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ABSTRACT Inflammation has a pronounced impact on the intestinal ecosystem by 
driving an expansion of facultative anaerobic bacteria at the cost of obligate anae­
robic microbiota. This pathogen “blooming” is also a hallmark of enteric Salmonella 
enterica serovar Typhimurium (S. Tm) infection. Here, we analyzed the contribution of 
bacterial and host factors to S. Tm “blooming” in a gnotobiotic mouse model for S. 
Tm-induced enterocolitis. Mice colonized with the Oligo-Mouse-Microbiota (OMM12), a 
minimal bacterial community, develop fulminant colitis by day 4 after oral infection 
with wild-type S. Tm but not with an avirulent mutant. Inflammation leads to a pro­
nounced reduction in overall intestinal bacterial loads, distinct microbial community 
shifts, and pathogen blooming (relative abundance >50%). S. Tm mutants attenuated 
in inducing gut inflammation generally elicit less pronounced microbiota shifts and 
reduction in total bacterial loads. In contrast, S. Tm mutants in nitrate respiration, 
salmochelin production, and ethanolamine utilization induced strong inflammation and 
S. Tm “blooming.” Therefore, individual Salmonella-specific inflammation-fitness factors 
seem to be of minor importance for competition against this minimal microbiota in the 
inflamed gut. Finally, we show that antibody-mediated neutrophil depletion normalized 
gut microbiota loads but not intestinal inflammation or microbiota shifts. This suggests 
that neutrophils equally reduce pathogen and commensal bacterial loads in the inflamed 
gut.
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S almonella enterica serovar Typhimurium (S. Tm) is a frequent cause of Salmonello­
sis in humans with millions of infections worldwide (1). The infection is usually 

self-limiting; however, in very young, old, or immunocompromised patients, S. Tm can 
induce life-threatening systemic disease with several thousands of deaths per year (2). 
The intestinal microbiota efficiently lowers the risk of infection by mediating colonization 
resistance (CR). When CR is reduced such as upon antibiotic therapy (3), a high-fat meal 
(4), or an infant or low-complex microbiota (5), S. Tm can invade the gut ecosystem and 
cause disease. In mice, the infection proceeds in several phases (6): First, S. Tm expands 
to high numbers in the gut by consuming hydrogen (7), diet- and microbiota-liberated 
mucosal carbohydrates (8, 9), oxygen (10), anaerobic electron acceptors, and fumarate 
(11, 12). Only after reaching a certain density (>105 CFU/g), S. Tm invades the gut mucosa 
at sufficient numbers and triggers intestinal inflammation (13, 14).

Gut inflammation dramatically alters the intestinal environment, leading to drastic 
changes in microbial community composition and favoring the S. Tm overgrowth 
(Salmonella “blooming”) over obligate anaerobic commensal bacteria (15, 16). Evidently, 
Salmonella “blooming” is caused by two contrasting effects of inflammation (17, 18): (i) 
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selective fostering of pathogen growth by nutritional changes and (ii) differential killing 
of the mostly anaerobic commensal microbiota by innate immune defense mechanisms 
against which Salmonella is more resistant. In this study, we analyzed the contribution of 
both bacterial and host factors to Salmonella “blooming” in a gnotobiotic mouse model 
for S. Tm-induced enterocolitis.

An increase in the concentration of luminal oxygen levels, as well as anaerobic 
electron acceptors generated by the inflamed mucosa (10, 19), favors S. Tm growth over 
exclusively fermenting anaerobes (11, 20). This enables the pathogen to consume host-, 
diet-, and microbiota-derived metabolites, including mucin-derived sugars, ethanola­
mine, 1,2-propanediol, fructose-asparagine, succinate, and lactate (21–26), and gain a 
competitive advantage over competing commensals. The production of the siderophore 
salmochelin, a glycosylated variant of enterochelin that is not bound by the antimicrobial 
protein lipocalin 2 (LCN-2), also boosts S. Tm in the inflamed gut (27). On the other hand, 
acute S. Tm inflammation also exerts significant “collateral damage” to the beneficial 
microbiota (28). The microbiota is inhibited by antimicrobial molecules (27, 29) and bile 
salts (30), against which Salmonella exhibits a higher degree of resistance.

Moreover, neutrophils that are a hallmark of acute Salmonella-induced inflammation 
(31, 32) infiltrate the mucosa where they effectively reduce pathogen tissue loads by 
an NADPH-oxidase-mediated defense (13, 33). Transmigrated live neutrophils, which 
engulf luminal S. Tm, are present in the gut lumen early after infection (34). Neutrophils 
also form intraluminal structures (“casts” or pseudomembranes), which encapsulate 
commensals and thus prevent their epithelial contact and translocation (35). In S. Tm 
infection, luminal neutrophils impose a drastic bottleneck upon the pathogen popula­
tion (36) and are likely to also kill commensals. In particular, the neutrophil effector 
molecules LCN-2, calprotectin, and elastase have been associated with microbiota 
alterations in response to pathogen-induced inflammation in mice (37, 38).

Overall, selective nutritional use and differential killing sustain long-term S. Tm 
“blooming” and the establishment of a “supershedder” state, that is, individuals that 
show high pathogen loads in stool (39). However, the relative importance of these 
contributing effects to S. Tm “blooming” remains elusive as previous studies focused 
on individual mechanisms and used different experimental protocols and S. Tm strains. 
Moreover, it is challenging to disentangle inflammation- and antibiotic-induced changes 
in the microbiome in models that rely on antibiotic pretreatment. To overcome this 
limitation, we analyzed the course of S. Tm-induced inflammation in a gnotobiotic 
infection model that does not rely on antibiotic pretreatment. Mice stably colonized with 
the Oligo-Mouse-Microbiota (OMM12; 12 mouse-derived commensals) exhibit partial 
colonization resistance and develop S. Tm gut inflammation after oral infection (40). 
Members of the OMM12 are well studied with regard to their ecology and metabolic 
potential and can also be studied in in vitro community culture models (41, 42). 
Moreover, metabolic and immune phenotypes of OMM12 mice have been extensively 
characterized in comparison to germ-free and specific pathogen free (SPF) mice (43, 
44). Therefore, this model is widely used and steadily gaining ground in research of 
colonization resistance against pathogens (4, 9, 45) or the functional study of other 
members of the gut microbial community, including bacteria, phages, and fungi (46–49). 
Here, we provide a detailed characterization of enteric S. Tm infection and its effect on 
the gut microbial community in the OMM12 model. We study the course of infection of 
different S. Tm mutants and assess their ability to cause inflammation-induced S. Tm 
“blooming.” Finally, we employ a neutrophil depletion protocol to address the role of 
neutrophils in S. Tm “blooming,” luminal bacterial killing, and microbiota alterations.

RESULTS

Course of oral S. Tm infection in OMM12 mice

Mice stably colonized with the OMM12 community (OMM12 mice) were infected 
intragastrically with 5 × 107 CFUs of either wild-type S. Tm (S. TmWT) or an avirulent S. Tm 
mutant (S. Tmavir; ΔinvG; sseD::aphT) lacking functional Salmonella pathogenicity island 
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(SPI)-1- and SPI-2-encoded type III secretion systems (T3SS). At days 1–4 post infection 
(p.i.), groups of mice were sacrificed, and intestinal and organ samples were taken for 
analyses (Fig. 1A). Cecum loads of both S. Tm strains increased steadily from day 1 to day 
4 p.i. No difference was observed between S. Tmavir and S. TmWT loads at all tested days 
(P > 0.05, Kruskal–Wallis test with Dunn’s multiple comparison test; Fig. 1B). Compared to 
S. Tmavir, S. TmWT loads were higher at day 4 p.i. in the mesenteric lymph nodes (mLNs; P 
< 0.01, Fig. 1C). No significant difference could be detected in the spleen (P > 0.05; Fig. 
1E). Starting at day 3 p.i., S. TmWT caused strong gut inflammation as determined by vastly 
increased cecal LCN-2 levels (Fig. 1F) and cecal histopathology (Fig. 1G). Mice infected 
with avirulent S. Tm did not exhibit overt pathological changes in the cecum or increased 
LCN-2 (Fig. 1F and G).

S. Tm WT infection leads to pathogen blooming, a decrease in gut luminal 
bacterial load, and community shifts

Next, we determined the OMM12 community composition including S. Tm loads in cecum 
content (Fig. 2; Fig. S1) and feces (Fig. S2) by strain-specific quantitative PCR (qPCR). 
Calculations of relative abundance revealed that S. TmWT dominated (rel. abun­
dance >50%) the bacterial community in feces and cecum content by day 4 p.i. (Fig. 2A 
through C; Fig. S2A through C), coinciding with developing gut inflammation (Fig. 1F and 
G). In contrast, no significant increase in relative abundance over time was observed for 
S. Tmavir (Fig. 2A through C; Fig. S2A through C). ADONIS permutational multivariate 
analysis of variance (PERMANOVA) analysis on the Bray–Curtis distance metric revealed 
significant differences of microbial community composition by day and between S. TmWT- 
and S. Tmavir-infected mice in feces and cecal content (Fig. 2AB; Fig. S2A and B; Tables S1 
and S2). Strikingly, S. TmWT infection and resulting inflammation led to a drastic decrease 
in total gut bacterial loads determined by 16S rRNA copies (Fig. 2D; Fig. S2D). This was 
the case for the majority of OMM12 strains but Enterococcus faecalis KB1 (Fig. S1).

We also infected OMM12 mice with S. Tm mutants in either the SPI-1 (S. TmΔSPI-1)- or the 
SPI-2 (S.TmΔSPI-2)-encoded T3SS for 4 days. We compared S. Tm loads and microbiota 
composition to S. TmWT and S. Tmavir data shown in Fig. 1. S. TmΔSPI-1 and S. TmΔSPI-2 

colonized the intestine at largely similar levels (Fig. S3A). Interestingly, systemic S. Tm 
loads were similar between the mutants (Fig. S4A through C). S. TmΔSPI-2 (triggering gut 
inflammation via the SPI-1 T3SS) induced more cecal pathology and higher S. Tm 
abundance compared to the SPI-1-deficient mutant although this difference was not 
statistically significant (Fig. S3B and C). Microbiota composition in the cecum content 
was significantly different between all groups, as determined by ADONIS PERMANOVA 
analysis on the Bray–Curtis distance metric (Fig. S3E; Table S3). Blooms were only evident 
in S.TmΔSPI-2- and S. TmWT-infected mice (Fig. S3F). The total bacterial load in S.T mΔSPI-1- and 
S. TmΔSPI-2-infected mice was altered when compared to S. Tmavir but not significantly 
changed when compared to the S. TmWT-infected group (Fig. S3G). This applied also for 
most of the individual OMM12 strains (Fig S4D through O). Taken together, S. TmWT 

induced strong gut inflammation in OMM12 mice, beginning at day 3 p.i. and depending 
on the activity of both Salmonella T3SS. Severe inflammation at day 4 p.i. was paralleled 
with S. TmWT blooming, drastic reduction of total gut luminal bacterial loads, and overall 
changes in microbiota composition.

Anaerobic respiration and ethanolamine utilization fuel S. Tm blooms and 
dysbiosis

To analyze the relevance of anaerobic and aerobic respiration for S. Tm blooming, we 
generated S. Tm mutants deficient in nitrate respiration (S. TmNi.; ΔnarZ; narG::cat; 
napA::aphT) and in nitrate and tetrathionate respiration (S. TmNi. + Te.; ΔnarZ; narG::cat; 
napA::aphT; ttrS::tet). Moreover, to probe the role of siderophore-mediated iron acquisi­
tion and ethanolamine utilization, we generated S. Tm entA::cat (S. TmEntA) and eutC::aphT 
mutant (S. TmEA) strains. In addition, we created an S. Tm cyxA mutant, attenuated in 
aerobic respiration by the deletion of the cytochrome bd-II oxidase gene (S. Tmcyx; ΔcyxA).
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FIG 1 Course of enteric S. Tm infection and systemic dissemination. (A) Experimental scheme. OMM12 mice were orally infected with either S. Tmavir or S. TmWT. 

Mice were sacrificed at days 1, 2, 3, and 4 p.i. (infection with S. Tmavir: day 1 p.i. n = 5, day 2 p.i. n = 5, day 3 p.i. n = 6, and day 4 p.i. n = 6; infection with S. TmWT: 

day 1 p.i. n = 5, day 2 p.i. n = 5, day 3 p.i. n = 7, and day 4 p.i. n = 7). S. Tm loads in (B) cecal content, (C) mLNs, (D) liver, and (E) spleen were determined by plating. 

(Continued on next page)
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We infected groups of OMM12 mice with 5 × 107 CFUs of the mutant strains or S. TmWT. 
Fecal samples were collected on different days after infection in order to monitor the 
course of intestinal S. Tm colonization. Mice were sacrificed at day 4 p.i., cecal content 
was harvested for microbiota analysis, inflammation was quantified, and systemic 
Salmonella loads were determined (Fig. 3). S. Tm strains colonized the gut of OMM12 mice 
equally well (Fig. 3A). Only S. TmEA showed significantly reduced loads at day 3 p.i. 
compared to S. TmWT (P < 0.01, Kruskal–Wallis test with Dunn’s multiple comparison test; 
Fig. 3A). There was no difference in systemic Salmonella loads at day 4 p.i. between 
groups (Fig. S5). S. TmWT, S. TmEA, and S. TmEntA induced profound colitis by day 4 p.i., while 
S. TmNi. + Te induced significantly less colitis symptoms (P < 0.001, Fig. 3B). For S. Tmcyx, no 
significant differences could be detected in pathogen loads in intestine or organs in 
comparison to S. TmWT (Fig. S6). PERMANOVA analysis with ADONIS on the Bray–Curtis 
distance metric revealed significant differences between the cecal community structures 
of S. TmNi. + Te and S. TmWT or S. TmEntA-infected mice (Fig. 3D; Table S4) and abundance of 
most OMM12 bacteria was increased in S. TmNi. + Te-infected mice (Fig. S7). For S. Tmcyx, no 
significant difference was found with respect to microbiota composition in comparison 
to S. TmWT (Fig. S6 and S7; Table S5). S. TmNi. + Te mutant did not establish “blooms,” while 
relative abundances of the other S. Tm mutants were similar to S. TmWT (Fig. 3E), and total 
bacterial loads were increased in mice infected with S. TmNi. + Te compared to S. TmWT-
infected mice (Fig. 3F).

Neutrophils reduce overall luminal bacterial loads but do not promote 
Salmonella “blooms”

Next, we set out to test the hypothesis that neutrophils are the cause of decreased 
luminal bacterial loads in S. TmWT-infected OMM12 mice at day 4 p.i. Therefore, we 
employed a neutrophil depletion protocol using α-Ly6G and α-G-CSF antibodies or 
isotype control antibodies in OMM12 mice that were additionally infected with S. TmWT 

(Fig. 4A). Antibody-mediated depletion was confirmed by fluorescence activated cell 
sorting (FACS) analysis of blood samples gating on CD45+, SYTOX-, CD3-, CD11b+, Ly-6G+, 
and Ly-6Cintermediate cells and by quantifying neutrophil-elastase in cecal content (Fig. 4B). 
Only mice with confirmed neutrophil depletion (<4% Ly6G+/CD45+ cells) were included 
in the analysis.

Some neutrophil-depleted mice developed severe infection and had to be euthan­
ized at day 2 or 3 p.i. (indicated with gray and black arrows). Cecal S. TmWT loads were 
similar in both groups of mice at days 1–3 p.i. but significantly higher in neutrophil-
depleted mice at day 4 p.i. (Fig. 4C). At the point of sacrifice, all mice developed pro­
nounced gut inflammation as determined by LCN-2 levels (Fig. 4D). Systemic loads of S. 
TmWT were higher in the mLN, spleen, and liver of neutrophil-depleted mice (Fig. S8A 
through C).

There was no apparent difference in the overall cecal microbiota composition 
between the groups at day 4 p.i. (Fig. 4E and F; Table S6). Moreover, no difference in rel. S. 
TmWT abundance was observed between the groups (Fig. 4G). However, a lower overall 
amount of total gut luminal bacteria was observed in the isotype group (Fig. 4H 
copies/mg content isotype vs depleted P < 0.001, Mann–Whitney U test), indicating that 
neutrophils are causal for inflammation-associated reduction of gut luminal bacterial 
loads in S. Tm-infected OMM12 mice. Reduction was most pronounced for Bacteroides 
caecimuris I48, Muribaculum intestinale YL27, Akkermansia muciniphila YL44, Turicimonas 

FIG 1 (Continued)

(F) LCN-2 amount in cecal content d4 was determined by enzyme-linked immunosorbent assay (ELISA). (G) Histopathological analysis of cecal tissue. Cecal tissue 

sections of the mice were stained with hematoxylin/eosin to determine the degree of submucosal edema, neutrophil infiltration, and epithelial damage (1–3: no 

pathological changes; 4–6: moderate inflammation; and above 7: severe inflammation). Statistical analysis was performed using Kruskal–Wallis test with Dunn’s 

multiple comparison test (*P < 0.05, **P < 0.01, and ***P < 0.001). Each dot represents one mouse, black lines indicate median, and gray lines indicate detection 

limit (DTL).
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muris YL45, Blautia coccoides YL58, Flavonifractor plautii YL31, and Enterocloster clostridio­
formis YL32—other bacteria were less affected (Fig. S8D through O).

FIG 2 S. TmWT causes pronounced shifts in microbiota composition at day 4 p.i. in OMM12 mice. (A) Analysis of microbiota composition in cecal content. 

Microbiota composition was determined by strain-specific qPCR assay and is shown as relative abundances of the individual strains (% of cumulated 16S rRNA 

gene copy numbers). (B) Principal coordinates analysis (PCoA) based on the distance matrix of Bray–Curtis dissimilarity of relative OMM12 abundance profiles 

shows the effect of time after infection. Points are colored by time (days) after infection. (C) Relative abundance of S. Tm in cecal contents at different time points. 

(D) Absolute amount of 16S rRNA gene copies (determined by a universal primer/probe combination). Statistical analysis was performed using Kruskal–Wallis 

test with Dunn’s multiple comparison test (*P<0.05, **P < 0.01, and ***P < 0.001). Each dot represents one mouse, black lines indicate median, and gray lines 

indicate DTL.
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FIG 3 Course of infection of S. Tm mutants in anaerobic respiration, salmochelin production, and ethanolamine utilization in OMM12 mice. OMM12 mice were 

orally infected with different S. Tm mutant strains: S. TmNi. (n = 6), S. TmNi. + Te. (n = 6), S. TmEntA (n = 7), S. TmEA (n = 6), or S. TmWT (n = 8). Mice were sacrificed 

at day 4 p.i. (A) S. Tm loads in feces and cecal content at days 1, 3, and 4 p.i. were determined by plating. (B) Histopathological analysis of cecal tissue at day 

4 p.i. Cecal tissue sections of the mice were stained with hematoxylin/eosin to determine the degree of submucosal edema, neutrophil infiltration, and epithelial 

damage (1–3: no pathological changes; 4–6: moderate inflammation; and above 7: severe inflammation). (C) Analysis of microbiota composition in cecal content. 

Microbiota composition was determined by strain-specific qPCR assay and is shown as relative abundances of the individual strains (% of cumulated 16S rRNA 

gene copy numbers). (D) PCoA based on the distance matrix of Bray–Curtis dissimilarity of relative OMM12 abundance profiles shows the effect of the different 

S. Tm mutant strains. Points are colored by time (days) after infection. (E) Relative abundance of S. Tm and (F) absolute amount of 16S rRNA gene copies 

(determined by a universal primer/probe combination) in cecal contents 4 days p.i. Statistical analysis was performed using Kruskal–Wallis test with Dunn’s 

multiple comparison test (*P < 0.05, **P < 0.01, and ***P < 0.001). Each dot represents one mouse, black lines indicate median, and gray lines indicate DTL.
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FIG 4 Neutrophils reduce the total gut luminal bacterial loads but are dispensable for the induction of Salmonella “blooms” and dysbiosis. (A) Experimental 

scheme. OMM12 were treated with one dose of α-Ly6G antibody or isotype control 1 day before infection with S. TmWT. In addition, α-G-CSF antibody or isotype 

control was daily administered starting from day −1 until day 3 p.i. All antibodies were given via the intraperitoneal route. (B) Monitoring of neutrophil depletion

(Continued on next page)
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DISCUSSION

Together, the host and its intestinal symbionts establish microbiota-nourishing immunity 
that forms an efficient barrier against S. Tm infection (50). Epithelial hypoxia, short-chain 
fatty acid production, and depletion of growth substrates are cornerstones of this barrier. 
Using its virulence factors, S. Tm can overcome colonization resistance, trigger inflam-
mation, and alter the gut luminal environment to benefit from it—at the expense of 
intestinal commensal bacteria. Inflammation-driven pathogen “blooming” has a major 
impact on S. Tm dissemination and evolution (51). Overgrowth of related Enterobacteria­
ceae promotes the exchange of conjugative plasmids (52) and phages (53). This increases 
the chance of spreading antibiotic resistances and fosters evolution of highly virulent 
strains (54), emphasizing the broad implications of S. Tm adaptation of the inflammatory 
milieu in the mammalian gut. Here, we analyze the extent to which S. Tm-induced 
intestinal inflammation, virulence, and gut luminal neutrophils contribute to alterations 
in the gut microbiota loads and community profiles in OMM12 mice, a widely used 
infection model (4, 9, 55) based on a well-characterized minimal bacterial community 
(56).

Due to the partial colonization resistance phenotype of OMM12 mice, wild-type S. Tm 
induced severe gut inflammation within 4 days after oral infection without antibiotic 
pretreatment. Mice were characterized by an overall reduction of luminal bacterial loads 
and S. Tm blooming (i.e., S. Tm being the dominant species). This overgrowth was 
not observed with an avirulent mutant (ΔinvG ΔssaV; S. Tmavir), which can colonize the 
gut but is defective in inducing inflammation. This confirms the results from previous 
studies in the streptomycin-treated mouse colitis model and highlights the pronounced 
negative impact of intestinal inflammation on the majority of intestinal commensals 
while fostering pathogen overgrowth (15).

Comparing the course of infection in S. Tm TTSS mutants, we found that S. TmΔSPI-1 

was more strongly attenuated in inducing gut inflammation than S. TmΔSPI-2 at day 
4 p.i. This suggests that in OMM12 mice, the SPI-1 TTSS contributes more to overall 
inflammation than the SPI-2 TTSS. Previous work in the streptomycin model showed that 
SPI-1 triggers inflammation within hours after infection. This response is due to effector 
proteins that initiate a complex immunological signaling cascade, culminating in the 
production of IFNγ (57–61). In contrast, in OMM12 mice, overt inflammation starts only by 
day 3 p.i. (Fig. 1F and G), which is mainly due to initially lower S. Tm loads (<107 CFU/g) 
compared to streptomycin-treated mice (>108 CFU/g). Mutants lacking a functional SPI-1 
or a SPI-2 TTSS caused equally attenuated colitis at day 4 p.i. However, at early time 
points postinfection (days 1 and 2 p.i.), the S. TmΔSPI-1 mutant is strongly attenuated and 
inflammation triggered via the SPI-2 TTSS only developed at day 3 p.i. (62).

S. Tm mutants in anaerobic respiration as well as iron uptake via salmochelin and 
ethanolamine utilization were previously shown to be attenuated in growth in the 
inflamed gut in direct competition with S. TmWT (11, 20, 27, 63). In this study, we 
aimed to identify mechanisms that promote S. Tm blooming in competition against the 
OMM12 microbiota. We show that a double mutant in anaerobic nitrate and tetrathionate 
respiration (S. TmNi+Te) has a reduced capacity to bloom and induce microbial community 

FIG 4 (Continued)

at day 4 p.i. in blood by FACS gating on CD45+, SYTOX-, CD3-, CD11b+, Ly-6G+, and Ly-6C-intermediate cells or in cecal content by neutrophil elastase-specific ELISA. 

FACS data are indicated as the mean. Statistical analysis was performed using the Mann–Whitney U test. (C) S. Tm loads in feces at days 1, 2, and 3 and cecal 

content at day 4 p.i. were determined by plating. (D) LCN-2 levels in feces and cecal content (ng/mg content). LCN-2, elastase levels, and CFUs are shown as 

median, and data were analyzed using the Mann–Whitney U test. (E) Analysis of cecal microbiota composition at day 4 p.i. with different S. TmWT and neutrophil 

depletion or isotype control treatments. Microbiota composition is shown as relative abundance and expressed as % of cumulated 16S rRNA gene copy numbers. 

(F) PCoA based on the distance matrix of Bray–Curtis dissimilarity of relative OMM12 abundance profiles shows the effect of the different treatments. (G) Relative 

abundance of S. Tm and (H) absolute amount of 16S rRNA gene copies (determined by a universal primer/probe combination) in cecal contents 4 days p.i. Light 

and dark gray arrows indicate samples analyzed at day 2 or 3 p.i., respectively. Statistical analysis was performed using the Mann–Whitney U test (*P < 0.05, **P < 

0.01, and ***P < 0.001). Each dot represents one mouse, black lines indicate median, and gray lines indicate DTL.
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shifts. As gut inflammation in S. TmNi+Te-infected mice was also significantly reduced 
at day 4 p.i., we cannot conclude that anaerobic respiration creates an advantage in 
competition against OMM12 in the inflamed gut. In contrast, mutants in O2 and nitrate 
respiration, ethanolamine utilization, and salmochelin production (S. Tmcyx, S. TmNi, S. 
TmEA, and S. TmEntA) induced strong inflammation, bloomed, and altered the microbiota 
composition to a similar extent as S. TmWT. Therefore, these mechanisms are, at least 
individually, not required for competition against OMM12 bacteria in the inflamed gut. 
In the previous work using the streptomycin-treated colitis model, S. Tmcyx was strongly 
attenuated in intestinal colonization (10). While the phenotype of partial colonization 
resistance of OMM12 mice was key for conducting the experiments without previous 
microbiota perturbation, it also has its limitations. The OMM12 microbial community lacks 
key functional members, such as Escherichia coli or other facultative anaerobic bacteria 
that compete with S. Tm for nutrients and O2 in the inflamed gut upon recovery from 
streptomycin treatment. To this end, a more complex microbial model community such 
as the recently established human-derived defined complex communities might be used 
(64).

Our data indicate that neutrophils protect the host from systemic Salmonella 
spread and reduce total gut luminal bacterial loads but do not contribute to Salmo­
nella “blooms” and concomitant dysbiosis. Notably, antibody-mediated depletion of 
neutrophils resulted in the reduction of LCN-2 and elastase-2 levels and concomitantly 
resulted in an overall increase in total gut luminal bacterial loads. This confirms the 
pronounced antibacterial function of transmigrated neutrophils in the gut lumen 
reported previously (34, 35, 37). In contrast, neutrophil depletion did not change the 
relative abundance of gut luminal S. Tm. This suggests that neutrophil-derived antimicro­
bial effectors equally reduce numbers of S. Tm and members of the OMM12 and are not 
causally involved in S. Tm blooming in this model. Rather, “blooming” is mainly mediated 
by the pathogens’ diverse capabilities of taking advantage of the altered substrate range 
in the inflamed intestine.

Gnotobiotic OMM12 mice are increasingly used as a standardized infection model for 
S. Tm and other pathogenic Enterobacteriaceae (4, 9, 45). Here, we present a detailed 
characterization of the course of S. TmWT infection and mutants in major virulence factors. 
Our study reveals that OMM12 mice infected with S. TmWT develop fulminant colitis by 
day 4 p.i. characterized by pathogen blooming and shifts in microbiota composition. We 
conclude that OMM12 mice are a valuable model to dissect the impact of S. TmWT-induced 
inflammation on the gut ecosystem, including all its members, without the need for 
previous microbiota perturbation.

MATERIALS AND METHODS

Bacterial strains

For detailed information about individual Oligo-MM12 strains refer to reference (40). 
All Oligo-MM12 strains are part of the mouse intestinal bacteria collection [miBC (65)] 
and are also available via the German Collection of Microorganisms and Cell Cultures 
(www.dsmz.de/miBC). Salmonella strains used and created in this study are based on S. 
Tm strain SL1344 (Table 1).

Construction of S. Tm strains and plasmids

All bacterial strains used in this study are listed in Table 1. S. TmNi. (MBE7: ΔnarZ, narG::cat, 
napA::aphT) was generated in a stepwise manner. First, single S. Tm mutant strains were 
generated (MBE1: narZ::cat, MBE2: narG::cat and MBE3: napA::aphT) using λ red recombi­
nation as described previously (69). Briefly, antibiotic resistance genes as well as flippase 
recognition target (FRT) sites were PCR-amplified using specific knock out primers 
(ko-primers, Table 2) and the plasmids pKD3 (cat) or pKD4 (aphT) listed in Table 3. PCR 
products were subsequently electroporated into S. TmWT harboring pKD46 (Table 3). The 
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narZ::cat allele from MBE1 was transduced to S. TmWT by P22-transduction (70) in order to 
create MBE4. The narZ::cat was then deleted using flippase (FLP)-recombinase encoded 
on pCP20 (Table 3). The resulting strain MBE5 (ΔnarZ) was transduced with P22-phage 
lysate of MBE2 in order to create MBE6 (ΔnarZ, narG::cat). MBE6 was finally transduced 
with P22-phage lysate of MBE3 to generate MBE7 (ΔnarZ, narG::cat, napA::aphT). In order 
to construct S. TmNi.Ni. + Te. (MBE8: ΔnarZ, narG::cat, napA::aphT, ttrS::tet), the ttrS::tet 
allele from S. Tm stain M961 [ΔsodCI, ΔsodCII, BCB4::tet (71)] was P22-transduced into 
MBE7. S. TmEntA (MBE10: entA::cat) was created by P22-transduction of the entA::cat 
allele from MBE9 to S. TmWT. MBE9 was previously generated by λ red recombination. 
S. TmEA. (MBE12: eutC::aphT) was constructed by P22-transduction of the eutC::aphT allele 
from MBE11 to S. TmWT. MBE11 was generated before using λ red recombination. In all 
cases, genetic modifications were verified by PCR using gene-specific check-up primers 
(Table 2). The construction and sequences of plasmids harboring full-length 16S rRNA 
sequences used as standard for qPCR reactions are detailed in reference (40).

Culture conditions and bacterial in vitro assays

Culture conditions as well as cryopreservation protocols of individual Oligo-MM12 strains 
are described in reference (40). For mouse infection, a single colony of an S. Tm strain 
was inoculated in 3 mL of lysogeny broth (LB) medium containing 0.3 M NaCl (LB0.3) 
and grown on a wheel rotor for 12 h at 37°C. The starter culture was diluted in a 1:20 
ratio in fresh LB0.3 and incubated for another 4 h at 37°C under constant rotation. The 
subculture was washed in ice-cold phosphate-buffered saline (PBS), and the pellet was 
subsequently re-suspended in PBS. Mice were finally gavaged with 5 × 107 CFUs of 
S. Tm strains. For investigating phenotypes conferred by gene knock outs, individual 
colonies of S. Tm strains were aerobically inoculated with 5 mL of M9 medium (Na2HPO4 
· 2H2O 40 mM, KH2PO4 20 mM, NaCl 9 mM, NH4Cl 37.39 mM, D-glucose 1.1 mM, 
MgSO4 1 mM, CaCl2 100 µM, Thiamine 10 mg/mL, and Histidine 500 mg/L) without 
antibiotics on a wheel rotor for 12 h at 37°C. Aerobic as well as anaerobic (7% H2, 
10% CO2, and rest N2) subcultures with a starting OD600 of 0.02 were subsequently 
carried out in 10 mL of M9 medium with and without nitrate (20 mM). For testing S. Tm 
strains deficient in ethanolamine utilization, the M9 medium was additionally supple­
mented with ethanolamine (5 mM) and tetrathionate (40 mM). Aerobic subcultures were 
performed in glass Erlenmeyer flasks sealed with aluminum foil, whereas anaerobic 
subcultures were conducted in 100 mL Wheaton glass serum bottles with pre-reduced 
medium (pre-reduction for at least 2 days under anoxic conditions: 3% H2 and rest 

TABLE 1 Bacterial strains used in this study

Strain Strain ID Genotype Reference

S. TmWT SB300 S. Tm strain SL1344 (66)
S. TmAvir M557 ΔinvG; sseD::aphT (67)
S. TmSPI-1 SB161 ΔinvG (68)
S .TmSPI-2 M556 sseD::aphT (67)
MBE1 MBE1 narZ::cat This study
MBE2 MBE2 narG::cat This study
MBE3 MBE3 napA::aphT This study
MBE4 MBE4 narZ::cat This study
MBE5 MBE5 ΔnarZ This study
MBE6 MBE6 ΔnarZ; narG::cat This study
S. TmNi. MBE7 ΔnarZ; narG::cat; napA::aphT This study
S. TmNi. + Te. MBE8 ΔnarZ; narG::cat; napA::aphT; ttrS::tet This study
MBE9 MBE9 entA::cat This study
S. TmEntA MBE10 entA::cat This study
MBE11 MBE11 eutC::aphT This study
S. TmEA MBE12 eutC::aphT This study
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N2). Subcultures were incubated at 37°C and shaken at 180 rpm, and samples were taken 
for OD600 measurement and determination of nitrate concentrations (73). In vitro 
competition assays were performed as described in reference (74). Briefly, starter cultures 
of the competing strains in 5 mL of LB or M9 medium without antibiotics incubated on a 
wheel rotor for 12 h at 37°C were mixed in a 1:1 ratio with a starting OD600 of 0.05 of each 
strain and used to inoculate 14 mL cultures with either plain mucin broth (Type II porcine 
mucin 2.5 g/L, Morpholino propanesulfonic acid sodium 9.25 g/L, MgSO4 2.2 mM, trace 
elements 1,000×: CaCl2 · 2H2O 0.3 mM, ZnSO4 · 7H2O 0.1 mM, FeSO4 · 7H2O 0.045 mM, 
Na2SeO3 0.2 mM, Na2MoO4 · 2H2O 0.2 mM, MnSO4 · H2O 2 mM, CuSO4 · 5H2O 0.1 mM, 
CoCl2 · 6H2O 3 mM, and NiSO4 · 6H2O 0.1 mM) or mucin broth containing nitrate 
(40 mM). For competition assays underlining the importance of tetrathionate respiration, 
the mucin broth was supplemented with tetrathionate (40 mM) and histidine (500 mg/L) 
to enhance growth. Cultures were statically incubated in 15 mL plastic tubes for 24 h at 
37°C. CFUs of S. Tm strains were determined by plating on LB agar plates containing 
selective antibiotics. The deficiency of acquiring iron via siderophores was investigated 
using Chromazurol S (CAS) agar. Next, 1 mL of starter cultures in 5 mL of LB medium 
without antibiotics incubated on a wheel rotor for 12 h at 37°C was centrifuged, and the 
pellet was re-suspended in sterile ice-cold PBS. Then, 5 µL were adjusted to an OD600 of 
0.1, spotted on CAS agar plates, and incubated at 37°C for 48 h. The diameters of the 
colony as well as the diameter of the colony + the orange CAS halo were measured, and 
the CAS-reactive ring was calculated in mm according to the formula: 0.5× [(diameter of 
colony + CAS halo) – diameter of colony].

DNA extraction from intestinal contents

Fecal and cecal DNA were extracted using the QIAamp DNA Stool Mini Kit (Qiagen) 
according to the manufacturer’s protocol with modifications. The protocol was extended 
with an initial bead-beating step using glass beads (0.5–0.75 mm) and zirconia beads 
(<100 µm). Lysozyme (20 mg/mL) was additionally added to the lysis buffer.

qPCR of 16S rRNA genes

16S rRNA-specific primers and hydrolysis probes were designed and validated according 
to the Minimum Information for Publication of Quantitative Real-Time PCR Experiments 
(MIQE) guidelines as detailed previously (40, 75).

qPCR reactions were performed in a LightCycler96 thermo cycler (Roche) using 
white LightCycler 480 Multiwell Plate 96 plates (Roche). One 20 µL reaction mixture 
contained 250 nM of hydrolysis probe, 300 nM of each corresponding primer, 5 ng 
of template genomic DNA (gDNA), water, and FastStart Essential DNA Probes Master 
(Roche). The sequences of primers and hydrolysis probes, the qPCR efficiencies, as well 
as the specificity/detection limits of qPCR assays are depicted in reference (40). All 
qPCR reactions were performed in duplicate applying the following conditions: 95°C for 
10 min, followed by 45 cycles of 95°C for 15 s and 60°C for 1 min. Fluorescence for each 
cycle was recorded after the step at 60°C. Quantification cycle as well as the baseline 
were automatically determined by the software LightCycler 96 version 1.1 (Roche).

TABLE 3 Plasmids used for λ red and FLP recombination

Plasmid Function Genotype Reference

pKD3 Harbors a chloramphenicol resistance gene (cat) cat with FRT sites, AmpR (69)
pKD4 Harbors a kanamycin resistance gene (aphT) aphT with FRT sites, AmpR (69)
pKD46 Harbors 2,154 nt (31088–33241) of phage λ, enzymes for recombination araC, ParaB γ, β and exo, repA101ts, AmpR (69)
pCP20 Harbors FLP-recombinase FLP+, λ cI857+, λ pR Repts, AmpR, CmR (72)
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Animal experiments

Oligo-MM12 mice were generated as previously described (40) and sterilely bred in the 
animal housing facility of the Max von Pettenkofer-Institute. Sex- and age-matched mice 
were orally infected with 5 × 107 CFUs of S. Tm strains under germ-free conditions and 
maintained in gnotocages (Han, Bioscape). The protocol for neutrophil depletion was 
adapted from reference (36). Briefly, neutrophils were depleted by one intraperitoneal 
(i.p.) injection with 150 µg of α- m Ly-6G (clone: 1A8, BioXCell) prior to infection with S. 
TmWT followed by daily i.p. injections with 10 µg of α-mouse G-CSF (clone: 67604, R&D 
Systems). Control mice received 150 µg of Rat IgG2a (clone: 2A3, BioXCell) once and daily 
injections with 10 µg of Rat IgG1 (clone: 43414, R&D Systems). Antibodies were dissolved 
in sterile PBS. Mice were euthanized by cervical dislocation, and organs were aseptically 
removed. Salmonella loads in mesenteric lymph nodes, liver, spleen, as well as in cecal 
content and feces were determined by plating on MacConkey agar plates (Roth). The 
mouse LCN-2/NGAL detection kit (R&D Systems), ELISA kit, and horseradish peroxidase 
(HRP) Streptavidin (BioLegend) were used for measuring LCN-2 levels. Neutrophil-specific 
elastase was quantified using the Mouse Neutrophil Elastase/ELA2 DuoSet ELISA kit and 
the DuoSet Ancillary Reagent Kit2 (both from R&D Systems). Cecal pathology was scored 
at necropsy. Optimal cutting temperature compound (Sakura, Torrance) was used to 
embed cecal tissue. Tissues were flash frozen and cut into 5 µm cryosections. Cryosec­
tions were hematoxylin and eosin (H&E)-stained and scored as detailed in reference (76). 
Scoring parameters include submucosal edema, infiltration, loss of goblet cells, as well 
as epithelial damage. Scoring was performed in a blinded manner and yielded a total 
score of 0–13 points according to the severity of inflammatory symptoms (scores: 0–3: no 
pathological change, 4–8: mild inflammation, and 9–13: severe inflammation). All animal 
experiments were approved by the local authorities (Regierung von Oberbayern) and 
were performed according to the legal requirements.

FACS

Efficient depletion of neutrophil in the blood was monitored by FACS. Three to four drops 
of blood taken from the tail vein were collected in 1 mL of pre-cooled FACS buffer (PBS 
and 1% heat-inactivated FACS). For subsequent erythrolysis, samples were centrifuged 
and FACS buffer was exchanged with 1 mL of BD FACS Lysing Solution (BD). After 10 min 
of incubation in the dark at RT, samples were centrifuged again, Lysing Solution was 
discarded, and cells were resuspended in 100 µL of FACS buffer. Cells were subsequently 
stained with α-CD45-PerCP (clone: 30-F11, BioLegend, 1:100), α-CD11b-APC-Cy7 (clone: 
M1/70, BioLegend, 1:200), α-Ly-6G-Pacific Blue (clone: 1A8, BioLegend, 1:200), α-Ly-6C-
FITC (clone: AL-21, BD, 1:400), α-CD3-PE (clone: 17A2, BioLegend, 1:200), and α-CD16/
CD32 (93, FC-Block, eBioscience, 1:100). Following 30 min of incubation at 4°C, cells 
were washed and analyzed with the FACSCanto II (BD). SYTOX red (5 nM) was used to 
discriminate dead and living cells. Data were recorded using the BD FACSDiva software 
(BD) and analyzed using the FlowJo software. Neutrophils were identified as CD45+, 
SYTOX-, CD3-, CD11b+, Ly-6G+, and Ly-6C-intermediate cells.

Statistical analysis

CFU data, LCN-2 levels, and pathoscores were expressed as median. More than two 
different groups were compared to each other using Kruskal–Wallis test, with Dunn’s 
multiple comparison test. Two groups were compared using the Mann–Whitney U test 
(Prism 5; GraphPad Software, San Diego, CA, USA). The percentage of individual bacteria 
was expressed as mean ± SD. Differences between individual bacteria were compared 
using a two-way ANOVA, with Bonferroni posttest (Prism 5; GraphPad Software, San 
Diego, CA, USA). FACS data were expressed as the mean and analyzed using unpaired t 
test (Prism 5; GraphPad Software, San Diego, CA, USA).

To analyze clustering of qPCR data, Pearson distance matrix was used containing 
dissimilarity values for each pairwise comparison. Strength and statistical significance 
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of sample grouping were determined by applying the nonparametric Adonis method 
based on PERMANOVA, together with the parametric significance test PERMDISP, which 
analyzes multivariate homogeneity of group dispersions. The used scripts are available in 
QIIME (77).

In all cases, P values < 0.05 were considered as statistically significant.
Fold changes in absolute abundance were calculated with absolute values that were 

normalized to a million gene copies determined by universal probe.
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