic solutions
were prepared as 0.1 wt % PAA + 1 wt % VMT aqueous solutions.
The PAA + VMT solution was rolled for 24 h to ensure homogeneous
dispersion, after which the pH was determined to be ≈5. Previous
reports have determined VMT to be a magnesium-aluminum-silicate
with an average effective diameter of 1.1 μm and a density of 1.05 g/
cm3.21 Indium-tin-oxide (ITO)-coated glass slides as well as polished
500 μm-thick undoped silicon wafers with a resistance of 10,000 Ω
cm were purchased from University Wafer (South Boston, MA, USA).
All substrates were rinsed in DI water, followed by an ethanol rinse,
and then another DI water rinse. Substrates were then dried with
compressed filtered air and subjected to a 5 min plasma cleaning
utilizing an ATTO plasma cleaner (Diener Electronic, Ebhausen,
Germany).

Preparation of Nanocomposites
Nanocomposites were grown by first dipping plasma-treated
substrates into the cationic (PEI + BMT) solution for 5 min followed
by a DI water wash and blown dry with a filtered air blade to remove
any loosely adhered material. The substrate was then submerged into
the anionic (PAA + VMT) solution for 5 min, followed by a DI water
wash and blown dry with a filtered air blade to remove any loosely
adhered material. This cycle completed the first bilayer (BL), after
which all subsequent BL were deposited in a similar fashion, except
the dip time was reduced to 1 min. The PEI + BMT/PAA and PEI/
PAA + VMT control nanocomposites were prepared in the same
manner, but one of the solutions contained only polymers (either PEI
or PAA) depending on the nanocomposite. For the PEI/PAA control,
the composite was also prepared in the same manner, but each
solution contained only polymer. The deposition cycle, chemical
structures, as well as a cross-sectional transmission electron
microscopy (TEM) micrograph are displayed in Figure 1. Initial dip
times were longer for the first BL to ensure uniform substrate
coverage during the initial BL deposition. The PEI + BMT/PAA +
VMT nanocomposite growth curve is shown in Figure S1.

Nanocomposite Characterization
Prior to all characterization, nanocomposites were stored in a dry box
for approximately 24 h. Nanocomposite thickness and surface
roughness values (RA and RQ) were measured utilizing a KLA-Tencor
P-6 Stylus Profiler (Milpitas, CA, USA) or an Alpha-SE ellipsometer
(J.A. Woollam Co., Lincoln, NE, USA) depending on film thickness.
Each sample had its average thickness and roughness tabulated in
triplicate. The absence of crosslinking immediately before and after
elevated temperature exposure was confirmed by scraping the
nanocomposites off of the substrate and subjecting the powdered
film to Fourier transform infrared (FT-IR) spectroscopy using an
ALPHA-P10098-4 spectrometer (Bruker Optics Inc., Billerica, MA,
USA) in the ATR mode. Atomic force microscopy (AFM) was
utilized to evaluate the surface morphology of the nanocomposites
before and after elevated temperature exposure, with a Bruker
Dimension Icon (Billerica, MA, USA). Samples were sputter-coated

with 5 nm of platinum/palladium alloy to prevent charging of the
nanocomposite before scanning electron microscopy (SEM) imaging
(FESEM, model, JSM-7500, JEOL, JEOL; Tokyo, Japan). TEM
samples were prepared by embedding coated polyethylene tereph-
thalate into Epofix resin (EMS, Hatfield, PA, USA) and cured
overnight in a silicone mold. The epoxy block was cut into 90 nm
thick cross sections utilizing an Ultra 45° diamond knife (Diatome,
Hatfield, PA). TEM micrographs were taken using a Tecnai G2F20
transmission electron microscope (FEI, Hillsboro, OR, USA), with an
acceleration voltage of 200 kV. The nanocomposites degradation
temperature (T5%d), which is where 5% of the sample’s weight is lost
(excluding mass loss associated with water or solvent evaporation),
was determined utilizing a Q-50 thermogravimetric analyzer (TA
Instruments, New Castle, DE, USA). Approximately 3.4 mg of the
nanocomposite was isothermally heated at 100 °C for 30 min to
remove any residual moisture. The temperature was then increased at
a constant rate of 10 °C min−1 up to 700 °C under a 60 mL min−1

flow of nitrogen. The nanocomposites reduced modulus (Er) and
hardness (H) before and after elevated temperature exposure was
assessed utilizing a TI 950 Triboindenter (Hysitron, Inc., Minneap-
olis, MN, USA) with a loading force of 200 μN to ensure indentation
depth of ≈10%. A loading profile of 10 s of loading, 5 s at a stationary
position, and 2 s of unloading was utilized. Surface wettability of the
nanocomposite before and after elevated temperature exposure was
evaluated utilizing a CAM 200 goniometer optical contact angle and
surface tension meter (KSV Instruments, Ltd. Monroe, CT, USA).
The nanocomposites were characterized by X-ray diffraction (XRD)
using a diffractometer (BRUKER AXS model: D8 Discover) with
copper K-alpha radiation equipped with a Vantec 500 2D detector.
Samples were analyzed at a maximum power of 40 kV and 40 mA.
Dielectric Properties Characterization
For dielectric characterization, nanocomposites were deposited on
plasma-treated ITO-coated glass slides with a thickness of
approximately 700 nm. All characterization occurred in ambient
conditions unless specified. The breakdown strength (EBD) was
determined utilizing a PolyK test fixture (Philipsburg, PA, USA) and a
SCI 290 Hipot tester (Lake Forest, IL) as a DC voltage source. A
breakdown event is defined as when a ≥1 mA current was detected.
The contact electrode was a spring-loaded stainless-steel cap nut that
made contact at constant pressure. Approximately 0.52 mm2 of the
nanocomposite contacted the spring-loaded stainless-steel cap nut to
ensure inhomogeneities did not influence the dielectric breakdown
events. For elevated temperature testing, the test fixture was placed
onto a hotplate and the temperature of the nanocomposite was
monitored utilizing both a Fluke 64 MAX IR thermometer (Everett,
Washington, USA) and a Fluke Thermocouple Thermometer utilizing
a type K thermocouple. Prior to breakdown testing, the thermocouple
was removed to prevent any short circuiting. Fifteen breakdown
values were utilized for a Weibull probability of failure analysis to
tabulate the nanocomposites’ EBD. Breakdown strength is defined as
the breakdown strength at 63.2% of the probability of failure.
Nanocomposite thickness and breakdown voltage values were utilized
in conjunction to record EBD. A distance ≥3 mm separated each
testing location to prevent previous breakdown events from
influencing the next testing site. Stainless-steel cap nuts were changed
out in between every five breakdown events to prevent tip corrosion
from altering the nanocomposites’ breakdown strength. The dielectric
constant (k) and loss was measured using a Keysight E4980AL/102
Precision LCR Meter (Keysight Technology, Santa Rosa, CA, USA).
A gallium−indium eutectic compound was utilized as the top
electrode contacting an area of approximately 1.0 mm2. Elevated
temperature testing occurred by placing the sample onto a hot plate at
the desired temperature.
Thermal Conductivity Characterization
The through-plane thermal conductivity (k⊥) of the nanocomposites
was measured by the 3ω technique using a custom-built setup, shown
in Figure S2a.22,23 A shadow mask electron beam deposition
technique was used to deposit an aluminum (Al) metal line in a
four-probe pattern that acts both as a heater and sensor. The
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dimensions of the heater line were 4.7−5.0 mm long, 25−100 μm
wide, and 250 nm thick. A 25 nm titanium (Ti) layer was deposited
prior to deposition of an Al line to improve its adhesion. A schematic
of the sample geometry is shown in Figure S2b. Validation of the 3ω
system was performed by measuring the thermal conductivity of
standard materials (fused quartz, Pyrex 7740, Si (undoped), and
single-crystal sapphire (c-plane orientation) substrates) and is detailed
in depth in a previous paper which uses the same measurement setup
and procedure.20 In brief, each heater line was first calibrated by
measuring the temperature dependence of resistance (dR/dT). The
temperature coefficient of resistance of each Al sensor was in the
range 0.002−0.003/K. The thermal conductivity of the standard
substrates was 1.14 ± 0.05, 1.38 ± 0.06, 41.1 ± 1.6, and 146.5 ± 5.9
W m−1 K−1 for Pyrex 7740, fused quartz, sapphire, and silicon,
respectively (at room temperature). The relative uncertainty in the
measurement of these standards was within 4%, as shown in Table S1.

■ RESULTS AND DISCUSSION

Breakdown Strength and Thermal Conductivity
The effective thermal conductivity of the nanocomposite,
along with the thermal conductivity values of the bulk
substrates (undoped silicon) and the nanocomposite at various
thicknesses, were determined by fitting the experimental data
[temperature amplitude (ΔT) vs current frequency (Hz)] to
the data reduction method proposed by Tong et al. (see Figure
S3a−c).20,22 The thermal conductivity of the underlying
undoped silicon substrate was measured separately as a control
and its value of 146.5 ± 5.9 W m−1 K−1 was used in data fitting.
In order to determine the effective thermal conductivity of the
nanocomposite, a series of films with varying thickness (t)
were prepared and their thermal resistances (R) were obtained.
The reported thermal resistances represent the film’s resistance
as well as interfacial effects. The data in Table 1 present a

direct relationship between thickness and thermal resistance
(i.e., as thickness increases thermal resistance increases).
Previous work, which compared experimental results to
existing theoretical models, found that thermal boundary
resistance at interfaces in LbL-assembled nanocomposites are
the dominant factor governing film effective thermal
conductivity.20 As thickness is increased, it is believed that
the amount of interfaces (between platelets and the polymer
matrix) also increases, leading to a lower thermal conductivity
due to more interfacial thermal resistance. It is also possible
that the intrinsic thermal conductivity of the film could vary as
film thickness is increased due to subtle structural
inhomogeneities hindering phonon transport.
From the obtained thermal resistance values at various

thicknesses, the total thermal resistance (where resistance
equals thickness divided by the thermal conductivity at said
thickness) of the nanocomposite was calculated and the values
were plotted against the film thickness (see Figure S3d). The
effective thermal conductivity of the nanocomposite was then
determined using the slope of the linear fit line in the
resistance (R) as a function of thickness (t) plot. It is
important to note that the term “effective thermal
conductivity” refers to the thermal conductivity of the
nanocomposite accounting for the presence of nonidealities
and defects that can hinder thermal conductivity.22 It was
determined that the dual clay nanocomposite had an effective
thermal conductivity of 0.16 W m−1 K−1. From here on, when
thermal conductivity is mentioned, it is referring to the
effective thermal conductivity. It is important to note that the
thermal conductivity of the nanocomposite at increasing
thicknesses appears to converge on the effective thermal
conductivity, suggesting that the data reduction method
adequately accounts for nonideal effects in the nanocomposite.
Compared to the polymer matrix (PEI/PAA), which had a

thermal conductivity of 0.46 W m−1 K−1, the dual clay
nanocomposite demonstrated a 65% decrease in thermal
conductivity. This reduced thermal conductivity is believed to
be a consequence of the high interfacial density from the high
inorganic loading, which creates a substantial amount of
phonon scattering sites at the polymer-platelet interfaces.24

The thermal conductivity of the nanocomposite could also be
hindered by the high loading of VMT (≈30 wt %), which is

Table 1. Thermal Resistance and Breakdown Strength at
Various Thicknesses for the Dual Clay Nanocomposite

thickness
(nm)

thermal resistance (R)
(10−7 W m−2K−1)

breakdown strength
(kV/mm)

280 ± 29 5 210
700 ± 10 23 249
1100 ± 100 58 240

keff 0.16 W m−1K−1

Figure 2. (a) Dielectric breakdown strength as a function of thermal conductivity and (b) dielectric breakdown strength as a function of thermal
conductivity and filler wt % of various nanocomposites.28−39
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believed to have a low thermal conductivity and impressive
electrical and thermal insulating properties.25,26 The nano-
composite’s breakdown strength remains relatively unchanged
(210−250 kV/mm) in this thickness regime. This is likely due
to a similar nanobrick wall microstructure at various
thicknesses. It is believed that at even more elevated
thicknesses, the nanocomposite’s breakdown strength may be
slightly diminished due to the thickness effect (i.e., a higher
occurrence of defect sites).27

The thermal conductivity, dielectric breakdown strength,
and weight percent of filler in the nanocomposite reported
herein, as well as nanocomposites in literature,28−39 are
presented in Figure 2. For references with an asterisk next to
them in the legend, it could not be determined if the thermal
conductivity was through-plane or in-plane. The reported
nanocomposite demonstrates comparable thermal conductivity
and far superior breakdown strength than almost all of the
systems displayed in Figure 2. There are limited reports of
thermally conductive yet electrically insulating materials, as
these properties are typically unobtainable with a single
polymer-based material. These materials are difficult to achieve
as thermal conductivity typically relies heavily on the transport
of heat through both electron and phonon transportation. If a
material is to be both thermally conductive and electrically
insulating (i.e., have a high breakdown strength), the phonon
contribution to thermal conductivity must be extraordinarily
high and the electrical contribution negligible.40 The present
dual clay nanocomposite demonstrates for the first time the
dielectric and thermal transport properties of a polyelectrolyte-
based nanocomposite.
Dielectric Behavior

The dielectric properties of the polymer matrix (PEI/PAA),
single clay nanocomposites (PEI + BMT/PAA and PEI/PAA +

VMT), and the dual clay nanocomposite (PEI + BMT/PAA +
VMT) were investigated at a thickness of approximately 700
nm. This was done to minimize property change as a result of
thickness variations.27 It was determined that PEI/PAA has the
lowest breakdown strength (115 kV/mm), followed by the
single clay systems, which have breakdown strengths of 123
kV/mm (PEI/PAA + VMT) and 125 kV/mm (PEI + BMT/
VMT). It is believed that the inclusion of the platelets
introduces a tortuous pathway for charge transport and
therefore increases the breakdown strength of the nano-
composite. The dual clay nanocomposite has nearly double the
breakdown strength (249 kV/mm) when compared to the
single clay nanocomposite, which is believed to be a result of
the significantly higher inorganic loading and the influence of a
more tortuous pathway for charge transport. Having a high
loading of inorganic material in polymer nanocomposites has
been shown to greatly increase breakdown strength.41,42 It is
important to note that some reports do show that breakdown
strength can decrease as inorganic loading increases, but this
typically occurs due to nanocomposite preparation techniques
leading to more defects (e.g., filler aggregation or charge
transport pathways), which can negatively impact breakdown
strength.43,44 The dielectric properties of the analyzed systems
are shown in Figure 3.
It is important to note that the terms loss %, dielectric loss,

loss tangent, and tanδ are interchangeable with one
another.45−48 When analyzing dielectric loss in the frequency
regime of 100 Hz to 1 MHz, the PEI/PAA system
demonstrates extraordinarily high losses compared to the
other systems. These high losses and high dielectric constant
(particularly in the realm of 100−1000 Hz) are to be expected
of a polyelectrolyte multilayer system and can be attributed to
ionic polarization as well as ion transport due to residual

Figure 3. (a) Dielectric breakdown strength of systems with varying fillers, (b) dielectric loss of systems with varying fillers, from a frequency range
of 100 Hz to 1 MHz, and (c) dielectric constant of systems with varying fillers, from a frequency range of 100 Hz to 1 MHz. A figure legend and
color-coded dielectric breakdown strength (EBD) and slope parameters (β) are also provided.
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amounts of small ions in the film.49 After incorporating BMT
or VMT independently into the nanocomposite, a significant
decrease in the dielectric loss and constant occurs, especially in
the realm of 100−1000 Hz. This decrease is believed to be a
result of a tortuous pathway blocking small ion transport
through the nanocomposite. A similar phenomenon is
exploited in gas barrier and anti-corrosion nanocompo-
sites.50−52 Priolo et al. reported that the oxygen transmission
rate of nanobrick wall films significantly decreases as the
inorganic loading increases due to the tortuous pathway.52,53 It
is important to note that the dielectric constant of the PEI/
PAA + VMT system is lower than any of the systems
presented, most likely due to the nanocomposite being loaded
with a clay that possesses a low degree of polarization, a
phenomenon that has been known to lower a composite’s
dielectric constant.26,54

Through incorporating both BMT and VMT into the
nanocomposite, the dielectric loss is further reduced, likely due
to a more tortuous pathway for ion transport. The
nanostructure of this film can be seen in the cross-sectional
TEM image in Figure S4. The dielectric constant of the dual
clay containing nanocomposite (PEI + BMT/PAA + VMT) is
between that of the PEI + BMT/PAA and PEI/PAA + VMT
nanocomposites across the entire frequency range. It is also
possible that the inclusion of BMT and VMT (independently
and together), lowers the amounts of residual ions present in
the nanocomposite which reduces the dielectric losses in the
frequency range of 100−1000 Hz.
The dielectric properties of the PEI + BMT/PAA + VMT

nanocomposite were also investigated at elevated temperature
(80 °C) to evaluate any changes in breakdown strength,
dielectric constant, and dielectric loss. The surface morphology
of the nanocomposite after room temperature and elevated
temperature testing is presented in Figure S5. It was found that

the dielectric constant and dielectric losses increase when
exposed to elevated temperatures, which was expected due to
most dielectric materials’ constant and losses increasing due to
more energy available for charge transport, ionic polarization,
and dipole movement.55 The dielectric breakdown strength of
the nanocomposite increases from 249 to 262 kV/mm as
testing temperature increases. Typically, as temperature
increases, the dielectric breakdown strength of a material
decreases as a result of thermally activated molecular,
electronic, and ionic motion in the material.56 While this
likely is occurring in the present system, it is believed that
these effects are trumped by the expulsion of molecular water
(discussed in the next section). Water is known to negatively
impact (i.e., decrease) the breakdown strength of a material by
promoting ionic and electronic transport.57 The dielectric
properties of the PEI + BMT/PAA + VMT nanocomposite at
20 and 80 °C are presented in Figure 4.
Mechanical Properties

Immediately after elevated temperature dielectric testing, the
characterization reported in this section occurred to ensure
that minimal environmental moisture returned to the nano-
composite. It has been reported that thermally crosslinking PEI
and PAA can increase the breakdown strength of a multilayer
thin film.13 To confirm that the increase in breakdown strength
was not a result of crosslinking, FT-IR was employed (Figure
5). It was found that there was no strong peak at 1640 cm−1,
corresponding to an amide bond, after elevated temperature
testing. Additionally, there was not a significant decrease or
disappearance of a peak at approximately 1540 cm−1, a
characteristic peak of PAA’s carboxylate. Through the lack of
amide bond formation and carboxylate peak disappearance or
reduction in intensity, thermal crosslinking was ruled out. It
should be noted that significant thermal amidization takes

Figure 4. (a) Dielectric breakdown strength PEI + BMT/PAA + VMT at 20 and 80 °C, (b) dielectric loss at 20 and 80 °C, and (c) dielectric
constant at 20 and 80 °C, from a frequency range of 100 Hz to 1 MHz.
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hours to occur at low temperatures (<130 °C), so it is highly
unlikely that elevated temperature testing resulted in
amidization.58

Hariri et al. reported that decreasing water content in a
polyelectrolyte complex will decrease thickness and increase
modulus.59 This phenomenon is a result of water plasticizing/
lubricating complexation sites and therefore decreasing
modulus. The polyelectrolyte complex will conversely increase
in thickness as water molecules will “swell” complexation sites.
In order to measure the modulus (Er) and hardness (H) of the
nanocomposites as a function of temperature exposure,
without significant substrate influence, the nanocomposites
were grown to a thickness of approximately five microns to
ensure the “10% indention rule of thumb” could be
employed.60 It was found that nanocomposites tested at
elevated temperatures exhibit an increased modulus (from 6.8
GPa at 20 °C to 9.6 GPa at 80 °C) and an increased hardness
(from 0.19 GPa at 20 °C to 0.24 GPa at 80 °C). This increased
modulus and hardness are believed to be a result of molecular
water expulsion. Table 2 summarizes the hardness and
modulus changes.

Along with increasing modulus and hardness values, the
nanocomposites exhibit a ≈25% decrease in thickness after
elevated temperature exposure. It is imperative to note that
after elevated temperature testing, all nanocomposites
experienced this reduction in film thickness, which is much
lower than that reported for thermal crosslinking.13,58 The
thickness reduction is dependent on humidity, but in all cases,
film thickness decreased after elevated temperature testing.
The nanocomposites’ water contact angle also increases from
32 to 39° after elevated temperature exposure, likely due to the
removal of the hydration layer at the film surface. Figure S6
displays the water contact angle of the reported nano-
composites and PEI/PAA matrix. The presence of a hydration
layer has been found to decrease polyelectrolyte-based films’
water contact angle.61 It is believed that an increase in
dielectric breakdown strength is a result of molecular water
expulsion at elevated temperatures. These findings are in good
agreement with Kim and Shi’s work that demonstrated an
increase in breakdown strength as modulus of a material
increases.62

Structure Characterization
XRD was performed on the presented systems to better
understand their nanostructure (Figure 6). In the XRD spectra

for all reported nanocomposites, peaks related to ITO can be
observed as a result of the ITO-coated glass substrates. These
peaks are represented by the red diamonds in Figure 6 and are
in good agreement with literature values.63,64 In all spectra, a
broad peak at approximately 25° signifies the amorphous
structure of the PEI/PAA (i.e., polymer phase), which was
expected as most PEI/PAA-based films are amorphous.65 It is
believed that the low thermal conductivity (<0.5 W m−1 K−1)
of the systems reported herein is greatly influenced by the
nature of the PEI/PAA matrix, as semi-crystalline materials
typically have lower thermal conductivity due to more phonon
scattering. Figure S7 shows the XRD pattern of neat BMT
powder, a drop-cast VMT film, and all analyzed systems. Neat
BMT powder exhibits a basal reflection peak at 14.59° (020),
which corresponds to a basal spacing of approximately 6.07 Å.
This spacing agrees with the reported values in literature.66

The patterns for all BMT-containing nanocomposites show a
similar peak, albeit slightly shifted to 14.52°, which indicates a
basal spacing of approximately 6.10 Å. This minimal change in
basal spacing suggests that the BMT platelets do not undergo a
substantial amount of intercalation of polymer. Similarly, other
characteristic peaks can be observed in the BMT-containing
nanocomposites that match the BMT powder diffraction
spectrum and reported values [i.e., (120) and (031)].67 Due to
this minimal change, the structure of BMT is believed to not
play a major role in altering the properties of the different
nanocomposites. The XRD pattern for the drop-cast VMT film
and the VMT-containing nanocomposites show a characteristic
peak of VMT at approximately 26.67° (115), which matches
that found in literature.68,69 In the drop-cast film, the VMT
indicating peak shoulders a strong peak at 27.92°, which is
believed to be a result of a possible surfactant that suspends
VMT. It is important to note that this contamination peak is
not reproduced in the VMT-containing systems. Similar to
BMT, it is believed the structure of VMT plays a minimal role
in altering the properties of the different nanocomposites, as its
characteristic peak does not undergo any noticeable change.
When relating structure to property, it is suspected that
polymer and platelet crystallinity is not a dictating factor in the
thermal conductivity decrease for the dual clay nanocomposite;
it is believed that the number of polymer-platelet and platelet−
platelet interfaces is causing an increase in phonon scattering,

Figure 5. FT-IR spectra of the PEI + BMT/PAA + VMT
nanocomposite after room temperature and 80 °C testing.

Table 2. Hardness and Modulus of the Dual Clay
Nanocomposite

exposure temperature (°C) H (GPa) Er (GPa)

20 0.19 ± 0.12 6.8 ± 3.0
80 0.24 ± 0.14 9.6 ± 3.4

Figure 6. XRD spectra for systems with varying fillers.
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which is reducing the thermal conductivity of the nano-
composite.20 Furthermore, while the effects of BMT and
VMT’s structure and crystallinity on the dielectric properties of
the reported systems herein cannot be ruled out, it is believed
that the improvement in dielectric properties is due to the
significantly higher inorganic loading and the influence of a
more tortuous pathway for charge transport when incorporat-
ing both platelets.
Nanocomposite Thermal Resilience
The thermal resilience and inorganic loading weight percent of
the nanocomposite were evaluated using thermogravimetric
analysis (TGA), as shown in Figure 7. The PEI + BMT/PAA +

VMT nanocomposite has an inorganic loading of 64 wt % and
the PEI + BMT/PAA and PEI/PAA + VMT nanocomposites
have inorganic loadings of 27 and 29 wt %, respectively. The
PEI + BMT/PAA + VMT has more inorganic material due to
both the cationic and anionic solutions having inorganic
platelets. The degradation temperature (Td5%) is where 5% of
the sample’s weight is lost (excluding mass loss associated with
water or solvent evaporation). The PEI + BMT/PAA + VMT
nanocomposite has a Td5% of approximately 320 °C. This is
significantly higher than the Td5% of the PEI + BMT/PAA and
PEI/PAA + VMT nanocomposites, which degrade at 230 and
220 °C, respectively. This higher Td5% can be attributed to the
significantly higher inorganic loading in the PEI + BMT/PAA
+ VMT nanocomposite. Higher inorganic loading in a
nanocomposite has been known to increase the Td5% of a
nanocomposite regardless of its thermal conductivity.70

■ CONCLUSIONS
This study is believed to be the first report of a polyelectrolyte-
based nanocomposite utilized as a thermally conductive and
electrically insulating nanodielectric. Through the inclusion of
both BMT and VMT, the dielectric breakdown strength is
increased by ≈115% when compared to the PEI/PAA matrix.
This increase is believed to be due to the high inorganic
loading creating a tortuous pathway in the nanocomposite for
charge transport. The nanocomposite also boasts a high
dielectric breakdown strength and reasonable through-plane
thermal conductivity, a combination that is difficult to achieve
simultaneously. Subjecting the nanocomposite to elevated

temperatures was found to increase the breakdown strength,
modulus, and hydrophobicity of the nanocomposite, which is
attributed to the expulsion of molecular water in and on the
surface of the nanocomposite. This report is the first LbL-
generated nanocomposite that is shown to be electrically
insulating and modestly thermally conductive. The findings
outlined in this paper provide significant progress toward the
creation of high-performance insulation systems for tomor-
row’s high-voltage technologies.
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