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Abstract

Auditory-motor and visual-motor networks are often coupled in daily activities, such as
when listening to music and dancing; but these networks are known to be highly
malleable as a function of sensory input. Thus, congenital deafness may modify neural
activities within the connections between the motor, auditory, and visual cortices.
Here, we investigated whether the cortical responses of children with cochlear im-
plants (Cl) to a simple and repetitive motor task would differ from that of children with
typical hearing (TH) and we sought to understand whether this response related to
their language development. Participants were 75 school-aged children, including
50 with CI (with varying language abilities) and 25 controls with TH. We used functional
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near-infrared spectroscopy (fNIRS) to record cortical responses over the whole brain,
as children squeezed the back triggers of a joystick that vibrated or not with the
squeeze. Motor cortex activity was reflected by an increase in oxygenated hemoglobin
concentration (HbO) and a decrease in deoxygenated hemoglobin concentration
(HbR) in all children, irrespective of their hearing status. Unexpectedly, the visual
cortex (supposedly an irrelevant region) was deactivated in this task, particularly for
children with CI who had good language skills when compared to those with Cl who
had language delays. Presence or absence of vibrotactile feedback made no difference in
cortical activation. These findings support the potential of fNIRS to examine cognitive
functions related to language in children with CI.

Keywords
cochlear implant, auditory-motor coupling, visuo-motor coupling, cortical activity
changes

Introduction

Imitation and action learning are inborn abilities that help babies interact with external
signals in real-time and build the neural basis for sensorimotor synchronization through
their first months of life. Experiences like being rocked or listening to a rhythmic song
stimulate babies’ sensory organs and help them connect sound to movement (Laland et al.,
2016; Oztop et al., 2006; Repp & Su, 2013). Step by step and during the first year, babies
become experts in beat perception, categorization of rhythms, and synchronization of body
movements with auditory perception (Hannon et al., 2017). This entrainment and rhythmic
coordination of movements toward external stimuli plays a key role in shaping the
foundation of auditory-motor coupling, which is a prerequisite for higher cognitive
functions and, most specifically, for speech performance (Chen et al., 2006; Kasdan et al.,
2022; Lehmann et al., 2016; Puschmann et al., 2021; Zatorre et al., 2007).

A complicated neural network spreading from subcortical and cortical regions underlies
auditory-motor interaction (Cannon & Patel, 2021; Nozaradan et al., 2018; Zatorre et al.,
2007). More specifically, for speech performance, this auditory-motor interplay has been
understood in terms of a dual stream model in which speech processing involves ventral
and dorsal pathways that form the bases for speech recognition and production, respectively
(Hickok & Poeppel, 2007). Structures in the superior and middle portions of the temporal
lobe cooperate to form the ventral pathway, bilaterally, while the dorsal stream is more
dominant in the left hemisphere and includes structures in the posterior temporal lobe,
parietal operculum, and posterior frontal lobe. This dorsal pathway plays a prominent role
in beat detection, auditory-motor integration, and most specifically in creating frontal lobe
articulatory representations of speech signals (Hickok, 2022). From this neurological angle,
it makes sense that this dorsal stream activity would be relevant to speech and com-
munication disorders.
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The interface between motor actions and auditory information in the dorsal
pathway has some role in beat perception within the context of other sensory
modalities like vision and proprioception. Such evidence emphasizes the impor-
tance of processing sensory stimuli independent of their modality, and pinpoints
functional organization with respect to the stimuli attributes (Araneda et al., 2017,
Karabanov et al., 2009; Su, 2014). Indeed, multisensory integration generates a
comprehensive profile of the external world (Dionne-Dostie et al., 2015). The
organizational balance between neighbouring brain regions involved in multi-
sensory integration can be altered when one sensory modality is impaired or absent.
Intra-modal changes then occur within different layers of the affected sensory
cortex, but changes across modalities may also occur. This latter phenomenon is
referred to as cross-modal neuroplasticity. The part of the cortex that is no longer
exposed to sensation from the impaired modality becomes sensitive to other (intact)
sensory modalities (Bavelier & Neville, 2002; Voss & Zatorre, 2012). One common
cause of cross-modal plasticity - of particular interest here is the lack of auditory
stimulation (Kral & Pallas, 2011).

Hearing loss is accompanied by substantial alterations in the structure and functional
connections of the auditory cortex (Dell Ducas et al., 2021; Manno et al., 2021; Shiell et al.,
2015; Wallace et al., 2020). The so-called takeover of the auditory cortex by the visual
sense is one of the most notable, or rather most studied, phenomena (Campbell & Sharma,
2014; Wang et al., 2019). This phenomenon is highly adaptive (Voss et al., 2010) and has
attracted numerous neuroimaging and electrophysiological studies revealing superior vi-
sual functioning among people with severe hearing loss, relative to those with typical
hearing (TH) on tasks like visual speech comprehension (Lyxell & Holmberg, 2000), visual
motion detection (Bottari et al., 2014), recognition of communicative gestures (Simon et al.,
2020), and sign language (Capek et al., 2008; Fine et al., 2005). Considering the coop-
eration of three functional modalities (e.g., auditory, vision, and motor) in this multimodal
network, the auditory cortex might be less connected to the motor cortex in children with
severe hearing loss than in TH controls, and the visual cortex might be more connected with
both motor and speech cortices (Shi et al., 2016).

Restoration of sensory stimuli might partially reverse the changes first associated with
sensory impairment (although this is not always true for the visual sense; e.g., see Mowad
etal., 2020). Within this context, children with cochlear implants (CI) provide an important
opportunity to study how restoration of hearing might reverse changes induced during
auditory deprivation (Kral et al., 2019). Children implanted early in life might be par-
ticularly prone to such reversal changes, depending on the strategies followed by a given
child and their family in terms of language development (some being more prone to visual
language at home, with others emphasizing oral communications). According to the
sensorimotor coupling model of speech development (Westermann & Miranda, 2004), we
hypothesized that at least some children with CI would bear similarities to children without
hearing in that the functional connectivity between auditory and motor cortices would be
weakened compared to controls with TH. In contrast, connectivity between their visual and
motor cortices would be strengthened compared to children with TH.
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Of note, however, coupling between two brain regions is not necessarily positive. In a
purely motor task (devoid of speech content), neither the auditory nor the visual cortex
would be expected to contribute to squeezing a joystick. Thus, the prediction of a weaker
auditory-motor coupling could translate into a weaker deactivation of the auditory cortex;
and, similarly, the prediction of a stronger visual-motor coupling could translate into a
stronger deactivation of the visual cortex as the motor cortex activates. If changes in the
multimodal integration network are related to language and communication, we would
further hypothesize that the quality of coupling (auditory-motor or visual-motor) would
differ for children with good versus poor language skills, with the latter group activating a
network pattern more similar to individuals without hearing (non-implanted).

For the reader who is naive to CI science, we should emphasize that outcomes with
these devices are vastly heterogeneous. While CI technology has been effective in
restoring hearing and allowing communication in quiet environments, there have been
many cases in which users of these devices gained little benefit in important aspects of
daily life. Concerning pediatric CI users, the research emphasis has often been on
academic performance (Marschark et al., 2007; Wilson Ottley et al., 2023) and some
children have continued to struggle despite early implantation (Ching et al., 2018;
Dettman et al., 2016; Geers et al., 2017; Wolfe et al., 2021). The extent to which these
differences stem from variable multimodal integration, language processing difficul-
ties, or functional activation/deactivation of various brain regions has remained unclear.

Clinically, a better understanding is needed. One recent research team (Choi et al., 2020)
evaluated the academic performance of 6-17-year-old children who had early implantation
and at least five years of hearing experience with Cls. These children still had difficulties
understanding abstract concepts in science and social sciences, and they showed problems
in speech perception in noisy or group environments. Although assistive hearing tech-
nologies may enhance children’s speech perception and academic performance, they do not
guarantee age-appropriate or grade-level abilities. Neuroimaging technologies may help
researchers better understand the source of these discrepancies.

Functional near-infrared spectroscopy (fNIRS) is a safe, practical, and informative
neuroimaging tool that can depict patterns of cortical activation and deactivation in
pediatric CI recipients (Saliba et al., 2016). Like functional magnetic resonance im-
aging (fMRI), fNIRS relies on blood-oxygen-level-dependent (BOLD) signals. In
fMRI, brain activation is inferred from an increase in blood flow (i.e., local oxy-
genation), and, hence, a reduction in the relative proportion of deoxy-hemoglobin. With
less deoxy-hemoglobin, the fMRI or fNIRS signal rises above baseline and is de-
tectable. BOLD activation has direct links to neuronal activation. On the other hand,
deactivation happens when oxy-hemoglobin decreases, causing a net increase in deoxy-
hemoglobin (Frankenstein et al., 2003).

Unlike fMRI, which only detects changes in deoxy-hemoglobin (most specifically in
venous blood), fNIRS directly estimates the level of both oxy- and deoxy-hemoglobin in
arterial and venous blood. Therefore, despite certain technical limitations (see Discussion
section of this paper), fNIRS has an advantage over fMRI for examining the exact nature of
neurovascular coupling. Since hemodynamic responses are dynamic interactions between
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vascular systems that cooperate to deliver and extract oxygen, imaging that does not
provide information about the arterial side of this interplay can lead to misinterpretation;
recording both oxy- and deoxy-hemoglobin depicts neurovascular coupling more precisely
(Tam & Zouridakis, 2014). We took advantage of this technique with measurements over
the whole brain, even though our analysis focused on certain brain regions of interest (ROI),
namely motor, auditory, and visual cortices.

Method

Participants

Our study took place in Oklahoma City at Hearts for Hearing (https://
heartsforhearing.org/). Seventy-five children between 7 and 18 years old were
selected from patient records: 50 with ClIs (CI group- Tables 1-A and 2-A) and
25 controls with typical hearing and language development (TH group). Details
about inclusion/exclusion criteria, participants’ demographic characteristics,
hearing experience, and device use are provided in Wolfe et al. (2021), a study that
reported exclusively on audiological outcomes. In the present study, CI recipients
were divided into two groups based on their language skills: 26 children had age-
appropriate language skills (referred to as Typical Language, or TL group) and
24 had language delays (referred to as Low Language, or LL group). Language
skills were assessed through the Clinical Evaluation of Language Fundamentals -
Fifth Edition (CELF; Wiig et al., 2013). The CELF included an age-based as-
sessment of Receptive Language Index, Expressive Language Index, Core language
Score, Language Structure and Content.

All children with CIs had received implants before four years of age, and they
were all properly fitted (aided thresholds <30 dB HL) and communicated primarily
through spoken language. The three groups (CI with TL, CI with LL, and TH) were
matched by sex but not by chronological age. While this age difference was not
intended, it may have conferred a maturational advantage to the CI with LL group
compared to the CI with TL group.

We explained the study rationale to each child and their parents, after which the
parents provided their informed consent. Note that the full study from which this
experiment was drawn was more extensive than that described in this article in that
several other tasks were also conducted: a low-level visual task (checkerboard), a low-
level auditory task (oddball design), a phonological task (words and sudo-words),
audio-visual integration, emotional processing (a 10-min video from the movie De-
spicable Me), and a 7-min resting-state recording. As the entire protocol was lengthy,
testing was conducted at different times separated by a large time break. Participants
were compensated financially ($25/hour) for their entire participation. The study
protocol was approved by the Western Institutional Review Board and all the ethical
considerations in research were respected (reference #20190882).
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Figure |. Experimental Protocol Depicting a Child Squeezing the Joystick When Instructed by a
Monitor to Do So, in a |5-s Block-Design.

Note. No sound was presented in this study, and all children with Cls turned their devices off. CI: Cochlear
Implant.

Protocol

Children sat in front of a monitor and held a joystick. The response protocol involved
completing a block design task with 10 motor events that were 15 seconds long,
alternating with 10 rest periods of 15 seconds. In each event, the word “squeeze” was
displayed every second on a laptop that was placed one meter in front of the children;
and the children were instructed to squeeze the two back triggers of the joystick each
time they saw the cue (Figure 1). In half of the blocks, the joystick also vibrated with the
squeeze, allowing us to probe both somatosensory and motor processing. This ex-
perimental session lasted 5 minutes. It was coded in PsychoPy (https://www.psychopy.
org/) and included triggers at the onset of each event.

Apparatus

We recorded continuous fNIRS using 39 LED sources and 31 detectors from the NIRScout
system developed by NIRx Medical Technologies (LLC, USA). The theoretical montage
(Figure 2) resulted in a total of 122 channels, with no short channel. Each source emitted
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Figure 2. fNIRS Montage with 39 Sources (red) and 31 Detectors (Blue) Making Up a Total of
122 Channels.

Note. Only channels targeting 4 ROlIs (Motor, Somatosensory, Visual, and Auditory Cortices) are shown.
ROI: Region of Interest.

light at two wavelengths of 760 and 850 nm. An EasyCap (EASYCAP GmbH, Germany)
was used to hold the sources and detectors, and their position was registered using the
Structure Sensor Pro application by Occipital Inc. (https:/structure.io/structure-sensor-pro.
with three fiducials (nasion and left/right pre-auricular point) and later digitized using the
FieldTrip Matlab toolbox (Oostenveld et al., 2011). Out of the 122 channels, the source-
detector distance was on average 29.9 mm (SD = 6.5 mm). Four ROIs were selected.

Data Analysis

We analyzed data using the NIRS toolbox (Santosa et al., 2018) running in MATLAB.
First, the entire recording was trimmed 5 seconds before the first trigger and 5 seconds
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after the last trigger. Second, oversaturated channels were replaced with high-variance
noise. Third, bad channels were flagged if their standard deviation over the trimmed
signals (averaged over the two wavelengths) exceeded 15%. These bad channels
reflected major alterations in the signal caused by environmental noise or physiological
artifacts. There were, on average, 15.0 (SD= 13.7),13.9 (SD=11.3),and 7.3 (S§D=8.9)
bad channels out of 122, in each group respectively. This number of bad channels
differed significantly across groups, F (2,72) = 3.3, p = .043, as data obtained from TH
children tended to be cleaner than data obtained from children with CI (although none
of the pairwise comparisons reached significance, p > .056). This difference may have
occurred because the presence of the coil may have been detrimental to scalp-to-optode
contact. All flagged channels were linearly interpolated from adjacent good channels.
Fourth, signals were converted to optical density (Huppert et al., 2009). Fifth, motion
artifacts in these data were corrected using Temporal Derivative Distribution Repair
(TDDR) that were first projected onto a principal components analysis (PCA) space
before returning to the optical density space (Fishburn et al., 2019). Sixth, optical
density signals were converted into changes in oxygenated hemoglobin concentration
(HbO) and deoxygenated hemoglobin concentration (HbR) using the modified Beer-
Lambert Law and using the source-detector distances calculated from the digitized
montage specific to each child. The partial path length factors were set at 7.25 and
6.38 for the 760 and 850 nm wavelengths, respectively. Seventh, the hemoglobin
signals were band-pass filtered between .01 and .25 Hz to limit low-frequency drift and
cardiac oscillations. Eighth and finally, the hemoglobin signals were passed through a
PCA, and the first component was systematically removed to reduce systemic
physiological components. These participant-level statistics were performed by the
AR _IRLS function of the NIRS toolbox which provided beta weights for each channel.
These beta weights (just like in the fMRI field) represented the weight of the regressors
(i.e., squeeze vs. rest) obtained when fitting the canonical hemodynamic response
function to the time course of the recording, using ordinary least square fit conducted
independently for HbO and HbR signals.

The statistical maps of t-statistics contrasting betas in squeeze versus rest were
projected on the digitized montage averaged across all 75 children. But to address
our hypotheses more directly, we isolated four brain ROIs (Figure 2): (a) the motor
ROI'was defined by 16 channels that overlapped (according to the Talairach atlas) in
different proportions (between 14.2% and 94.4%) with either the primary motor
cortex or the pre-motor and supplementary motor cortex; (b) the somatosensory ROI
was defined by only four channels that overlapped between 14.4% and 87.0% with
the primary somatosensory cortex or the somatosensory association cortex; (c) the
auditory ROI was defined by 18 channels that overlapped between 20.7% and
32.1% with the superior temporal gyrus (STG) bilaterally; and (d) the visual ROI
was defined by 20 channels that overlapped between 28.4% and 99.4% with either
the primary visual cortex or the visual association cortex. In each ROI, a weighted
average was calculated over all relevant channels with weights taken directly from
how much each one overlapped with the ROI in question. Group averages of HbO
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and HbR waveforms across the ten blocks of the motor/vibrotactile task were
calculated after baseline correction (using 5 seconds prior to the event onset).

We conducted analyses of variance (ANOVAs) with one between-subject factor
(groups LL, TL, and TH) in each ROI on the weighted beta average of each ROI for
HbO, HbR, and the difference (referred to as hemoglobin difference, HbDiff), for the
comparison between the motor task (squeeze) versus rest period. When appropriate,
pairwise comparisons were run with Bonferroni corrections to further explore group
differences. In the absence of group differences, simple t-tests were conducted on the
entire sample (of 75 children) to determine whether a given ROI was activated or
deactivated when on the task as compared to rest. Pearson correlational analyses
were systematically conducted to examine the relationships between HbDiff and (a)
chronological age, (b) age at implantation, and (c) the CELF score. Each attempt was
conducted independently (not in a stepwise fashion) for selected ROIs, and Bon-
ferroni corrections were applied to adjust for the inflation of type-I error. Finally, all
these analyses were reiterated for brain activity with or without joystick vibration
(both being extracted from a common rest baseline).

Cl&LL (n = 24) CI&TL (n = 26) TH (n = 25)

Figure 3. Three-Dimensional Map of t-Statistic Values on the Beta Weights Obtained for the
Effect of the Squeeze versus Rest Periods in Each Group, for Oxygenated Hemoglobin (Top)
and Deoxygenated Hemoglobin (Bottom).

Note. Cl & LL: Cochlear Implant and Low Language, Cl & TL: Cochlear Implant and Typical Language, TH:
Typical Hearing.
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Table 1. Results of the Between-Subject ANOVA (Across Cl With LL, Cl With TL, and TH
Groups) and the One-Sample t-Tests (Against 0, i.e., No Change in the Cortical Activity) on Beta
Weights Captured Over Selected Brain Regions of Interest.

t

F Statistics Statistics
ROI Chromophore df Errordf F pValue n> df t p Value Cohen’sd
Motor HbO 2 72 1.3 282 .035 74 +84 <.00I .967
cortex HbR 2 72 0. .885 .003 74 —26 .00 .18
HbDiff 2 72 09 429 023 74 +74 <00l .135
Somato HbO 2 72 0.1 4l6é 024 74 +1.0 337 112
sensory HbR 2 72 07 519 018 74 +2.1  .036 117
cortex HbDiff 2 72 08 445 022 74 —0.2 .864 A15
STG HbO 2 72 06 526 .018 74 +I1.I .290 123
HbR 2 72 1.0 364 .028 74 —1.0 310 .18
HbDiff 2 72 08 454 022 74 +13 212 .145
Visual HbO 2 72 39 .025 .098 74 —-83 <.00I —.954
cortex HbR 2 72 0. .89 .003 74 +33 .00l .384
HbDiff 2 72 26 079 .068 74 —85 <.00l —.984
Results

Motor Cortex

As expected, the motor task elicited a strong response from the motor cortex (Figures 3 and 4-
left panels) in all groups, and there was no significant main effect for Group differences. The
entire population exhibited a significant increase in HbO, a significant decrease in HbR, and a
significant increase in HbDiff during the 15-s squeeze compared to the 15-s rest period
(Table 1- top). In other words, all children engaged their motor cortex on this task (and fNIRS
successfully revealed this engagement), but children engaged in the task, irrespective of their
hearing/language status. Individual beta weights (HbDiff) illustrated that there were no
relationships to chronological age or to language outcomes (Figure 5, left panels). Among the
children with CI, these values did not relate to their age at implantation [p = .291] (not shown).

Somatosensory Cortex

There was no significant main effect of Group on somatosensory cortical activation (Table 1-
middle top). Across the entire population, there was no significant change in HbO, but there
was a modest increase in HbR and no change in HbDiff during the 15-s squeeze compared to
the 15-s rest period. If anything, the somatosensory cortex seemed to have been deactivated,
irrespective of hearing status (Figure 4, middle left). However, we caution this interpretation
since somatosensory cortical activity was positively correlated (across all participants) with
motor cortex activity, as illustrated in Figure 6 (left panel). Individual beta weights were
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Figure 4. Group-Averaged Event-Related Changes in Oxygenated and Deoxygenated
Hemoglobin (HbO & HbR, respectively) Occurring in the Motor Cortex (Most Left),
Somatosensory Cortex (Middle Left), Superior Temporal Cortices Bilaterally (Middle Right),
and Visual Cortex (Most Right).

Note. Cl & LL: Cochlear Implant and Low Language, Cl & TL: Cochlear Implant and Typical Language, TH:
Typical Hearing.

correlated with chronological age; younger children tended to show deactivation while older
children tended to show activation of their somatosensory cortex. Yet, there was no relationship
between HbDiff and language skills (Figure 5, middle left). Within the CI group, there was no
relationship between HbDiff in this ROI and age at implantation [p = .822] (not shown).

Bilateral Superior Temporal Gyrus

Regarding activation of the bilateral STG, there was no significant main effect across
the three groups of study (Table 1- middle bottom). The entire population exhibited no
significant change in HbO, HbR, or HbDiff during the 15-s squeeze compared to the 15-
s rest periods (Figure 4, middle right). Put differently, there was no change in the
activity of the STG, and activity in these regions was not significantly correlated with
activity in the motor cortex [p = .874] (not shown). Individual beta weights for brain
activity in this ROI did not depend on chronological age or language skills (Figure 5,
middle right). Among children with Cls, age at implantation had no significant role in
brain activity in this ROI [p = .136] (not shown).
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Figure 5. Individual Beta Weights (HbDiff) Obtained in the Motor Cortex (Most Left),
Somatosensory Cortex (Middle Left), Superior Temporal Cortices Bilaterally (Middle Right),
and Visual Cortex (Most Right), as a Function of the Child’s Chronological Age (Top) and Their
Language Skills (Bottom).

Note. HbDiff: Hemoglobin difference (i.e., HbO-HbR), Cl & LL: Cochlear Implant and Low Language, Cl &
TL: Cochlear Implant and Typical Language, TH: Typical Hearing.

Visual Cortex

There was a significant main effect of Group for HbO, but not for HbR in the visual
cortex, and there was only a trend toward group significance for HbDiff (Table 1-
bottom). The group difference in HbO was driven by larger deactivation of the
visual cortex in the CI with TL group versus the CI with LL group [p =.025, 95% CI
[5.03,105.0]], while the other two comparisons (i.e., CI with TL vs. TH; and CI with
LL vs. TH) were not significant [p > .106]. The entire population exhibited a
significant decrease in HbO, a significant increase in HbR, and a significant de-
crease in HbDiff during the 15-s squeeze compared to the 15-s rest period (Figure 4,
right panels). In other words, children deactivated their visual cortex to perform the
motor task and, among children with CIs, this behaviour was exacerbated among
those with better language skills. Note that this deactivation tended to be inversely
related to activity in the motor cortex, as illustrated in Figure 6 (right panel).
Individual beta weights did not reveal any relationship between brain activation and
age; but interestingly, there was a negative correlation between visual cortex ac-
tivation and CELF scores (Figure 5, right panels). Specifically, the more a child
deactivated their visual cortex during this task, the better their language skills. Age
at implantation had no role in the degree of visual cortex deactivation [p =.260] (not
shown).
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Figure 6. Individual Beta Weights (HbDiff) Obtained in the Motor Cortex versus
Somatosensory (left) or Visual (right) Cortex.

Note. HbDiff: Hemoglobin difference (i.e., HbO-HbR), Cl & LL: Cochlear Implant and Low Language, Cl &
TL: Cochlear Implant and Typical Language, TH: Typical Hearing.

Vibrotactile Information

In the analyses above, we disregarded whether the joystick vibrated or not, as the
child squeezed the triggers. However, the presence of the vibration across the ten
events alternated, yielding a set of five events in which the joystick vibrated in
response to the child’s action and five events in which the joystick did not vibrate.
There was no group difference in brain activation in any of the four brain region
activations (motor, somatosensory, STG, and visual cortex) for HbO, HbR, or
HbDiff [p > .085 across all cases] when comparing events with and without vi-
bration. Pooled data across all children revealed no vibration effect on brain ac-
tivation in any ROI, [p >.202], except that there was a significant difference in HbR
in the visual cortex [t (74) = —2.1, p = .044]. This means that there was a more
pronounced deactivation of the visual cortex when the joystick vibrated than when
it did not (Figure 7).

Discussion

Along with other reports on the same pediatric population (Deroche et al., 2023;
Koirala et al., 2023; Wolfe et al., 2021), we explored motor cortex activity and its
association with visual and auditory networks in children with CIs. We found an
increase in HbO and a decrease in HbR in the motor cortex of all participants,
irrespective of their hearing and language status. Meanwhile the visual cortex was
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Figure 7. Same as Figure 4 in motor and somatosensory cortex but split by the two conditions
where the joystick vibrated or not, as the child squeezed on the back triggers.

Note. Cl & LL: Cochlear implant and low language, Cl & TL: Cochlear implant and typical Language, TH:
Typical hearing, HbO: Oxygenated hemoglobin, HbR: Deoxygenated hemoglobin.

strongly deactivated, with this finding more prominent among those CI users who
had typical language than CI users who with low language profile; the pattern seen
in CI users who had typical language was similar to children with TH. Thus, in
addition to motor task activation of the motor cortex, a deactivation of supposedly
irrelevant brain regions was detectable by fNIRS in children with better language
functions.

No Differential Activity in the Motor Cortex, but Better Disengagement of the
Visual Cortex

Recent investigators (Chen et al., 2017; Fullerton et al., 2023; Paul et al., 2022) have
questioned the classical view (Lee et al., 2001) that cross-modal plasticity negatively affects
speech performances of participants with CI. Cortical reorganization following CI may not
always prevent the auditory cortex from responding to auditory stimuli (Land et al., 2016).
Quite to the contrary, some individuals with CI may integrate multisensory information
very effectively (Rouger et al., 2007) and cross-modal plasticity may strengthen their
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communication skills, especially those children who are familiar with sign language (see
Beckers et al., 2023 for a comprehensive review on adult CI users). This is an unsettled on-
going debate with many ramifications (Anderson et al., 2017b; Stropahl et al., 2016).

Perhaps closer to findings in this study, Chen et al. (2017) recruited 40 adult CI users
and controls and separately measured fNIRS for circular checkerboard patterns as
visual stimuli, and for words, reverse words, and tones as auditory stimuli. They found
that intramodal connectivity within visual and within auditory areas was weaker in
adult CI users than in their matched TH peers. In contrast, cross-modal connectivity
between visual and auditory areas was stronger for these CI users, and this was
beneficial to their speech recognition scores. They concluded that this strong cross-
modal connectivity, which happened irrespective of the stimulus modality, was a result
of concurrent processing of auditory and visual stimuli in both brain areas.

In a similar fashion, albeit with some methodological differences in experimental design
and stimuli, Fullerton et al. (2023) used fNIRS to explore functional connectivity and cross-
modal brain activation between visual and auditory cortices in fourteen post-lingual adult
CI users. They tested these participants with speech and non-speech auditory stimuli and
examined task-related differences in the evoked-related brain activity in auditory and visual
cortices. Coordinated activity within the speech network was observed from both auditory
and visual cortices; so, the authors concluded that such multimodal processing must be
beneficial to the listening skills of CI users.

Anderson et al. (2017a) used fNIRS to examine changes between auditory and
visual cortices in participants with CI, focusing on brain activations in some specific
regions prior to and within six months of the implantation. Remarkably, they found
that change patterns in brain activation were related to more successful speech
understanding in ClIs. Auditory cortex activation with visual stimuli was associated
with adaptive benefits for these participants, as it seemed to promote auditory re-
covery after CI. While this claim was advanced for adult recipients, Mushtaq et al.
(2020) applied this strategy to children with CI who mostly (16 out of 19) tested well
on a phonetic perception task. While they found no difference in CI users relative to
TH controls in processing auditory stimuli, the two groups differed in their ability to
process visual speech stimuli such that children with CI then exhibited greater STG
activity than TH controls. These authors concluded that cross-modal plasticity for
processing auditory and visual speech stimuli is a synergistic process; they rejected
the idea that visual language stimuli prevent the auditory cortex from responding to
oral language.

From this multimodal perspective, we reasoned in this study that the motor
cortex could also play a strong role for communication (and not just speech
production) in daily life, especially for young children who are still amidst mul-
tifaceted development (Glennon et al., 2020). We hypothesized that in response to
holding and squeezing a joystick, participants with CI would show weakened
auditory-motor connectivity than TH controls (similar to findings in children with
early-onset hearing loss without CI - Shi et al., 2016). However, this hypothesis was
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not supported. Our CI participants’ superior temporal cortices were simply not
engaged (or disengaged) in this task. Presumably, such an association might exist in
other tasks more closely related to speech (e.g., vocal production, tapping to an
auditory beat, or perhaps writing). We also found mixed evidence for our hypothesis
of stronger visual-motor connectivity in these participants than in TH controls.
Indeed, the visual cortex of CI users was largely deactivated in an inverse rela-
tionship to motor cortex activity, particularly for CI users who had typical language
functioning (CI with TL group). Thus, at least some children with CI (similar to
children with early-onset hearing loss without CI in Shi et al., 2016) exhibited
strong visual-motor coupling. The surprising aspect of this finding was that our CI
with LL group did not exhibit as much visual deactivation as our CI with TL group
(and yet they had a longer period of auditory deprivation). Exactly why this inverse
coupling was not achieved by children in the CI with LL group remains unclear.
Being able to visualize these cortical changes prior to (i.e., induced by the dep-
rivation) and after implantation (i.e., induced by the restoration of auditory
stimulation) would greatly help in this interpretation.

In the somatosensory cortex, there were no changes in HbO, but there was a
modest HbR increase across all our participants. In other words, the somatosensory
cortex tended to be deactivated irrespective of hearing or language skills status.
These task-induced deactivations have been previously observed in studies using
positron emission tomography scan (PET) (Haxby et al., 1994; Kawashima et al.,
1995; Sadato et al., 1996; Shulman et al., 1997) and fMRI (Jancke et al., 2000; Jorge
et al., 2018; Morita et al., 2019, 2021; Newton et al., 2005; Shulman et al., 2007;
Weisser et al., 2005) but their interpretation remains elusive. Yet, our findings warn
that deactivation of brain ROIs may hold more predictive power than using specific
tasks to direct sensory stimuli toward an expected brain ROI (here motor tasks
directed toward the motor cortex). This finding generally calls for more fNIRS
studies recording the activity of the whole brain rather than specific ROIs, even for
seemingly low-level tasks.

The Meaning of Brain Region Activation or Deactivation

The exact mechanisms behind deactivation of brain regions, known as a negative BOLD
response, are unclear (Hayes & Huxtable, 2012; He et al., 2022). To date, several
mechanisms have been proposed. One is that deactivation acts as a filter (i.e., neuronal
suppression) for behavioural relevance of a brain region to a specific task. When target
objects in the task require shifts of attention, behavioural relevance is increased. Thus,
deactivation widely occurs through many parts of sensory cortices and prevents attention
shifts toward irrelevant cues, thereby enhancing target detection to maintain optimal
performance). Considering, for example, the motor task used in this study, the visual and
perhaps somatosensory cortices may have been deactivated to minimize brain processing of
unimportant visual cues (or somatosensory joystick vibrations) to redirect cognitive
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resources toward the required motor activity. Notably, in a task that involves such targets,
there is a direct relationship between the amount of deactivation and the performance such
that the greater the deactivation of non-relevant cortical regions, the better the target
detection (Shulman et al., 2007). In the current study, we could not observe this link
because our motor task was devoid of any goal-related behaviour (e.g., earning points by
squeezing more strongly or at a particular time). Yet, we still found a link between de-
activation and the longer-term purpose of language development (as measured by the
CELF), leading to speculation that the deactivation we observed in the visual cortex reflects
a filtering process whose purpose was to better allocate cognitive resources.

Ecological Impact

Auditory-motor and visual-motor networks are often coupled in daily activities such as
listening to music and dancing, helping us extract fundamental aspects of music, like
rhythm and possibly aspects of melody. Coupling between auditory and motor modalities
enhances attention, memory formation, and retrieval, as this multimodal learning has been
shown to strengthen cognitive reserve, creating alternate neural pathways (Brown &
Palmer, 2012; Mitterova et al., 2021). Although individuals with CI have difficulties
decoding spectro-temporal cues to perceive melody (Jiam & Limb, 2020), they can still
exploit CI technology to move to a beat (Phillips-Silver et al., 2015). Most relevant to this
research, when children with CI listen and dance to music, active engagement of movement
to auditory stimuli enhances learning and memory, as seen by improved song identification
when moving, as compared to passive listening (Vongpaisal et al., 2016). Moreover,
children with CIs were able to synchronize their body movements to the temporal pattern of
music, generally a means of heightening pleasure with music (Janata et al., 2012; Matthews
et al., 2020). Such observations highlight the importance of multimodal sensory networks
other than those associated with speech (e.g., Kim & Zatorre, 2010). In audiology, we often
take speech perception or production as a benchmark for evaluating CI outcomes, but there
are many other human activities that require good auditory-motor and visual-motor
coupling. Our study is another step towards better understanding innovative ways that
patients with CI leverage multimodal integration.

Limitations and Directions for Further Study

We relied in this study on the assumption that fNIRS measurements could reliably
reflect activation of the four brain ROIs we investigated, as confirmed recently by
Lawrence et al. (2021). However, there are some common concerns about this as-
sumption. First, fNIRS is arguably a newer and less reliable technique than fMRI.
Perhaps as many as one third of the children we studied displayed little activity in either
HbO or HbR (Figure 5), which has also occurred in other studies, leading investigators
to have sometimes used an irrelevant task to first ensure that a BOLD-like response is
measurable in a given participant (Cui et al., 2011; Sato et al., 2013). But this approach
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is less than ideal when examining special populations for which there are few par-
ticipants. Investigators should pursue further developments in fNIRS technology to
make it less dependent on skin pigmentation or melanin levels (Couch et al., 2015;
Matas et al., 2002; Wassenaar & Van den Brand, 2005) and more reliable on an in-
dividual basis. Second, the “banana shaped photon path” of fNIRS limits its application
to cortical regions that are relatively close to the scalp, narrowing the types of research
questions that can be addressed with fNIRS (Harrison et al., 2021; Pinti et al., 2020).
We easily captured activation/deactivation in the motor, somatosensory, and visual
cortices, but one might question whether fNIRS could record activity from the primary
auditory cortex (A1) located deep in the sylvian fissure. Our current view is that brain
activation changes that occur in response to sensory deprivation have often involved
broader structures (e.g., auditory association areas in visual tasks), making it likely that
activity from the whole auditory cortex (but probably not Al exclusively) may be
captured by fNIRS (see reviews by Harrison & Hartley, 2019; Saliba et al., 2016).
Third, one might question whether our motor task was too simplistic to observe
anything useful. Squeezing the triggers of a joystick with both hands should generate
activity in the motor cortex, and had there been group differences in that region, we
should have detected them with this task. However, the fact that the task had little to do
with speech or auditory-motor synchronization may be why there were no significant
informative changes in STG activation between groups. We recommend replicating this
work with a motor task that is more closely linked to language-related functions.
Finally, a strength of fNIRS (e.g., over fMRI) is its ability to deal with motion artifacts
(depending on the equipment/system) such as head and jaw movements resulting from
speaking or singing. Such tasks would have enormous rehabilitation potential, opening
new neuroimaging questions previously impossible to address in this population such
as using altered feedback designs (Alemi et al., 2020, 2021) to explore the extent to
which children with CI can correct for errors they detect in their vocal productions.

Conclusion

Severe hearing loss, especially early in life, is known to weaken auditory-motor
coupling and reinforce visual-motor coupling. In the present study, we showed that
hearing loss in children with ClIs with good language skills was associated with
stronger visual-motor coupling than was the case for children with CIs who had
weaker language aptitudes. We suggest that this finding hints at a general adaptive
strategy to allocate as few cognitive resources as possible to the task at hand,
sparing attentional systems from irrelevant visual information. This interpretation is
in line with what “Resource-rational Models” suggest when making realistic as-
sumptions about the behaviour of the brain in cognitive tasks (Lieder & Griffiths,
2020).



92

Perceptual and Motor Skills 131(1)

Appendix

Table I-A. Demographic Information for the Cochlear Implant Users in the Low Language

Group.

cl Age at First HA Age at First CI Sound Processor

Subject Side  Age (y) (mo) (mo) CELF R/L

1A SeqBil 154 19 26 58 Nuc CP1000/
CP1000

2A SeqBil 113 2 I5 75 Nuc CP1000/
CP1000

3A SeqBil 16.0 24 48 84 Nuc Freedom/
CP9I10

4A SeqBil 109 24 26 76 Nuc CP910/CP910

5A SeqBil 16.7 24 48 58 Nuc CP1000/
CP1000

6A SeqBil 16.7 24 48 6l Nuc CP1000/
CP1000

7A SeqBil 17.0 29 33 52 Nuc CP1000/
CP9I10

8A SeqBil 17.5 29 50 50 Nuc CP1000/
CP1000

9A Left 8.7 10 13 73 NA/Nuc CP1000

10A SeqBil  14.1 19 22 45 Nuc CP1000/
CP1000

A SeqBil 159 12 14 77 Nuc CP910/CP910

12A Right 1.6 31 39 57 Nuc CP950/NA

I3A SeqBil 17.1 17 21 75 Nuc CP1000/Naida

Q%0

14A SeqBil 147 8 20 6l Nuc CP910/CP910

I5A SeqBil 129 19 24 85 Nuc CP1000/
CP1000

16A SeqBil 13.5 2 13 57 Nuc CP1000/
CP1000

I7A SeqBil 122 13 16 76 Nuc CP1000/
CP1000

I8A SeqBil 9.8 22 26 40 Nuc CP1000/
CP1000

19A SeqBil 13.0 33 40 67 Nuc CP1000/
CP1000

20A SeqBil 132 2 I5 45 Nuc CP910/CP910

21A SeqBil 16.6 I 32 62 Nuc CP1000/CP

1000

(continued)
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Table I-A. (continued)

Cl Age at First HA Age at First Cl Sound Processor
Subject Side  Age (y) (mo) (mo) CELF R/L
22A SeqBil  14.1 24 24 70 NaidaQ70/
NaidaQ70
23A Right  10.1 21 33 62 Nuc CP910/NA

Abbreviations: Bil, bilateral; CELF, Clinical Evaluation of Language Fundamentals- Fifth edition standard score;
Cl, cochlear implant; HA, hearing aid; L, left ear; Nuc, Nucleus; R, right ear; Seq, sequential.

Table 2-A. Demographic Information for the Cochlear Implant Users in the Typical Language
Group.

cl Age at First HA Age at First Cl Sound Processor

Subject Side Age (y) (mo) (mo) CELF R/L

IB Seq 134 12 25 108 Nuc CP1000/
Bil CP1000

2B Seq 14.8 3 13 100 Nuc CP910/CP910
Bil

3B Sim 10.3 9 17 100 Nuc CP950/CP950
Bil

4B Seq 10.0 1.5 32 100 Nuc CP910/CP910
Bil

5B Seq 12.5 16 40 116  Nuc CP910/CP800
Bil

6B Seq 13.1 13 17 120 Sonnet 2/Sonnet 2
Bil

7B Seq 7.50 | 13 11 Nuc CP910/CP910
Bil

8B Seq 8.00 4 41 133 Nuc CP910/CP910
Bil

9B Seq 9.60 26 30 107 Nuc CP1000/
Bil CP1000

10B Seq 8.70 | 14 120 Nuc CP1000/
Bil CP1000

1B Sim 12.5 I5 28 103 Naida Q70/Naida
Bil Q70

2B Seq 7.50 | 12 1 Nuc CP1000/
Bil CP1000

13B Seq 9.60 16 20 117 Nuc CP910/CP910
Bil

14B Seq 8.30 28 30 100 Nuc CP910/CP910
Bil

(continued)
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Table 2-A. (continued)

Cl Age at First HA Age at First Cl Sound Processor

Subject Side  Age (y) (mo) (mo) CELF R/L

I15B Sim 12.5 | 10 102 Nuc CP1000/
Bil CP1000

16B Seq 9.30 3 10 120 Nuc CP1000/
Bil CP1000

17B Seq 14.5 3 10 108 Nuc CP1000/
Bil CP1000

18B Seq 1.2 3 13 100 Nuc CP910/CP910
Bil

198 Seq 153 2 35 106  Nuc CP910/CP910
Bil

20B Sim 10.4 2 14 11 Nuc CP910/CP910
Bil

21B Seq 14.3 1.5 13 120 Nuc CP950/CP950
Bil

22B Seq 16.0 2 12 132 NaidaQ70/
Bil NaidaQ70

23B Seq 16.9 | 22 100 Nuc CP1000/
Bil CP1000

24B Seq 14.0 10 34 106  Nuc CP910/CP910
Bil

25B Sim 8.00 75 9 109 Nuc CP1000/
Bil CP1000

26B Sim 1.2 12 I5 11 Nuc CP910/CP910
Bil

Mean 1.5 72 203 110.4

(SD) (2.8) (7.9) (1o.1) (9.5)

Abbreviations: Bil, bilateral; CELF, Clinical Evaluation of Language Fundamentals - Fifth edition standard score;
Cl, cochlear implant; HA, hearing aid; L, left ear; Nuc, Nucleus; R, right ear; Seq, sequential; Sim, simultaneous.
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