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Abstract 

When we listen to speech, our brain’s neurophysiological responses “track” its acoustic features, but it is 

less well understood how these auditory responses are enhanced by linguistic content. Here, we recorded 

magnetoencephalography (MEG) responses while subjects listened to four types of continuous-speech-like 

passages: speech-envelope modulated noise, English-like non-words, scrambled words, and a narrative 

passage. Temporal response function (TRF) analysis provides strong neural evidence for the emergent 

features of speech processing in cortex, from acoustics to higher-level linguistics, as incremental steps in 

neural speech processing. Critically, we show a stepwise hierarchical progression of progressively higher 

order features over time, reflected in both bottom-up (early) and top-down (late) processing stages. 

Linguistically driven top-down mechanisms take the form of late N400-like responses, suggesting a central 

role of predictive coding mechanisms at multiple levels. As expected, the neural processing of lower-level 

acoustic feature responses is bilateral or right lateralized, with left lateralization emerging only for lexical-

semantic features. Finally, our results identify potential neural markers, linguistic level late responses, 

derived from TRF components modulated by linguistic content, suggesting that these markers are indicative 

of speech comprehension rather than mere speech perception.  

Significance Statement 

We investigate neural processing mechanisms as speech evolves from acoustic signals to meaningful 

language, using stimuli ranging from without any linguistic information to fully well-formed linguistic 

content. Computational models based on speech and linguistic hierarchy reveal that cortical responses time-

lock to emergent features from acoustics to linguistic processes at the sentence level, with increasing the 

semantic information in the acoustic input. Temporal response functions (TRFs) uncovered millisecond-

level processing dynamics as speech and language stages unfold. Each speech feature undergoes early and 

late processing stages, with the former driven by bottom-up activation and the latter influenced by top-

down mechanisms. These insights enhance our understanding of the hierarchical nature of auditory 

language processing.  
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Introduction 

Human language is known for its hierarchical structure, and in the course of speech understanding, the brain 

first performs computations on the acoustic waveform, which further undergo processing through various 

intermediate stages, integrating both bottom-up and top-down mechanisms (Davis et al., 2011; Arnal et al., 

2016). Prior research has shown that these neural processing stages align with at least some levels in the 

speech and linguistic hierarchy (Gillis et al., 2021; Brodbeck et al., 2022; Keshishian et al., 2023), including 

acoustic analysis, phonological analysis, lexical processing, and contextual processing. However, the 

specific temporal dynamics and how these processes emerge during discourse level speech processing are 

still not well understood. Identifying the neural bases underlying these stages and their roles in bottom-up 

and top-down mechanisms deepen our understanding of the neural markers that might be utilized to evaluate 

cognitive processes beyond basic sensory processing, such as intelligibility and semantic processing.  

Previous functional magnetic resonance imaging (fMRI) research has shown numerous brain regions that 

are sensitive to specific aspects of language understanding (Xu et al., 2005; Lerner et al., 2011; Deniz et 

al., 2023), but the inherently limited temporal resolution of fMRI poses challenges in investigating fast 

temporal dynamics of speech comprehension. Imaging modalities with higher temporal resolution, 

magneto/electroencephalography (M/EEG), often employ stimuli of short length (a few seconds or less), 

leading to a focus on word processing rather than capturing the broader aspects of spoken language (Alday, 

2019). Recently, advances in neural speech-tracking measures such as the temporal response function 

(TRF) paradigm, have allowed investigators to study time-locked neural responses to many different speech 

features, and in more ecologically valid settings. These neural speech-tracking measures are well 

established for acoustic properties of the speech (speech envelope) (Ding and Simon, 2012a; Brodbeck et 

al., 2020). Additional research has revealed that many linguistic elements of speech, sub-lexical, lexical, 

and context-based properties, also exhibit neural tracking (Brodbeck et al., 2018; Heilbron et al., 2022) 

above and beyond auditory neural tracking. How these tracking measures depend on the linguistic content 

of the speech, however, is still poorly understood, e.g., as a function of semantic information available. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.02.02.578603doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578603
http://creativecommons.org/licenses/by-nc/4.0/


To answer these questions, we employed MEG to record the neural responses of subjects listening to four 

types of speech materials (Figure 1A). In addition to ordinary narrative speech, we also presented word-

scrambled narrative speech (with word-level semantic content but no more), narrated non-words (which 

sounds like speech but with no semantic information whatsoever), and envelope-modulated noise (entirely 

unintelligible even at the phoneme level). Thus, each passage type was designed to neurally progress 

through the brain only up to a specific level in the hierarchy of speech processing: acoustic processing (for 

speech modulated noise), phoneme and word-boundary identification (narrated non-words), word meaning 

(scrambled narration), and full construction and processing of structured meaning (narrative), respectively. 

All four stimulus types exhibited similar accent, speech-like prosody, and rhythm across passages.  

Using multivariate TRF analysis, with different TRFs contributing simultaneously from acoustic to 

contextual levels, we investigate how different feature representations progress in the brain across different 

processing levels (Figure 1B). We hypothesize that the ascending brain processing stages will show 

emergent features, from acoustic to sentence-level linguistic, as incremental steps in the processing of the 

speech occurs. We additionally expect that many speech features require more than one processing stage: 

early processing, which is primarily bottom-up, and late processing, which is primarily top-down, consistent 

with the corrections that may be required for predictive coding models, analogous to generalized N400 

event related potential (ERP) responses (Nour Eddine et al., 2024). Further, we anticipate that hemispheric 

lateralization will vary with passage type and that lower-level processing would generally manifest 

bilaterally or with a weak right hemisphere advantage, whereas left-lateralization would be predicted for 

lexico-semantic processing. Lastly, we aim to investigate the progression of the temporal dynamics of 

speech processing, and its reorganization in response to changes in the linguistic content of the sensory 

input. 
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Figure 1. Overview of the study design and analysis framework. (A). Examples of the four stimulus 

types. Participants listened to 1-minute-long speech passages of each passage type while 

magnetoencephalography (MEG) brain activity was recorded. All stimuli had similar prosody and rhythm. 

Speech-modulated noise (bottom) is unintelligible and its spectro-temporal characteristics are shown in the 

bottom row. (B). Multivariate temporal response functions (mTRFs) were used to model the brain activity 

at different levels of speech representations and at each current dipole. Orthographic and phonemic 

transcriptions aligned with a sample acoustic waveform are shown for reference. Speech representations 

includes acoustic features (8-band auditory gammatone spectrogram; acoustic envelope and acoustic onset), 

sub-lexical features (phoneme onset, phoneme surprisal and cohort entropy) and lexical features (word 

onset, word frequency (unigram word surprisal) and contextual word surprisal).     

Materials and Methods 

Participants 

34 native English speaking younger adults participated in this experiment. Data from four subjects were 

excluded from the analysis because of technical issues during data acquisition (1 subject) and poor 

performance on the behavioral tasks (see experimental procedure) (3 subjects), leaving thirty participants 

in the analysis (15 females, mean age 22 y, age range 18-29 y, 1 left-handed). All participants reported 

normal hearing and no history of neurological disorders. All experimental procedures were approved by 
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the Internal Review Board of the University of Maryland, College Park. The participants gave their written 

informed consent before the experiment and received monetary compensation, or course credit (1 subject).       

Speech stimuli  

Four types of speech stimuli: narrative, scrambled word, non-words and speech-modulated noise were 

generated as described below (sample materials are shown in Figure 1A and can be listened to at 

https://dushk88.github.io/progression-of-neural-features/). Text used for speech stimuli were excerpts from 

the book “The Botany of Desire” by Michael Pollan (Pollan, 2001).  Speech stimuli were computer 

synthesized using Google text to speech API (Oord et al., 2016) (gTTS) (see example:  

https://cloud.google.com/text-to-speech).  The use of modern text-to-speech synthesizers provides human-

like, natural-sounding speech (Aoki et al., 2022; Herrmann, 2023), and ensures acoustic parameters like 

speech rate, rhythm, and emphasis are consistent across passage types, which is crucial for comparing 

neural responses across passage types in the current study (Ding et al., 2017) (Figure 1-1).  

The narrative (structured and meaningful) passages were excerpts from the first section of the book. A 

separate section of the book was used for which the words were randomly permuted to create the scrambled 

word (intermediate structure) passages. Another section, non-overlapping with the previous passages, was 

used to generate the speech-modulated noise (unintelligible speech) passages. For the non-word (gibberish) 

passages, nonsense words were extracted from https://www.soybomb.com/tricks/words/ and were 

randomly arranged to form a continuous passage. Initial versions of both scrambled and non-word passages 

lacked punctuation marks, but since silences and pauses between words and sentences create natural 

sounding and rhythmic speech, and in gTTS pauses and silences are cued by punctuation marks, punctuation 

marks were manually added to the scrambled and non-word passages (using the distribution of the number 

of words between punctuation marks in the original book).   

Speech was synthesized with gTTS using the English US accent male voice and Google Wavenet voice 

type “en-US-Wavenet-J” (https://google.com/text-to-speech/docs/voices) at the default sampling rate 24 

kHz. Once the speech passages were generated, audio files were lowpass filtered below 4 kHz since the 

MEG audio delivery (air tube) system has a lowpass cutoff of ~4 kHz.  Then the silence segments were 
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trimmed to 400 ms and the audio stimuli were resampled to 22.5 kHz. For each of the speech stimulus 

types, 1-minute-duration excerpts were extracted.      

For construction of the modulated noise passage, the corresponding speech stimuli generated for modulated 

noise passages were further modified. First, stationary noise was generated with the same frequency 

spectrum as the speech by randomizing the phases of the stimulus frequency spectrum and inverting back 

to the time domain. In order to add back the lost rhythmicity to the noise, the stationary speech shaped noise 

was then modulated with the corresponding slow speech envelope of the original speech (Figure 1A). The 

slow speech envelope was extracted by low pass filtering (with a 5 Hz cutoff) the Hilbert envelope of the 

speech passage.  

Experimental procedure 

The experiment was conducted in four blocks. Each block comprised of one passage from each passage 

type, and each passage was repeated twice. The order of passage types was counterbalanced across subjects. 

The narrative passages were presented in chronological order to preserve the story line to increase the 

subjects’ attention. In total, each participant listened to a total of 32 trials (4 blocks ×	4 types ×	2 repetitions 

= 32 trials) and 8 trials from each passage type (4 blocks ×	2 repetitions), where a trial is defined as a 

presentation of 1-minute-long stimulus passage. At the start of each passage type, subjects were instructed 

which passage type they were about to listen to. A probe question (depending on the type of passage) was 

included for each passage (counting occurrences of a probe word; a contextual question based on the story 

passage; judging which emotion was conveyed in the speech-modulated noise passage) to help maintain 

participant’s attention to the listening task. Participants who correctly answered at least 70% of the 

questions (excluding the emotion judgement) were included in the analysis. 

The subjects lay supine during the entire experiment and were asked to minimize body movements. Subjects 

kept their eyes open and fixated at a center of a grey screen. The stimuli were delivered bilaterally at ~70 

dB SPL with E-A-RTONE 3A tubes (impedance 50 Ω) which severely attenuate frequencies above 3 – 4 

kHz, and E-A-RLINK (Etymotic Research, Elk Grove Village, United States) disposable earbuds inserted 

into ear canals. 
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Data acquisition and preprocessing 

Neuromagnetic data were recorded inside a dimly lit, magnetically shielded room (Vacuumschmelze GmbH 

& Co. KG, Hanau, Germany) with a whole head 157-channel MEG system (KIT, Kanazawa, Japan), 

installed at the Maryland Neuroimaging Center. The data were recorded with a sampling rate of 1 kHz 

along with an online low-pass filter (< 200 Hz) and a 60 Hz notch filter. Three additional sensor channels 

were employed as environment reference channels.  

All data analyses were performed in mne-python 0.23.0 (Gramfort, 2013; Gramfort et al., 2014) and 

eelbrain 0.36 (Brodbeck et al., 2023). Flat channels were excluded and the environmental magnetic 

interference was suppressed using temporal signal space separation (tSSS) (Taulu and Simola, 2006). MEG 

data were then filtered between 1 and 60 Hz using a zero-phase FIR filter (mne-python 0.23.0 default 

settings). Artifacts such as ocular, cardiac, and muscle artifacts were reduced using independent component 

analysis (ICA) (Bell and Sejnowski, 1995). The cleaned data were then low pass filtered at 10 Hz and 

downsampled to 100 Hz for further analysis.  

Neural source localization  

The scalp surface (> 2000 points), five head position indicator (HPI) coils (three placed on the forehead, 

left and right ear), and anatomical landmarks (nasion, left and right periauricular) of each participant were 

digitized using Polhemus 3SPACE FASTRAK three-dimensional digitizer. The position of the participant’s 

head relative to the sensors was determined before and after the experiment using HPI coils attached to the 

scalp surface and the two measurements were averaged. The digitized head shape and the HPI coils 

locations were used to co-register the template FreeSurfer “fsaverage” (Fischl, 2012) brain to each 

participant’s head shape using rotation, translation, and uniform scaling.  

A neural source space was generated by four-fold icosahedral subdivision of the white matter surface of the 

fsaverage brain, with the constraint that all source dipoles be oriented perpendicular to the cortical surface. 

The source space data and the noise covariance estimated from empty room data were used to compute 

inverse operator via minimum norm current estimation (Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 
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1994). The subsequent analyses were limited to frontal, temporal, and parietal brain regions based on the  

‘aparc’ FreeSurfer parcellation (Desikan et al., 2006).  

Predictor variables  

The speech signal was analyzed in distinct feature spaces that represent various levels of the language 

hierarchy. These features were grouped into four primary categories: acoustic properties (i.e., acoustic 

envelope and acoustic onsets), sub-lexical properties (i.e., phoneme onset, phoneme surprisal, and cohort 

entropy), lexical properties (i.e., word onset and word frequency), and contextual features (i.e., contextual 

word surprisal). The methodology for generating each of these predictors is detailed below. Overall, these 

predictors were generated using a combination of signal processing techniques, automatic speech 

recognition (ASR) systems, and probabilistic models. All predictor variables were downsampled to 100 Hz. 

Acoustic features 

The acoustic envelope predictor is a measure of the amplitude modulation of the speech signal, and reflects 

the acoustic power/energy of the speech signal over time. In contrast, the acoustic envelope onset predictor 

is a measure of the salient transients of the speech signal, which are particularly prominent at the beginning 

of syllables or phonemes. The acoustic envelope and acoustic onsets were computed based on the human 

auditory system inspired gammatone filters computed by the Gammatone Filterbank Toolkit 1.0 (Heeris, 

2018), using 256 center frequencies with cut-off frequencies ranging logarithmically from 20 to 5000 Hz. 

Each frequency band’s envelope was resampled to 1000 Hz and transformed to log scale. The resulting 

envelope spectrogram was then averaged into 8 logarithmically spaced frequency bands to obtain the final 

acoustic envelope predictor. Eight bands were chosen as a trade-off between computational efficiency and 

the ability to capture detailed information about the amplitude modulation. The acoustic onset 

representations were computed using the above gammatone acoustic envelope 256-band spectrogram, by 

applying an auditory edge detection algorithm (Fishbach et al., 2001; Brodbeck et al., 2023). The onset 

spectrogram was averaged into the same 8 logarithmically spaced frequency bands as the envelope 

predictor. The distributions of the acoustic envelope and onset predictors were found to be comparable 

across speech conditions, non-words, scrambled and narrative passages. However, some variations were 
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observed between the speech stimuli and the speech modulated noise stimuli, as evidenced by the 

comparisons shown in Figure 1-2A. This discrepancy may be attributed to the diminishment of formants 

and/or sharp onsets in the non-speech (due to its modulation being induced only by the broad band envelope 

of the speech stimuli).   

Phoneme onsets and word onsets 

Preliminary speech audio alignment for the occurrence of discrete words and phonemes was accomplished 

using the Montreal Forced Aligner (McAuliffe et al., 2017). Grapheme to phoneme conversion was done 

using the pre-trained ‘english-g2p’ model available within the Montreal Forced Aligner. The pronunciation 

lexicon, transcriptions, and audio file were aligned using the pre-trained ‘english’ acoustic model. The 

resulting annotations were visually examined in PRAAT (Boersma and Weenink, 2021) and manually 

adjusted when necessary. Phoneme onsets and word onsets predictors were modeled as impulses at the 

onset of each phoneme and word, respectively.  

Phoneme surprisal and cohort entropy 

Phoneme surprisal and cohort entropy reflect information-theoretic properties of the phoneme sequence in 

its lexical context, and are widely used in neural word processing analysis (Brodbeck et al., 2018; Gillis et 

al., 2021; Gwilliams et al., 2022). Phoneme surprisal quantifies the level of probabilistic surprisal associated 

with the current phoneme, given its occurrence after the sequence of phonemes preceding it within the 

current word. On the other hand, cohort entropy captures the level of uncertainty of remaining lexical 

candidates that match the observed phoneme sequence. Mathematically, phoneme surprisal for a given 

position i within a word is defined as the − log!
∑ #!"#$
%"&"#'(
!"#$

∑ #!"#$
%"&"#'()*
!"#$

 and cohort entropy is defined as  

−∑ 𝑝$%&' 	𝑙𝑜𝑔!(𝑝$%&')
(%)%&*(
$%&' . Here, cohorti refers to the set of words that are compatible with the 

phoneme sequence from the beginning of the word to the ith phoneme, and 𝑝$%&' is the probability of the 

word derived from the wordfreq Python library (Speer et al., 2018). The wordfreq python library is based 

on the Exquisite Corpus (https://github.com/LuminosoInsight/exquisite-corpus) and covers a broad range 

of words that appear at least once per 100 million words. The phonetic lexicon for each word was extracted 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.02.02.578603doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578603
http://creativecommons.org/licenses/by-nc/4.0/


from the CMU pronouncing dictionary, available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict. The 

final corpus used comprised of all the words that were included in both the CMU dictionary and the 

wordfreq. Cohort entropy and phoneme surprisal values were computed for each phoneme and represented 

as impulses at phoneme onset, scaled by the corresponding value. These two predictors were similar in the 

non-speech, scrambled, and narrative passages as they included meaningful words. However, they showed 

different distributions between meaningful words and non-words as illustrated in Figure 1-2B. As expected, 

phoneme surprisal exhibited a greater proportion of highly surprising phonemes for non-words, whereas 

cohort entropy displayed more zeros for non-words, since the potentially available lexicon usually becomes 

empty after some number of phonemes.      

Unigram word surprisal and contextual word surprisal 

Analogous to the phoneme level surprisal predictor, two different measures of word level surprisal were 

estimated: word frequency (quantified as unigram word surprisal) and contextual word surprisal. Unigram 

word surprisal measures how surprising a word is independent of the context and is based on the probability 

distribution of individual words computed from word frequencies (wordfreq). Unigram word surprisal for 

each word is calculated by − log!(𝑝$%&') and represented as an impulse at each word onset, scaled by the 

unigram word surprisal value (hereafter: word frequency). In contrast, contextual word surprisal depends 

on the preceding context and reflects how surprising the current word is given the previous context. 

Contextual word surprisal was estimated using the open source, pre-trained, and transformer-based 

(Vaswani et al., 2017) large language model GPT-2, implemented in the Hugging Face environment (Wolf 

et al., 2020). Each 1-minute-long passage was preprocessed (removing punctuation and converting to lower 

case, with the exception of proper nouns), tokenized using byte-pair encoding (Sennrich et al., 2016), and 

provided to the neural network model. The tokens could represent either complete words or sub-words. The 

final layer of the model was utilized to calculate the word surprisal. This final layer outputs prediction 

scores for each token in the vocabulary, indicating the likelihood of it being the next word given the 

preceding tokens (context) that extends all previous tokens, extending to a theoretical maximum of 1024 

tokens (though the maximum number of words in the passages here was less than 220). The prediction 
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scores were subjected to a SoftMax transformation to compute probabilities. The current word probability 

was determined by the probability associated with its corresponding token. In cases where words span over 

multiple tokens, word probability was computed by the joint probability of those tokens. Contextual word 

surprisal was computed as – log!(𝑃$%&'|𝑐𝑜𝑛𝑡𝑒𝑥𝑡) and represented as an impulse at each word onset, scaled 

by the corresponding contextual word surprisal of that word. The word frequency and contextual word 

surprisal values were calculated only for the scrambled and narrative passages since they were not defined 

for non-words. However, as can be seen from Figure 1-2C, a high correlation between contextual word 

surprisal and word frequency was observed for the scrambled word condition (𝑟(741) = 0.91, 𝑝 < 0.001), 

suggesting that, as would be expected, contextual word surprisal collapses to word frequency when the 

context fails to provide informative cues for predicting the next word. Due to this very strong correlation 

between these two predictors in the scrambled passages, the contextual word surprisal predictor was 

excluded from the TRF modelling there and only the more conservative word frequency was used. 

Forward model (Temporal Response Functions) 

The forward model approach referred to as temporal response function analysis (Lalor et al., 2009) was 

used to estimate how a set of predictor variables relates to the source localized MEG data. The model for 

each neural source is defined as: 

𝑟(𝑡) = 	AAℎ(𝑖, 𝜏)𝑥(𝑖, 𝑡 − 𝜏)
+

,

+ 𝜀(𝑡)
-

.

 

Where 𝑟(𝑡) is the neural response at time t, 𝑥(𝑖, 𝑡)	is the ith predictor time series, and 𝜀(𝑡) is the residual 

neural response not explained by the model. The TRF, ℎ(𝑖, 𝜏), is a filter that describes the linear relationship 

between the predictor time series and neural source time series (input and output) at different time lags 

within the integration window [𝜏, 𝑇]. In this model, each time lag of each predictor competes against each 

other to explain variance of the neural response, which results in larger TRF model weights associated with 

greater contributions to the explained variance. The TRF model weights were estimated by minimizing the 

mean absolute difference between actual (𝑟(𝑡)) and predicted (𝑟H (𝑡) = 𝑟(𝑡) − 𝜀(𝑡)) neural response.  
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To compute TRFs for each subject, condition, and at each source dipole, the eight trials per condition (total 

8 minutes) were concatenated and the boosting algorithm (David et al., 2007) was employed. Prior to 

boosting, L1 standardization was performed on both the predictors and neural responses by subtracting the 

mean and dividing by the mean absolute value. TRF lags from -20 ms to 800 ms were used, with a basis of 

50 ms Hamming windows employed to smooth the otherwise overly sparse TRFs. TRF estimation used 

four-fold cross-validation, where two folds were allocated for training, one-fold for validation and one-fold 

for testing. For each testing fold, each of the remaining three partitions served as a validation set, resulting 

in three TRFs per testing fold. These three TRFs were averaged to generate one average TRF per testing 

fold, which was then used to compute the prediction accuracy against the testing set. The TRFs from all 

testing folds were averaged to generate a single TRF for per source dipole. The predicted responses from 

each testing fold were concatenated to calculate a single prediction accuracy for each source dipole.  

Phonetic feature modelling 

Before starting, we first analyzed how the phonetic features, phoneme onset, phoneme surprisal and cohort 

entropy should best be modeled, since different previous studies have used different approaches:  modeling 

word-initial phonemes as separate features (Brodbeck et al., 2018); including word-initial phonemes with 

all other phonemes in phoneme surprisal and cohort entropy (Gaston et al., 2023); and including word-

initial phoneme only in phoneme onset (Gillis et al., 2021). We compared models with and without word-

initial phoneme onset on a base model with envelope spectrogram, envelope onset and word onset. The 

model with the word-initial phoneme onset showed better prediction accuracy compared to a model without 

the word-initial phoneme onset (𝑡/01 = 5.31, 𝑝 < 0.001). To test for the phoneme surprisal and cohort 

entropy, we compared the three models by including, excluding, or separately modelling the word-initial 

phoneme, using a base model with gammatone envelope spectrogram, onset spectrogram and word onset. 

Model comparisons with adjusted r-squared revealed that including the word-initial phoneme yield the best 

prediction accuracies for both phoneme surprisal (1	𝑣𝑠	2 ∶ 	𝑡/01 = 4.38, 𝑝 < 0.001, 1	𝑣𝑠	3 ∶ 	𝑡/01 =

3.81, 𝑝 = 0.02) and cohort entropy (1	𝑣𝑠	2 ∶ 	𝑡/01 = 5.07, 𝑝 < 0.001, 1	𝑣𝑠	3 ∶ 	𝑡/01 = 4.78, 𝑝 = 0.02). 

We therefore opted to include the word-initial phoneme in the phonetic feature modelling. 
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TRF peak extraction  

TRFs showed prominent peaks with a distinct polarity at distinct latencies, reflecting major processing 

stages along the speech and language processing pathway. The amplitudes and latencies of these peaks 

served as the strength of neural processing at the corresponding stage. To investigate how neural auditory 

processing stages differ based on the linguistic content of the stimuli, the peak amplitudes and latencies 

were compared across passage types.  

First, we identified the time windows for the main peaks associated with each predictor and their respective 

polarities based on a combination of prior literature and visual inspection of the group averaged TRFs 

(Brodbeck et al., 2018; Gillis et al., 2021; Keshishian et al., 2023). The time windows for each predictor 

were 1) Envelope: Early (20-130 ms), Late (70-180 ms); 2) Envelope onset: Early (20-170 ms), Late (70-

240 ms); 3) Phoneme onset: Early (40-200 ms), Late (120-410 ms); 4) Phoneme surprisal: Early (40-200 

ms), Late (110-470 ms); 5) Cohort entropy: Early (40-120 ms), Middle (140-350 ms), Late (260-600 ms); 

6) Word onset: Early (40-200 ms), Middle (220-350 ms), Late (310-650 ms); 7) Word frequency: Early 

(40-300 ms), Late (310- 610 ms); 8) Contextual word surprisal: Early (40-300 ms), Late (310-610 ms). 

Early and middle peaks have positive current polarity while the late peak is a negative current polarity peak 

(respectively, directed out of, or into, upper surface of the superior temporal gyrus).    

A peak-picking algorithm was developed to pick the maximum peaks with the corresponding polarity 

within the given time window. The algorithm followed these steps: 1) TRFs were aggregated across the 

source ROIs by taking the absolute sum; 2) Peaks within the given time window were identified; 3) 

Selection of the maximum peak that aligns with the target polarity by checking the source current polarity 

relative to cortical surface in the transverse temporal region in the original source TRFs; 4) If none of the 

peaks satisfied the polarity constraint, the minimum of the average TRF in the given time window was used 

as the peak amplitude, and the latency was set to NaN (not a number). A small number of peaks (<1.5 %) 

were further manually adjusted where appropriate.   

Statistical analysis 
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Statistical analysis was performed in R (R Core Team, 2020) version 4.0 and Eelbrain. The significance 

level was set at 𝛼 = 0.05. 

Significance of each speech feature over and beyond other features was evaluated by comparing full and 

reduced models. The full models for modulated noise and non-words included: gammatone envelope, 

envelope onset, phoneme onset, phoneme surprisal, cohort entropy and word onset. Additionally, the 

scrambled passages also included word frequency; the narrative passages included both word frequency 

and context-based word surprisal. Each reduced model included all the features of the full model, except 

excluding the single predictor under investigation. The proportion of explained variance between the full 

and reduced model at each current source dipole were tested using mass-univariate one-tailed paired sample 

t-test with threshold-free cluster enhancement (TFCE (Smith and Nichols, 2009))  with a null distribution 

based on 10,000 permutations of model labels.  

Hemispheric lateralization of each feature was performed to examine the lateralization of each speech 

feature processing. The explained variance maps for each feature were transformed to a common space by 

first morphing to a symmetric brain template ‘fsaverage_sym’ and consecutively morphing the right 

hemisphere to the left hemisphere. The explained variance between left and right hemispheres were tested 

using mass-univariate two-tailed paired sample t-tests with TFCE.  

TRF amplitude comparisons were performed using repeated measures ANOVAs and using post hoc paired 

sample t-tests with correction for multiple comparisons using false discovery rate correction. To ensure 

unbiased TRF comparison across passage types, TRFs were generated from a similar number of predictors 

across passage types. The effect sizes for paired sample t-tests were calculated using Cohen’s d (d) (d = 0.2 

indicates a small effect, d = 0.5 indicates a moderate effect, and d = 0.8 indicates a large effect). 

Statistical summary tables are reported in Extended data.  

Data availability 

The raw MEG data, stimulus materials, analysis codes, intermediate results, and behavioral responses are 

available to download through reviewer sharing link, 
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https://datadryad.org/stash/share/EJjwUNsN9k3ToO68sI1yAkjxR3Izfpyj00lLPNSvTic. Code and dataset 

supporting the findings of this paper will be shared once the paper is accepted. 

Results  

Using acoustic stimuli with similar prosody and rhythm but progressing from lacking any linguistic 

information (speech modulated noise) to possessing well-formed phonemes but no more (non-words), to 

possessing well-formed words but no larger scale context (scrambled), to fully well-formed linguistic 

information (narrative), we trace changes in the neural response dynamics as speech and speechlike sounds 

are eventually turned into language with full meaning in an ecologically valid setting. We first present the 

emergence of features, from acoustic to sentence-level, as speech processing unfolds incrementally. Next, 

we show how the hemispheric lateralization progresses from acoustic to sentential processing. Finally, we 

explore the temporal dynamics of speech processing using temporal response function profiles. 

Emergent features of speech processing 

The present study first aimed to investigate the emergence of neural speech processing in response to 

varying levels of speech and linguistic information in the sensory input, by testing which speech 

representations are tracked by the brain response for each passage type. The test for significance of each 

speech representation (predictor) was done by comparing explained variance within pairs of models, one 

with all predictors included and the other for which the test predictor (speech representation of interest) was 

excluded; the test predictor was denoted as significant if the difference in explained variance was 

statistically significant. The full model employed for passages using speech-modulated noise and non-

words included predictors for: gammatone envelope spectrogram, gammatone onset spectrogram, phoneme 

onset, word onset, phoneme surprisal, and cohort entropy. The model for scrambled word passages 

additionally included word frequency, and for narrative passages additionally incorporated both word 

frequency and contextual word surprisal. For the non-word passages, neither word frequency nor contextual 

word surprisal could be applied as there were no real words. The studies using comprehensible and 

incomprehensible language (Gillis et al., 2023; Tezcan et al., 2023) have shown that higher level word 

features (word frequency, word entropy, and contextual word surprisal) are not encoded for 
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incomprehensible language, the explicit quantification of differences between non-words and meaningful 

words was not conducted in our models. This is due to the unavailability of word frequency for non-words. 

Any word frequency defined for non-words would be uniform across all non-words, and therefore identical 

to the word onset predictor already included. In the scrambled word passages, where context does not 

provide meaningful cues, contextual word surprisal collapsed to the word frequency (see Methods, predictor 

variables); therefore, only the word frequency was used, since the explained variance by contextual word 

surprisal in the absence of coherent meaning is more conservatively ascribed to that of word frequency. 

Statistical summary tables are reported in Figure 2-1. 

Model comparison results for all passage types are illustrated in Figure 2. In the modulated noise condition, 

only the acoustic features, specifically the gammatone envelope spectrogram	(𝑡/01 = 6.92, 𝑝 < 0.001) 

and gammatone onset (𝑡/01 = 5.79, 𝑝 < 0.001), contributed significantly to the observed neural data 

variance explained, i.e., significantly improving the full model fit over the reduced model. Conversely, 

none of the linguistic predictors, phoneme onset (𝑡/01 = 3.30, 𝑝 = 0.07), word onset (𝑡/01 = 2.46, 𝑝 =

0.91), phoneme surprisal (𝑡/01 = 1.51, 𝑝 = 1.0), and cohort entropy(𝑡/01 = 1.82, 𝑝 = 0.99) showed a 

significant contribution to the model’s predictive power. However, in the presence of low-content speech 

stimuli, whether non-words or scrambled words, in addition to these acoustic features, linguistic 

segmentation responses (phoneme and word onset) and statistically based linguistic features (phoneme 

surprisal and cohort entropy) also significantly contributed to the model’s predictive power (non-words: 

gammatone envelope (𝑡/01 = 11.90, 𝑝 < 0.001), gammatone onset (𝑡/01 = 9.37, 𝑝 < 0.001), phoneme 

onset (𝑡/01 = 7.25, 𝑝 < 0.001), phoneme surprisal (𝑡/01 = 5.60, 𝑝 < 0.001), cohort entropy (𝑡/01 =

6.83, 𝑝 < 0.001), word onset (𝑡/01 = 6.90, 𝑝 < 0.001); scrambled words: gammatone envelope (𝑡/01 =

10.97, 𝑝 < 0.001), gammatone onset (𝑡/01 = 10.68, 𝑝 < 0.001), phoneme onset (𝑡/01 = 6.43, 𝑝 <

0.001), phoneme surprisal (𝑡/01 = 7.13, 𝑝 < 0.001), cohort entropy (𝑡/01 = 8.60, 𝑝 < 0.001), word 

onset (𝑡/01 = 6.17, 𝑝 < 0.001)). These results indicate that the acoustic features represented by the 

gammatone envelope and onset spectrograms are encoded in the brain regardless of the intelligibility of the 
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sensory input, whereas linguistic features are tracked by the brain as soon as the linguistic units or linguistic 

unit boundaries are intelligible, regardless of any higher-level meaning.   

Furthermore, model comparisons conducted on both scrambled (𝑡/01 = 6.67, 𝑝 < 0.001) and narrative 

(𝑡/01 = 6.48, 𝑝 < 0.001) passages revealed that when the words are individually meaningful, and 

irrespective of the structured coherence of the passages, the brain significantly tracked word frequency 

(absent of context). This suggests that the brain is sensitive to both the overall predictability and integration 

of individual words, regardless of the overall coherence of the passage. Additionally, for narrative passages, 

where structured contextual meaning was present, the brain exhibited substantial additional tracking of 

contextual word surprisal (𝑡/01 = 5.48, 𝑝 < 0.001), over and beyond word frequency. This context-based 

word surprisal processing represents a higher-level processing that involves integration of linguistic and 

syntactic information to construct a structured meaning (Heilbron et al., 2022; Caucheteux et al., 2023).  

Model comparison between word frequency and contextual word surprisal in narrative passages 

additionally verified that contextual word surprisal is better encoded in the brain than word frequency 

(𝑡/01 = 4.70, 𝑝 = 0.02). These results indicate that the brain maintains both context-free and contextual 

representations during speech understanding (Brodbeck et al., 2022), but contextual-level information is 

more strongly represented.  

The anatomical distribution of the neural sources processing this hierarchy of speech processing was 

observed in locations consistent with an origin in Heschl’s gyrus (HG), spreading to the superior temporal 

gyrus (STG) and much of temporal lobe (Figure 2). For higher-level linguistic features including phoneme 

surprisal, cohort entropy, word onset, word frequency, and contextual word surprisal, the feature 

representations additionally extended to left frontal regions.   
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Figure 2. Emergence of hierarchical speech processing. Anatomical brain plots visualize the cortical 

regions where each respective predictor significantly contributes to the model fit. Colored squares above 

the anatomical plots indicate average explained variance over frontal, temporal, and parietal regions. Black 

arrows below anatomical plots indicate significant hemispheric asymmetry. The first two rows show that 

acoustic features are represented in the brain irrespective of the passage type and intelligibility. Later rows 

show that linguistic features are tracked only when the linguistic feature boundaries are intelligible, 

irrespective of any higher-level (e.g., sentential meaning). When the context supports higher-level meaning 

above and beyond that of individual words, contextual word surprisal is additionally represented in the 
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brain. Lower-level feature processing is more right-lateralized, while higher level feature processing is more 

left-lateralized. 

Lateralization of speech feature processing 

Hemispheric lateralization of auditory and speech processing has been widely studied and is of great 

interest, but results still show much variability across different studies (Peelle, 2012). Therefore, we also 

examined the lateralization of neural speech feature processing for each passage type and speech feature. 

Instances of statistically significant lateralization are indicated by arrows in Figure 2. Lateralization varied 

depending on the passage type and specific speech feature. Overall, lower-level speech feature processing 

exhibited a bilateral and right lateralized pattern (narrative: gammatone envelope (𝑡/01 = −5.04, 𝑝 <

0.001), gammatone onset (𝑡/01 = −4.36, 𝑝 = 0.02), phoneme onset (𝑡/01 = −4.57, 𝑝 = 0.005)) in the 

sources spanning in most of the temporal lobe, whereas higher-level speech feature processing were more 

left lateralized (narrative: word onset (𝑡/01 = 3.21, 𝑝 = 0.02), word frequency (𝑡/01 = 3.23, 𝑝 = 0.03), 

contextual surprisal (𝑡/01 = 3.30, 𝑝 = 0.02)) in superior temporal gyrus (STG), anterior temporal lobe and 

extending into frontal cortex. On the other hand, phoneme-level feature processing displayed a more 

bilateral pattern (narrative: phoneme surprisal (𝑡/01 = −2.01, 𝑝 = 0.82), cohort entropy (𝑡/01 =

2.38, 𝑝 = 0.63)). These results suggest distinct specialization of hemispheric regions for the processing of 

lower-level acoustic information vs. higher-level linguistic analysis. 

Interestingly, the non-word passages showed predominantly bilateral responses across the different speech 

features (gammatone envelope (𝑡/01 = 4.33, 𝑝 = 0.06), gammatone onset (𝑡/01 = −4.17, 𝑝 = 0.04), 

phoneme onset (𝑡/01 = 3.58, 𝑝 = 0.08), phoneme surprisal (𝑡/01 = 2.72, 𝑝 = 0.29), cohort entropy 

(𝑡/01 = 3.92, 𝑝 = 0.06), word onset (𝑡/01 = 2.58, 𝑝 = 0.39)), suggesting a more symmetrical 

hemispheric engagement of neural resources in non-word processing.   

Effect of context on progression of neural speech processes: early and late 

Neural responses obtained using MEG, with its fine-grained time resolution, often provide even greater 

insight from the temporal progression of cascading neural processes than from their anatomical locations. 
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Having tested which types of speech-feature processing occurs in different contexts and in different 

anatomical regions, we then investigated how these contextual factors also influence the underlying neural 

mechanisms, associated with the processing of each speech feature, in the time domain. To this end, we 

utilized TRF analysis that describes how the brain responds to each predictor over a range of latencies. To 

compare the TRFs between passage types, TRF magnitudes over the brain sources were aggregated. 

Analogous to ERP responses to punctate sounds, that exhibit distinct peaks at specific latencies 

characterized by their current polarity, so also do these TRFs, representing the direction and strength of the 

neural current response to each predictor, at various latencies. The dominant TRF peaks were identified and 

compared across passage types using repeated measures ANOVA (post hoc paired sample t-tests corrected 

for multiple comparisons using the false discovery rate method). To ensure unbiased TRF comparison 

across passage types, TRFs were generated from the same number of predictors. Peak latencies were also 

compared (Figure 6A), and unless otherwise mentioned, no significant differences were found for latencies. 

Figures 3, 4 and 5 illustrate average TRFs and their main peaks, and the accompanying bar plots provide a 

comprehensive comparison across the different speech passage types. The results presented in these figures 

show either only left or right hemisphere responses, so as not to overwhelm the figures; however, full 

analysis results are included in the extended data (Figure 3-(1-3), Figure 4-(1-6), Figure 5-(1-3)).  

Neural responses to acoustic features (Figure 3) showed two prominent peaks: an early peak with a positive 

current polarity, and a late peak with a negative current polarity. These two peak latencies for the 

gammatone envelope were ~60 ms and ~120 ms respectively, while for the gammatone onset feature, peak 

latencies were ~70 ms and ~150 ms (c.f. the early (P1) and late (N1) peaks of an auditory ERP). The late 

responses showed a predominantly right hemispheric lateralization (p < 0.001). When comparing these two 

neural responses across passage types, we found that neural responses to speech passages were stronger 

compared to the non-speech modulated-noise (p < 0.001). This effect was smaller for the right hemisphere 

early responses (left: early: d = 1.06, late: d = 1.120; right: early: d = 0.47, late: d = 1.20). The TRF 

amplitude differences between speech and non-speech passages, even at baseline, could be driven by the 

differences in statistics of the predictor variables (see Figure 1-2), and the engagement of more cortical 
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areas for speech processing, as shown in Figure 2. It was also observed that the late peak was nearly absent 

in the modulated noise responses. When comparing the envelope onset responses among the speech 

passages, no significant differences were observed (p > 0.2). However, for envelope responses significant 

differences were found across speech passages in the left hemisphere. Early responses were smaller in 

narrative passages compared to scrambled and non-words (p < 0.001), whereas late responses were stronger 

in non-words compared to meaningful words (p < 0.02). Even though envelope and envelope onsets are 

temporally related, these stark differences observed in between them in response to passage type suggest 

that envelope and envelope onset tracking arise from quite different neural mechanisms (Hamilton et al., 

2018).   

 

Figure 3. Neural responses to acoustic features. (A). Gammatone envelope and (B). gammatone envelope 

onset responses. Left panels show the TRF magnitude aggregated over sources and subjects, by passage 

type. The TRFs exhibit an early positive and a late negative polarity peak indicated by  and  
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respectively. The right panel bar plots (mean±standard error (SE)) compare the peak amplitudes, first early 

then late, across passage types. Both early and late responses are stronger for speech compared to non-

speech (noise). Only right hemisphere results shown (see Figure 3-1 for both hemispheres and individual 

data points). *p<0.05, **p<0.01, ***p<0.001 

The analysis of phoneme onset responses (Figure 4A) also revealed a robust early positive polarity peak 

with ~70 ms latency; the substantially later peak at ~250 ms latency was noisy and not robust across subjects 

(Di Liberto et al., 2015). When comparing the peak amplitudes across passage types, no significant 

differences were observed in the right hemisphere for late responses. In the left hemisphere, early responses 

were stronger for non-words compared to scrambled passages (p = 0.002).  

Phoneme surprisal (Figure 4B) also showed two prominent peaks: an early positive polarity peak at ~70 ms 

and a late negative polarity peak at ~350 ms. Similar to phoneme onset responses, significant differences 

between passage types were found only in the left hemisphere. Both the early (p = 0.03) and late (p < 0.03) 

peaks were stronger in response to scrambled words compared to narrative and non-word passages.  

For cohort entropy responses (Figure 4C), two main processing mechanisms were observed for the 

scrambled and narrative passages: an early positive peak at ~70 ms and a late negative peak at ~380 ms. 

However, non-word passages showed a robust intermediate positive polarity peak at ~200 ms. Therefore, 

three peaks were identified as early, middle and late responses. The early peak was stronger for non-words 

compared to scrambled (p = 0.01) and to narrative (p = 0.02), while the middle peak was stronger in non-

words compared to meaningful words (p < 0.001). In contrast, the late peak was stronger in scrambled 

words compared to narrative (p = 0.009); additionally, this peak was delayed for non-words compared to 

meaningful words (p < 0.001). Finally, the early cohort entropy responses were left lateralized for 

meaningful words (p = 0.002), middle non-word responses (p = 0.03) and late scrambled word responses 

(p = 0.001).  

Analogous to cohort entropy responses, word onset responses (Figure 4D) displayed two main peaks for 

both scrambled and narrative passages, while a middle peak was evident for non-words. Both early and 
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middle peaks, occurring at ~100 ms and at ~200 ms respectively, exhibited a positive polarity. In contrast, 

the broad late peak at ~450 ms showed a negative polarity, resembling a characteristic N400 response. The 

early peak was stronger for meaningful words compared to non-words (p < 0.001), whereas this effect was 

reversed for the middle peak (p < 0.001). Interestingly, no significant differences were observed between 

the scrambled and narrative passages for both early (p = 0.09) and middle (p = 0.07) peaks. Remarkably, 

the late peak exhibited greater strength in response to scrambled words compared to non-words and 

narrative passages (p = 0.003). Moreover, the late peak latency was significantly delayed in the progression 

from narrative to scrambled (by ~30 ms, p = 0.02) to non-words (by ~50 ms, p = 0.002). Additionally, 

consistent with the explained variance lateralization comparisons, the non-words early and middle 

responses showed bilateral response (p = 1.0), while in meaningful words, the early responses were left 

lateralized (p = 0.001).  

In the above analysis, we conservatively separated the early and middle peaks in cohort entropy and word 

onset responses into different processing stages, due to the considerable temporal separation between them. 

However, because of the strong similarity between the peak amplitudes and polarity, we also performed a 

separate analysis where the positive peaks (early and middle) were grouped together. In this analysis no 

significant differences in peak amplitudes were observed across the passage types (cohort entropy: p > 0.08, 

word onset: p > 0.06); as expected, latency comparisons revealed that the peak is delayed in non-words 

compared to meaningful words (p < 0.001). 
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Figure 4. Neural responses to sub-lexical and word onset speech features. (A). Phoneme onset, (B). 

phoneme surprisal, (C). cohort entropy, and (D) word onset (TRF magnitude plots and TRF peak bar plots 

as in Figure 3). TRFs exhibit an early positive and a late negative polarity peak indicated by  and  

respectively. For both word onset and cohort entropy responses, non-words showed a robust positive 

polarity peak between early and late peaks. These early, middle, and late peaks are indicated by , , and 

 respectively. The bar plots compare the peak amplitudes across passage types. Only left hemisphere 

results are shown here (see Figure 4-1 for both hemispheres and individual data points). Overall, the early 

responses were very differently modulated by the linguistic content. The middle peak (second positive 

polarity peak) was strongest for non-words, while the late peak (negative polarity) was strongest for 

scrambled passages. 

Word frequency TRFs (Figure 5A) showed two main peaks, comparable to the early and late peaks observed 

in the word onset responses. Consistent with the explained variance lateralization, both peaks showed left 

hemispheric dominance. When comparing the peak strength between the scrambled and narrative passages, 

no significant differences were found for the early peak (p = 0.16). However, interestingly, the late peak in 
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the scrambled word passages TRF was stronger (p < 0.001) and delayed by ~30 ms (p = 0.04) compared to 

narrative passages.  

The TRFs between word frequency and contextual word surprisal within the narrative passage were also 

compared (Figure 5B). Both predictors represent word surprisal and exhibit a similar range of values, 

facilitating a direct comparison. Both TRFs showed similar peaks at comparable latencies and were left 

lateralized (p < 0.001). In contrast to the similarity in peak timing, contextual word surprisal showed 

stronger amplitudes for both early (p < 0.001) and late (p < 0.001) peaks in both hemispheres when 

compared to word frequency, indicating contextual information is more robustly tracked.  

 

Figure 5. Neural responses to lexico-semantic features. (A). Word frequency (B). Word frequency and 

contextual word surprisal for the narrative passage (TRF magnitude plots and TRF peak bar plots as in 

Figure 3). The TRFs exhibit an early positive and a late negative polarity peak indicated by  and  

respectively. Only left hemisphere results are shown here (see Figure 5-1 for both hemispheres and 

individual data points). The late word frequency responses (N400-like) are stronger for scrambled passages 
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compared to narrative passage. Contextual word surprisal responses are stronger compared to word 

frequency responses. Note that the peak amplitudes for word frequency in (A) and (B) are different, as the 

TRF model in (A) does not include a separate predictor for contextual surprisal. 

The current analysis does have its limitations. Specifically, more fine-grained stages within the speech and 

language processing hierarchy, such as syntactic-only processing and semantic-only processing, were not 

included (due to experimental constraints related to recording durations). Additionally, other speech 

features, including but not limited to morphemes, function words, and content words, were not incorporated 

into the analysis. Further, the stimuli across passage types were not tightly controlled for linguistic 

structures. Investigating such aspects would indeed be a valuable direction for future research.  

In summary, our TRF analysis revealed that the brain processes the hierarchy of acoustic and linguistic 

structures (from acoustics to context-based features) in a progression of neural stages, and with a 

characteristic temporal dynamic associated with each feature processing. As we ascend the hierarchy (when 

speech features become more abstract and less directly related to the acoustics), processing of features 

shows longer latencies for both early and late mechanisms (Figure 6A), suggesting a graded computation 

of features, over time, in the cortex (Keshishian et al., 2023), starting as early as ~50 ms and extending to 

~500 ms. These mechanisms accumulate sounds features, analyze for lexical-semantic information, and 

integrate with the semantic context. Acoustic feature responses to speech were stronger compared to non-

speech. Notably, the early and late peaks exhibited different modulations by linguistic content, consistent 

with representing different neural mechanisms. Even though different patterns were observed for early stage 

between passage types, the later stage trends were consistent for both phoneme level and lexical level, 

suggesting the late stage may represent similar neural mechanisms. Furthermore, the TRFs showed quite 

different peak latencies for non-words compared to meaningful words. For linguistic level features, the late 

TRF peak amplitudes were stronger for scrambled words compared to non-words and narrative passages. 

Additionally, cohort entropy and word level late processing were delayed from narrative to scrambled to 

non-words. Peak lateralization analysis was consistent with explained variance lateralization analysis: 
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lower-level feature processing was more right-lateralized, while higher level feature processing was more 

left-lateralized.  

 

Figure 6. Temporal profile of speech feature processing. (A). Latency of both early and late processing 

stages associated with each feature processing. As the features go up in hierarchical acoustic and linguistic 

structures both early and late peak processing show longer latencies, with all measures obtained 

simultaneously from the same continuous stimuli. (B). Schematic summary of the bottom-up and top-down 

temporal profiles associated with earliest bottom-up and top-down mechanisms at each level as outlined in 

the final section of the discussion. Acoustic = [Envelope, Envelope Onset], Sub-lexical = [Phoneme Onset, 

Phoneme Surprisal], Lexical = [Cohort Entropy, Word Onset, Word frequency, Contextual Word 

Surprisal]. Bottom-up mechanisms correspond to early processing stages, while top-down mechanisms 

emerge in the late processing stages, as inferred from their timing and modulation by linguistic content. 

Latencies marked are derived from envelope responses, phoneme surprisal responses, and word onset 

responses for each level. 
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Discussion 

Using multiple stimulus types with varying linguistic content, our results provide neural evidence for the 

progression of different speech features, hemispheric lateralization, temporal dynamics and neural 

mechanisms associated with each level and how they are further modulated by linguistic content. Our 

results complement and extend fMRI studies (Binder, 2000; Xu et al., 2005) by leveraging the temporal 

dynamics of feature processing and electrophysiological studies by investigating effects of linguistic 

content on neural tracking measures (Gillis et al., 2021).  

We first showed that the brain separately represents hierarchical speech and linguistic structures, with 

emergence of these features from acoustics to contextual processing arising with the increasing contextual 

information necessary for language comprehension. Regardless of the stimulus type, acoustic envelope and 

envelope onsets are represented in the brain (Kubanek et al., 2013; Steinschneider et al., 2013; Oganian and 

Chang, 2019), reflecting a lower-level, initially bottom-up, sensory processing mechanism (Karunathilake 

et al., 2023). (Sub)-lexical features processes are activated as soon as (sub)-lexical units are recognizable 

and intelligible for linguistic process activation (Overath et al., 2015). Moving from non-words to 

meaningful words, results show the emergence of lexico-semantic processes, while avoiding the inherent 

confounds of instead using incomprehensible foreign languages (Gillis et al., 2023; Tezcan et al., 2023). 

Moving from scrambled words to narrative passages, our results also show the emergence of context-based 

word processing, robustly represented compared to non-contextual word predictions, indicating that the 

brain strongly incorporates context to predict the structured meaning in line with the predictive coding 

theories (Dambacher et al., 2006; Payne et al., 2015; Schrimpf et al., 2021). These two measures represent 

different cognitive operations, where context-based surprisal involves word retrieval based on contextual 

and syntactic information, whereas word frequency relies solely on sensory cues (Bentin et al., 1999; 

Huizeling et al., 2022).  

Our lateralization results underscore the specialized contribution of each hemisphere to different levels of 

speech comprehension within a common stimulus and emphasize the brain’s flexibility in adapting to 

various linguistic and acoustic demands. The results demonstrate that pre-lexical auditory input analysis 
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occurs in both hemispheres, with a right hemispheric advantage, and left lateralization emerges as lexical-

semantic processing becomes involved (Overath and Paik, 2021). While lower-level acoustic processing 

has been identified as bilateral (Binder, 2000; Aiken and Picton, 2008), the right hemisphere’s extra 

involvement in acoustic level processing aligns with its specialization in acoustic analysis, including 

extraction of spectral and temporal features from auditory input (Ross et al., 1997; Poeppel, 2003; Ding and 

Simon, 2012a). The left lateralization for higher level responses is consistent with the well-established left 

hemisphere specialization for language functions (Hickok and Poeppel, 2004, 2007; Gow, 2012). Indeed, 

it is crucial to emphasize that numerous studies have reported different patterns of lateralization across task 

and language processes (Price, 2012; Fedorenko et al., 2012; Bradshaw et al., 2017). Interestingly, non-

word processing exhibited bilateral responses at every level of processing, suggesting both hemispheres are 

engaged in the absence of successful lexical retrieval for non-word understanding (Bozic et al., 2010; Mai 

et al., 2016).  

Critically, TRF analysis revealed multiple processing stages, with distinct temporal dynamics influenced 

by bottom-up and top-down driven mechanisms (Shuai and Gong, 2014; Arnal et al., 2016). These 

mechanisms at each stage are inferred from the timing and their modulation by linguistic complexity, as 

detailed in the following paragraphs, summarized in Figure 6B. Some predictors are inherently bottom-up, 

driven by sensory cues, while others reflect top-down influence shaped by linguistic experience (Gwilliams 

and Davis, 2022). For example, envelope responses, driven by sensory signal, are observed early for both 

speech and nonspeech stimuli, with late-stage processing emerging only for speech, suggesting top-down 

involvement of speech processing (Ding and Simon, 2012b; O’Sullivan et al., 2015). Similarly, linguistic 

level responses, which are not directly tied to the sensory signal, also show early and late responses. These 

responses arise from the listener’s internal language model, formed through lifelong linguistic exposure 

(Gwilliams and Davis, 2022). The early response points to a generalized feature regardless of the structure, 

reflecting the generation of predictions through a bottom-up driven mechanism driven by the statistics of 

the internal model. In contrast, prediction evaluation and adjustments occur during the late stage, resulting 

in modulation by linguistic content and highlighting the influence of top-down processing (Gwilliams and 
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Marantz, 2015). It has been also seen that some predictive coding models may even be dominantly bottom-

up, for example, in an auditory midbrain model of predictive processing (de Cheveigné, 2024).  

Acoustic feature responses were stronger for speech compared to the non-speech (Binder, 2000; Nourski et 

al., 2019), attributable to the underlying acoustic differences (Karunathilake et al., 2023). Although it might 

appear from the current study that envelope onset responses are dominantly bottom-up, previous work has 

shown a strong top-down modulatory influence, especially from selective attention, on the later peak 

(Fiedler et al., 2019; Brodbeck et al., 2020). 

Phoneme onset responses reflect more of a mixed acoustic-linguistic measure rather than a purely linguistic 

measure (Karunathilake et al., 2023). The early responses for non-words were enhanced for phoneme onset 

but were smaller for phoneme surprisal and cohort entropy compared to scrambled passages. It is also 

possible that differences in predictor distributions between words and non-words (Figure 1-2) influenced 

processing of the statistics-based phoneme features, which in turn may have indirectly affected the phoneme 

onset responses due to their concurrent timing. Additional activation of brain regions in the processing of 

non-words may also have contributed to the phoneme onset difference. 

The temporal structure of non-words’ cohort entropy closely resembled the word onset responses, 

especially compared to those of phoneme surprisal. While one might expect similar trends between the 

phoneme surprisal and cohort entropy, it is important to note that these measures quantify different aspects 

of sub-lexical processing: phoneme surprisal represents phonological predictability, whereas cohort 

entropy reflects lexical uncertainty (Gwilliams and Davis, 2022). In this sense, cohort entropy effects likely 

reflect lexical processing more than just phoneme level processing, and this is supported by these results. 

Considerable temporal separation between early and middle peaks of word onset and cohort entropy may 

suggest additional mechanisms associated with non-word processing. A key difference between segmenting 

non-words vs. words is that boundaries between non-words are not clearly defined, and identifying them 

relies on indirect cues (e.g., prosody changes). When early and middle peaks were combined, no amplitude 

differences were observed between passage types, only latency, indicating that they indeed represent a 
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single source that is linked to word segmentation (a bottom-up mechanism), but the latency of which 

depends upon the difficulty of the segmentation problem.   

In general, the late peaks for phoneme and lexical level features were stronger in scrambled words compared 

to non-words and narrative passages, and were delayed from narrative to scrambled to non-words, 

suggesting the late responses are affected by linguistic content. Remarkably, this late peak resembles the 

characteristics of the N400 ERP response, a well-known brain response modulated by comprehension and 

predictability, often used to investigate semantic processing (Lau et al., 2008; Kutas and Federmeier, 2011). 

Additionally, the N400 plays a key role in predictive coding frameworks, where it has a natural and 

compelling interpretation as representing prediction error (Nour Eddine et al., 2024). Within the N400-like 

responses seen here at lexical and sub-lexical levels, our results demonstrate predictive coding operating at 

multiple stages. Our results suggest that context-based predictability facilitates the pre-activation of 

semantic integration, thereby reducing the strength and latency of N400-like response in narrative passages 

compared to scrambled words (Lam et al., 2016; Slaats et al., 2023). Some studies have also reported weaker 

late response with scrambling (Broderick et al., 2022; Gillis et al., 2023), though this difference may be 

related to the variations in the experimental design (EEG vs MEG, contextual measure employed). 

Conversely, the smaller N400-like responses for non-words aligns with non-words being mostly 

unpredictable, and thus not activating the N400 mechanism. However, in the current study the non-word 

passages did include some non-words that resembled real words (e.g., “sustument” and “bi”), which could 

lead to lexical activation of root words, and, consequently, elicit some N400 response. Some lexical 

activation for non-words could diminish the difference between narrative and non-words. Therefore, the 

N400-like response seen here could arise from both semantic and non-semantic violations of expectation. 

These interpretations are further supported by the latency analysis, which showed that peaks are delayed 

from narrative to scrambled to non-words. The earliest processing of the narrative stimulus suggests that 

rapid access to the mental lexicon is facilitated by the contextual information (Deacon et al., 2004; Kutas 

and Federmeier, 2011). Other studies have shown that the N400 is stronger for non-words compared to 

words (Bentin et al., 1999; Holcomb, 2007), however, but in paradigms where the non-words were 
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presented between meaningful words, which alters the experimental design, behavioral expectations, and, 

likely, the neural processing form the current work. These results suggest that the late responses to both 

phoneme and lexical features are influenced by top-down driven mechanisms. While bottom-up driven 

mechanisms are less intriguing, top-down driven mechanisms demonstrate involvement in predictive 

coding mechanisms, making them better neural markers of cognitive processes.   
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Extended Data 

 

Figure 1-1. Comparison of Stimulus Acoustic Properties. (A). Periodograms and (B). Modulation 

spectrum obtained using the methods of Ding et al., (2017). Even though the spectral characteristics are 

similar between the stimulus types, the slow temporal modulation is different between speech and non-

speech. There is no visible difference in acoustic properties between the speech passages. Periodograms 

and modulation spectra were computed for 10 chunks of 6 seconds each, per each passage type and then 

mean ± standard error is plotted to illustrate data. 
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Figure 1-2. Comparison of predictor variables between passage types. (a). Acoustic feature 

comparisons between non-speech and (non-word) speech passage: they share similarities in the distribution 

of envelope onset predictor values, but not for envelope predictors. (b). Phoneme surprisal and cohort 

entropy comparison between non-words and meaningful words (scrambled passage): both predictor 

distributions depend strongly on the stimulus type. (c). Word frequency and contextual word surprisal 

comparisons between scrambled and narrative passages: the two word frequency distributions are nearly 

identical, by design, but the contextual word surprisal distributions diverge strongly (as expected, the 

narrative case is strongly biased toward low surprisal; additionally, in the scrambled word case, both forms 
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of surprisal are highly correlated, collapsing into a narrow diagonal distribution. In each panel, the top and 

right plots show frequency histograms that present the distribution of each feature, where the y-axis 

represents the bin density of points, scaled to integrate to one.; the bottom left scatterplot shows a 

visualization of the correlation between the two predictor variables.    
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Figure 2-1. Summary statistics table for the model prediction comparisons. tmax and corresponding p 

values are reported. Second column summarizes the contribution of each feature to the model’s predictive 

power. Third column summarizes the lateralization results. 

 Contribution to model prediction 

(Full vs Reduced) 

Lateralization 

(Left vs Right) 

 Modulated 

Noise 

Non-

words 

Scrambled 

words 

Narrative Modulated 

Noise 

Non-

words 

Scrambled 

words 

Narrative 

Gammatone 

Envelope 

6.92 

(<0.001) 

11.9 

(<0.001) 

10.97 

(<0.001) 

10.47 

(<0.001) 

-4.56 

(<0.001) 

4.33 

(0.06) 

-4.5 

(0.01) 

-5.04 

(<0.001) 

Envelope 

onset 

5.79 

(<0.001) 

9.37 

(<0.001) 

10.68 

(<0.001) 

9.9 

(<0.001) 

-3.06 

(0.08) 

-4.17 

(0.04) 

-5.4 

(<0.001) 

-4.36 

(0.02) 

Phoneme 

onset 

3.3 

(0.07) 

7.25 

(<0.001) 

6.43 

(<0.001) 

5.08 

(<0.001) 

0 

(1) 

3.58 

(0.08) 

2.83 

(0.23) 

-4.57 

(0.005) 

Phoneme 

surprisal 

1.51 

(1.0) 

6.83 

(<0.001) 

8.6 

(<0.001) 

6.99 

(<0.001) 

0 

(1) 

2.72 

(0.29) 

3.74 

(0.05) 

-2.01 

(0.82) 

Cohort 

Entropy 

1.82 

(0.99) 

6.9 

(<0.001) 

6.17 

(<0.001) 

5.75 

(<0.001) 

0 

(1) 

3.92 

(0.06) 

4.91 

(<0.001) 

2.38 

(0.63) 

Word onset 2.46 

(0.91) 

5.6 

(<0.001) 

7.13 

(<0.001) 

5.28 

(<0.001) 

0 

(1) 

2.54 

(0.48) 

4.21 

(0.003) 

3.21 

(0.02) 

Word 

frequency 

  6.67 

(<0.001) 

6.48 

(<0.001) 

  5.07 

(0.002) 

3.23 

(0.03) 

Contextual 

word surprisal 

   5.48 

(<0.001) 

   3.30 

(0.02) 
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Figure 3-1. Neural Responses to acoustic features (A) Gammatone envelope and (B) Gammatone 

envelope onset in left (LH) and right (RH) hemispheres. This figure expands on the data shown in Figure 

3. The TRFs exhibit an early positive and a late negative polarity peak indicated by  and  respectively. 

Right panel bar plots compare the peak amplitudes across passage types. LH and RH denotes left and right 

hemisphere respectively. Both early and late responses are stronger for speech compared to non-speech. 

Differences between the speech passages were found only for the envelope responses and in the left 

hemisphere. *p<0.05, **p<0.01, ***p<0.001 
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Figure 3-2. Summary Statistics table for envelope TRF peak amplitude comparisons. P-values are 

corrected for multiple comparisons using false discovery rate (FDR). LH and RH represent left and right 

hemispheres respectively. 

  Envelope - Early Envelope - Late 

  Noise Non-words Scrambled Noise Non-words Scrambled 

 

LH 

Narrative t29=4.4, p<0.001 t29=-4.7, p<0.001  t29=-4.7, p<0.001   t29=7.1, p<0.001  t29=-2.7, p=0.015 t29=-0.3, p = 0.77 

Scrambled t29=6.2, p<0.001 t29=-0.6, p=0.58  t29=5.9, p<0.001 t29=-3.4, p=0.003  

Non-words t29=5.9, p<0.001    t29=6.9, p<0.001    

 

RH 

Narrative t29=2.4, p=0.04  t29=-1.3, p=0.24 t29=-1.7, p=0.14 t29=5.2, p<0.001 t29=-1.9, p=0.09 t29=-1.9, p=0.09 

Scrambled t29=2.8, p=0.04 t29= 1.0, p=0.33  t29=6.3, p<0.001 t29=-0.1, p=0.89  

Non-words t29=2.5, p=0.04   t29=7.2, p<0.001   

 

 

 

Figure 3-3. Summary Statistics table for envelope onset TRF peak amplitude comparisons. Other 

details as in Figure 3-2.   

  Envelope Onset- Early Envelope Onset- Late 

  Noise Non-words Scrambled Noise Non-words Scrambled 

 

LH 

Narrative t29=6.2, p<0.001 t29=0.3, p=0.96  t29=0.1, p=0.96   t29=3.5, p=001  t29=0.7, p=0.55 t29=1.4, p = 0.25 

Scrambled t29=6.2, p<0.001 t29=0.2, p=0.96  t29=2.9, p=0.02 t29=-0.6, p=0.55  

Non-words t29=6.4, p<0.001    t29=2.8, p=0.02    

 

RH 

Narrative t29=6.7, p<0.001  t29=1.7, p=0.13 t29=-0.3, p=0.78 t29=4.5, p<0.001 t29=-1.8, p=0.12 t29=-1.0, p=0.39 

Scrambled t29=5.6, p<0.001 t29= 1.7, p=0.13  t29=4.7, p<0.001 t29=-0.5, p=0.63  

Non-words t29=6.3, p<0.001   t29=5.4, p<0.001   
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Figure 4-1. Neural responses to sub-lexical and word onset speech features (A). Phoneme onset, (B). 

word onset, (C). phoneme surprisal, and (D). cohort entropy (TRF magnitude plots and TRF peak bar plots 

as in Figure 3-1). This figure expands on the data shown in Figure 4. TRFs exhibit an early positive and a 

late negative polarity peak indicated by  and  respectively. For both word onset and cohort entropy 
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responses, non-words showed a robust positive polarity peak between early and late peaks. These early, 

middle, and late peaks are indicated by , , and  respectively. The right column bar plots compare the 

peak amplitudes across passage types. LH and RH denotes left and right hemisphere respectively. Overall, 

the early responses were differently modulated by the linguistic content. The middle peak was stronger for 

non-words, while the late peak was stronger for scrambled passages. No differences, except the strong 

middle responses for non-words were found in the right hemisphere. 
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Figure 4-2. Summary Statistics table for phoneme onset TRF peak amplitude comparisons. Other 

details as in Figure 3-2. 

  Phoneme onset - Early Phoneme Onset - Late 

  Non-words Scrambled Non-words Scrambled 

LH Narrative t29=-2.0, p=0.08 t29=1.8, p=0.08 t29=-1.8, p=0.11 t29=0.7, p=0.50 

Scrambled t29=-3.9, p=0.002  t29=-2.3, p=0.09  

RH Narrative t29=-0.6, p=0.57 t29=0.8, p=0.57 t29=-0.6, p=0.67 t29=0.4, p=0.67 

Scrambled t29=-1.4, p=0.52  t29=-1.1, p=0.67  

 

 

Figure 4-3. Summary Statistics table for phoneme surprisal TRF peak amplitude comparisons. Other 

details as in Figure 3-2. 

  Phoneme Surprisal - Early Phoneme Surprisal - Late 

  Non-words Scrambled Non-words Scrambled 

LH Narrative t29=0.8, p=0.46 t29=-2.4, p=0.03 t29=1.3, p=0.20 t29=-2.4, p=0.03 

Scrambled t29=2.6, p=0.03  t29=3.3, p=0.008  

RH Narrative t29=1.3, p=0.33 t29=-0.1, p=0.89 t29=2.0, p=0.17 t29=1.0, p=0.34 

Scrambled t29=1.9, p=0.22  t29=1.0, p=0.34  

 

 

Figure 4-4. Summary Statistics table for cohort entropy TRF peak amplitude comparisons. Other 

details as in Figure 3-2. 

  Cohort Entropy - Early Cohort Entropy - Middle Cohort Entropy - Late 

  Non-words Scrambled Non-words Scrambled Non-words Scrambled 

LH Narrative t29=4.1, p<0.001 t29=2.5, p=0.02 t29=-7.0, p<0.001 t29=-0.3, p=0.75 t29=-2.1, p=0.06 t29=-3.3, p=0.009 

Scrambled t29=2.9, p=0.01  t29=-7.3, p<0.001  t29=1.9, p=0.06  

RH Narrative t29=2.6, p=0.04 t29=1.4, p=0.27 t29=-5.6, p<0.001 t29=0.81, p=0.42 t29=-2.1, p=0.13 t29=-1.5, p=0.20 

Scrambled t29=0.9, p=0.37  t29=-5.2, p<0.001  t29=-0.4, p=0.68  
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Figure 4-5. Summary Statistics table for word onset TRF peak amplitude comparisons. Other details 

as in Figure 3-2. 

  Word Onset - Early Word Onset - Middle Word Onset - Late 

  Non-words Scrambled Non-words Scrambled Non-words Scrambled 

LH Narrative t29=5.1, p<0.001 t29=1.8, p=0.09 t29=-5.2, p<0.001 t29=-1.9, p=0.07 t29=0.2, p=0.86 t29=-3.6, p=0.003 

Scrambled t29=5.1, p<0.001  t29=-4.6, p<0.001  t29=3.3, p=0.003  

RH Narrative t29=2.1, p=0.12 t29=1.8, p=0.12 t29=-6.0, p<0.001 t29=-0.6, p=0.57 t29=-0.2, p=0.82 t29=-2.3, p=0.09 

Scrambled t29=1.1, p=0.30  t29=-5.3, p<0.001  t29=1.7, p=0.16  

 

 

Figure 4-6. Summary statistics table for combined early and middle peak amplitude comparisons for 

cohort entropy and word onsets. Other details as in Figure 3-2. 

   Cohort Entropy  Word Onset  

  Non-words Scrambled Non-words Scrambled 

LH Narrative t29=1.2, p=0.25 t29=2.3, p=0.08 t29=-2.5, p=0.06 t29=1.7, p=0.12 

Scrambled t29=-1.5, p=0.20  t29=1.6, p=0.12  
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Figure 5-1. Neural responses to lexico-semantic features (A) Word frequency and (B) Word frequency 

vs contextual word surprisal for the narrative passage (TRF magnitude plots and TRF peak bar plots as in 

Figure 3-1). This figure expands on the data shown in Figure 5. The late peak in word frequency responses 

is stronger for scrambled words compared to narrative passages. Contextual word surprisal is stronger 

compared to local word surprisal (word frequency). LH and RH denotes left and right hemisphere 

respectively. TRFs exhibit an early positive and a late negative polarity peak indicated by  and  

respectively. The late word frequency responses (N400-like) are stronger for scrambled passages compared 

to narrative passage. Contextual word surprisal responses are stronger compared to word frequency 

responses. Note that the peak amplitudes for word frequency in (A) and (B) are different, as the TRF model 

in (A) does not include contextual surprisal.  
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Figure 5-2. Summary Statistics table for word frequency TRF peak amplitude comparisons. Other 

details as in Figure 3-2. 

  Word frequency 

Early 

Word frequency 

Late 

  Scrambled Scrambled 

LH Narrative t29=1.4, p=0.16 t29=-4.2, p<0.001 

RH Narrative t29=1.8, p=0.08 t29=-2.1, p=0.04 

 

 

 

Figure 5-3. Summary Statistics table for contextual surprisal vs word frequency TRF peak 

amplitude comparisons. Other details as in Figure 3-2. 

  Early Late 

    Word frequency Word frequency 

LH Contextual word surprisal t29=5.2, p<0.001 t29=5.0, p<0.001 

RH Contextual word surprisal t29=5.2, p<0.001 t29=3.5, p=0.001 
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