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Abstract

Breast cancer is now the most common cancer globally, accounting for 12% of all new annual 

cancer cases worldwide. Despite epidemiologic studies having established a number of risk 

factors, knowledge of chemical exposure risks is limited to a relatively small number of chemicals. 

In this exposome research study, we used non-targeted, high-resolution mass spectrometry 

of pregnancy cohort biospecimens in the Child Health and Development Studies to test for 

associations with breast cancer identified via the California Cancer Registry. Second and third 

trimester archival samples were analyzed from 182 women who subsequently developed breast 

cancer and 384 randomly selected women who did not develop breast cancer. Environmental 

chemicals were annotated with the Toxin and Toxin-Target Database for chemical signals 

that were higher in breast cancer cases and used with an exposome epidemiology analytic 

framework to identify suspect chemicals and associated metabolic networks. Network and 

pathway enrichment analyses showed consistent linkage in both second and third trimesters to 

inflammation pathways, including linoleate, arachidonic acid and prostaglandins, and identified 

new suspect environmental chemicals associated with breast cancer, i.e., an N-substituted 
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piperidine insecticide and a common commercial product, 2,4-dinitrophenol, linked to variations 

in amino acid and nucleotide pathways in second trimester and benzo[a]carbazole and a 

benzoate derivative linked to glycan and amino sugar metabolism in third trimester. The 

results identify new suspect environmental chemical risk factors for breast cancer and provide 

an exposome epidemiology framework for discovery of suspect environmental chemicals and 

potential mechanistic associations with breast cancer.
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1. Introduction

Environmental impacts on human health are commonly studied using epidemiologic 

methods, which support tests for association of individual exposures with health outcome. 

Humans experience many environmental exposures, however, and these occur along with 

chemicals derived from diet, intestinal microbiome, dietary supplements, pharmaceuticals, 

and personal use products. The cumulative measure of environmental influences and 

associated biological responses throughout the lifespan, which complements the genome 

in determination of health outcomes, is termed the exposome (Miller and Jones 2014; 

Vermeulen et al. 2020; Wild 2005). Methods for comprehensive measurement of a 

human exposome are not available, but progress is ongoing in development of improved 

surveillance of external exposures as well as biomonitoring of internal exposures. The 

availability of these methods creates an opportunity to begin to understand the interaction of 

multiple exposures as causal factors in complex human diseases.

Metabolomics is the study of small molecules in biologic systems and often focused on 

a relatively small number of precursors and biologic intermediates that are essential to 

biologic structures and functions. High-resolution metabolomics (HRM) uses advanced mass 

spectrometry and data science to obtain a broader coverage of chemicals in biological 

samples, especially to obtain insight into an individual’s exposures and associated biological 

responses (Jones et al. 2012). The metabolome as a functional readout of the interactions of 

a person’s genes with exposures from diet and environment (Johnson et al. 2017; Jones 

et al. 2016; Niedzwiecki et al. 2019) has been used extensively in combination with 

exposure measurements, such as air pollution (Liang et al. 2018; Ritz et al. 2022) and 

targeted environmental chemicals, such as 4,4′-dichlorodiphenyl-trichloroethane (DDT), 

polychlorinated biphenyls (PCB) and polybrominated biphenyls (PBB) (Hu et al. 2020; 

Walker et al. 2019), to gain understanding of functional associations with exposures.

High-resolution metabolomics with non-targeted mass spectrometry methods for 

biomonitoring delivers tens of thousands of data points per biologic samples, well beyond 

the number of chemicals measured using targeted methods (Uppal et al. 2016). Early 

studies showed that these mass spectrometry methods detect chemicals in human plasma 

derived from diet, intestinal microbiome, dietary supplements, pharmaceuticals, personal use 

products and environmental exposures (Johnson et al. 2010; Soltow et al. 2013; Walker et 
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al. 2016). Although the total number of chemicals detected remains uncertain, available 

evidence indicate that an omics scale detection is achieved, i.e., detection of tens of 

thousands of chemical signals is of a magnitude similar to the number of genes in the 

human genome. To date, there has been limited use of the information-rich, high-resolution 

mass spectrometry data in a non-targeted manner for discovery of new chemical associations 

with disease.

Use of omics scale biomonitoring to discover associations with disease has been termed 

“exposome epidemiology” (Jones and Cohn 2020). The current study was undertaken to 

develop exposome epidemiology concepts for discovery of potential new environmental 

factors contributing to breast cancer. The long-term goal for complex diseases such as 

breast cancer, which involves multiple genetic, behavioral and environmental factors, is 

to integrate omics scale biomonitoring with other factors to ultimately improve prediction 

and intervention strategies to decrease disease burden. The results obtained in the present 

study provide evidence for new candidate environmental breast carcinogens and information 

concerning possible mechanisms by which these agents contribute to breast cancer.

In this study, archival blood samples from the Child Health and Development Studies 

(CHDS) cohort collected during pregnancy were used to perform a non-targeted exposome-

wide association study of breast cancer. The CHDS cohort includes samples collected from 

1959 to 1967 from about 20,000 pregnancies in Oakland, California, USA. Breast cancer 

diagnoses were identified by linkage to the California Cancer Registry through 1997, and the 

current study used archival second (T2) and third (T3) trimester samples of 182 women who 

subsequently developed breast cancer for comparison to samples from 384 women who did 

not develop breast cancer.

2. Materials and methods

2.1. Analytical workflow for detection of suspect chemicals associated with subsequent 
breast cancer outcome

We developed an exposome epidemiology approach (codes for analysis are available in 

Supplemental Table S1) in which we first performed non-targeted statistical analysis to 

select HRM features that were higher in cases than in non-cases. The decision to only look 

at features that were higher in association with subsequent breast cancer was based upon 

1) the assumption that causative features would be higher while protective features would 

likely be lower in association breast cancer outcome and 2) preliminary analyses showed 

that more features were negatively associated and these were enriched in features annotated 

as diet-derived phytochemicals, which would require different databases than those for 

toxic substances. Additionally, an untargeted analysis of possible breast cancer-preventive 

exposures in this cohort was considered worthy of independent investigation.

In the selection of features positively associated with breast cancer outcome (higher 

abundance in breast cancer than non-breast cancer), we used raw p <0.05 as a cutoff 

for selection based upon the expectation that multiple environmental factors with small 

effect size may contribute to breast cancer. Furthermore, we considered this more liberal 

selection criteria, compared to more rigorous False Discovery Rate (FDR) criteria, as more 
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appropriate for a small-population discovery study because it provides a better balance 

between Type 1 and Type 2 statistical error in detection of exposures with small effect size 

(Uppal et al. 2016). We selected HRM features that were higher in cases than non-cases 

to search for potentially causative factors by matching to a xenobiotic database, Toxin 

and Toxin-Target Database (T3DB) (Lim et al. 2010; Wishart et al. 2015), recognizing 

that protective factors that are decreased in association with breast cancer would prioritize 

use of HRM features that were lower in cases and an alternative database, such as Food 

Database (FoodDB) (Scalbert et al. 2011). HRM features that were increased with breast 

cancer and annotated as environmental chemicals were then used for network analysis with 

the data-dependent community detection tool, xMWAS (Uppal et al. 2018) to select most 

highly associated mass spectral features. Pathway enrichment analysis of the most central 

communities of mass spectral features was then performed with mummichog (Li et al. 

2013), and targeted mass spectrometry was used to improve understanding of the annotated 

chemicals associated with breast cancer outcome.

2.2. Samples and assays

The CHDS recruited women residing in the Oakland and East Bay, California area who were 

members of the Kaiser Foundation Health Plan and received obstetric care for pregnancies 

between 1959 and 1966 with deliveries extending into 1967 (van den Berg et al. 1988). 

>98% of all eligible women enrolled.

Blood samples were collected from these mothers during pregnancy in each trimester and in 

the early post-partum period by CHDS research staff without request for fasting, processed 

to isolate serum, and stored since then at − 20° Celsius. Second and third trimester archival 

samples available were analyzed for HRM and environmental chemicals. The samples used 

for the present study include second (T2, n = 182)) and third (T3, n = 172)) trimester 

archival samples of 201 women who subsequently developed breast cancer, compared to 

second (T2, n = 384) and third (T3, n = 351) trimester archival samples from 413 women 

who did not develop breast cancer. Breast cancer cases were identified by linkage to 

the California Cancer Registry for cases diagnosed through 1997. Record abstraction for 

cancer diagnoses to the California Cancer Registry is based primarily on pathology reports, 

and case identification is considered to be >99% complete after a 2-year lag (Perkins et 

al.). Cases were defined as mothers with incident invasive or noninvasive breast cancer 

diagnosed at a median age at diagnosis of 54 years (interquartile range, 13 years) with 

available prenatal serum and a standardized gross placental exam. Non-cases were an 8% 

sample of women not known to have breast cancer randomly selected among mothers with 

available prenatal serum and a standardized gross placental exam (Cohn et al. 2017). Breast 

cancer rates for included and excluded subsets in the CHDS cohort were highly comparable 

suggesting selection did not impose significant bias: 1.89 per 1,000 person-years (95% 

Confidence Interval ([95% CI] = 1.60, 2.23) for included vs. 1.88 per 1,000 (95% CI = 

1.59, 2.20) for excluded. It is possible, however, that we missed some cases of breast cancer, 

including among women who are identified in this study as “non-cases”. In this case, failure 

to identify cases among the non-case group would result in underestimating differences 

between cases and non-cases in these analyses and would not be expected to impact 

findings. The CHDS founding mothers voluntarily participated in an in-person interview 
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and gave permission to access their own medical records and those of their children to 

researchers. The institutional review board of the Public Health Institute approved the 

present study, and we complied with all federal guidelines governing the use of human 

participants. Forty-six percent of cases and forty-five percent of the non-cases had available 

data and serum.

2.3. Chemicals

HPLC grade acetonitrile and methanol, LC-MS water and 98% formic acid were 

obtained from Sigma-Aldrich (St. Louis, MO). A mixture of 14 stable isotopic 

chemicals were used as an internal standard (Go et al. 2015) included [13C6]-D-

glucose, [15N]-indole, [2-15N]-L-lysine dihydrochloride, [13C5]-L-glutamic acid, [13C7]-

benzoic acid, [3,4-13C2]-cholesterol, [15N]-L-tyrosine, [trimethyl-13C3]-caffeine, [15N2]-

uracil, [3,3-13C2]-cystine, [1,2-13C2]-palmitic acid, [15N,13C5]-L-methionine, [15N]-choline 

chloride and 2′-deoxyguanosine-15N13
2, C10-5′-monophosphate from Cambridge Isotope 

Laboratories, Inc (Andover, PA).

2.4. High-resolution mass spectrometry

Serum samples were analyzed with liquid chromatography-high resolution mass 

spectrometry (LC-HRMS) as described previously (Jarrell et al. 2021; Jarrell et al. 2020). 

Briefly, 50 μL of serum was treated 2:1 (v/v) with acetonitrile, and 2.5 μL of the stable 

isotope standard mixture was added. Proteins were precipitated by incubation at 4 °C for 

30 min and removed by centrifugation for 10 min at 21,000×g at 4 °C. Supernatants were 

placed in autosampler vials and maintained at 4 °C in an autosampler until analysis. Two 

pooled human reference samples including NIST SRM1950 and Qstd [pooled plasma from 2 

separate lots from Equitech-Bio, Inc (Kerrville, Texas)] were included. NIST SRM1950 was 

run at the beginning and end of the full sample set, and Qstd was included at the beginning 

and end of each batch of 20 samples.

Samples and reference materials were analyzed with three technical replicates using a 

High-Field Q-Exactive mass spectrometer (Thermo Fisher) with C18 chromatography and 

electrospray ionization (ESI) in negative mode. Data collection occurred continuously 

throughout 5 min of chromatographic separation from 85 to 1,275 mass-to-charge ratio 

(m/z). Data extraction was performed using apLCMS and xMSanalyzer, generating mass 

spectral features consisting of m/z, retention time (RT) and peak intensity. Feature and 

sample filtering retained features with a median CV of 50% or less, a minimum mean 

Pearson correlation coefficient of 0.7 between technical replicates of each sample, and 

presence in at least 30% of samples.

2.5. Selection of features associated with subsequent breast cancer

Age and pregnancy estrogens interacted and together were associated with breast cancer 

outcomes in this sample (Cohn et al. 2017). We reasoned that controlling for these covariates 

had the potential to mask associations with environmental chemicals because environmental 

chemicals and biologic responses to exposures can accumulate with age. Hence, analyses 

were performed without adjustments for covariates. Metabolome-Wide Association Study 

(MWAS) was performed with LIMMA [Linear Models for Microarray and RNA-Seq Data 
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(Ritchie et al. 2015)] to select m/z features that were positively associated with breast 

cancer outcome. LIMMA uses linear models to assess differential expression simultaneously 

for many mass spectral signals in a manner that borrows information across mass spectral 

signals to improve stability for individual signals. The method was developed and validated 

for microarray studies and previously applied successfully to untargeted mass spectrometry 

analyses. In LIMMA, a moderated t-statistic is used for significance analysis and provides 

p-values computed for each mass spectral signal and for each comparison. This differs from 

an ordinary t-statistic by having standard errors moderated across signals using a simple 

Bayesian model. Intensity values were log2 transformed prior to analysis with LIMMA to 

reduce heteroscedasticity, and LIMMA was performed using the R package, xmsPANDA 
(https://github.com/kuppal2/xmsPANDA), with retention of features at raw p < 0.05.

2.6. Annotation of mass spectral features and metabolite identification

To select mass spectral features of environmental interest, features positively associated with 

subsequent breast cancer diagnosis were subjected to a multistage clustering algorithm and 

annotated with xMSannotator (Uppal et al. 2017) using T3DB (Lim et al. 2010; Wishart 

2015) at 5 ppm tolerance. For selected chemicals, identities were confirmed when possible 

by accurate m/z match, co-elution with authentic standards and ion dissociation mass 

spectrometry (MS2); Level 1 identification by criteria of Schymanski et al (Schymanski 

et al. 2014)].

2.7. Targeted mass spectrometry analysis in identification of features

Annotated chemicals at the center of the xMWAS network structures underwent additional 

investigation by ion dissociation, structure analysis, and spectral matching to publicly 

available spectral libraries. Plasma samples with the highest intensities of the chemicals 

of interest were selected and analyzed with C18 liquid chromatography (Dionex Ultimate 

3000) and MS2 ion dissociation (Thermo Scientific Fusion) with negative ESI. The mass 

spectrometer was set to scan a minimal range of m/z at 60,000 resolution for MS1. 

Then, an inclusion list isolated the m/z of interest. MS2 spectra were acquired in HCD 

mode with a normalized collision energy of 30% and analyzed at 30,000 resolution 

using the dual-pressure linear ion trap. Raw MS1 and MS2 spectra were analyzed in 

xCalibur QualBrowser (Thermo). Fragmentation patterns were analyzed with ChemDraw 

(PerkinElmer Informatics) and compared against experimental spectra in the MassBank of 

North America (MoNA) library. MoNA MS2 spectra were selected for negative ESI and 

similar collision energy. When MoNA spectra were not available, experimental spectra were 

searched against the NIST Tandem Mass Spectral Library, which provides a spectral match 

percentage but no information on collision energy or ionization polarity. To align with 

the goal of high-throughput analyses, chromatographic gradients and fragmentation settings 

were maintained to be consistent with the original analysis and not extensively optimized for 

each chemical. Under these conditions, the complexity of the plasma sample matrix and the 

low abundance of environmental chemicals does not allow for the isolation of one precursor 

and its fragments. Therefore, in some spectra, the precursor mass is easily visible within 

10 ppm error, but the fragments are not clearly visible due to interference from other ions. 

Spectral peaks corresponding to product ions were identified by their theoretical structures 

in “ChemDraw” with unit resolution in the dual-pressure linear ion trap detector.
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2.8. Network and pathway analyses

Annotated environmental chemicals were tested for associations with m/z features using 

xMWAS based on partial least-squares regression (Uppal et al. 2018). This data-dependent 

approach supports agnostic detection of top communities of mass spectral features 

associated with outcome (breast cancer diagnosis). In this analysis, selection of statistical 

thresholds for visualization of communities is arbitrary, i.e., the purpose is to identify the top 

communities associated with subsequent breast cancer diagnosis. In these analyses, retention 

of features with p < 0.05 maximizes opportunity to detect associations with small effect size. 

The top communities of associated features can be visualized with different |r| correlation 

thresholds, in which a higher threshold yields more sparse community structures compared 

to lower thresholds. Higher |r| thresholds limit the communities to the most central drivers 

of association while lower |r| thresholds are valuable for subsequent pathway enrichment 

analyses to identify metabolic pathway associations useful for mechanistic insight. In the 

present analyses, thresholds for inclusion in the networks were |r| > 0.30 and p < 0.05. 

Features associated with network structures were used for pathway enrichment analysis 

using mummichog (v3) (Li et al. 2013). Enriched pathways were filtered for those that 

included at least 3 significantly associated metabolites at p < 0.05.

3. Results

3.1. Study population demographics

T2 and T3 samples were available from 201 individuals who subsequently developed breast 

cancer. These individuals had a median age of 31 y at time of blood collection, and the 

individuals without breast cancer had a median age of 36 (p < 0.0001). Serum collection 

occurred between 1960 and 1964, with T2 blood collection occurring at a median gestational 

age of 161 and 160 days in cases and non-cases, respectively. For T3, blood collections were 

at a median gestational age of 249 and 250 days, respectively. Characteristics of cases and 

non-cases are provided in Table 1.

3.2. Metabolic feature profiling on T2 and T3 serum

To select m/z features which were positively associated with subsequent breast cancer 

diagnosis, we retained 9042 m/z features present in at least 80% of samples for statistical 

analyses and selection of features for annotation. For T2 and T3 measurements, no features 

had FDR < 0.05 and therefore none are likely to be useful biomarkers for breast cancer 

risk. For statistical analyses, T2 and T3 analyses were done independently because of the 

dynamic, changing, maternal and fetal interactions that occur between T2 and T3 and 

because of the potential for extensive pregnancy-related metabolic changes to mask more 

subtle associations with subsequent breast cancer diagnosis. Any of the m/z features selected 

with raw p < 0.05 could contribute to breast cancer risk, and 521 features had p < 0.05 

for T2, and 557 features had p <0.05 for T3. Of these m/z features, 188 were higher (333 

were lower) in breast cancer than non-cases in T2 samples while 151 were higher (406 were 

lower) in breast cancer than non-cases in T3 samples (Table 2). These positively associated 

m/z features were selected to search for possible matches to environmental chemicals.
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3.3. Environmental chemical annotation of suspect chemicals in breast cancer group

Most of the selected m/z features are likely to represent endogenous metabolites, but 

environmental chemicals contributing to subsequent breast cancer could also be present. 

To search for suspect environmental chemicals associated with subsequent breast cancer 

diagnosis, we used xMSannotator, a network-based computational tool, with the Toxin and 

Toxin-Target Database, T3DB (Wishart 2015; Wishart et al. 2007), to further characterize 

the mass spectral features which were higher in their intensities in women who went on 

to develop breast cancer. xMSannotator uses a multistage clustering algorithm in which 

intensity profiles, retention time characteristics, mass defect, and isotope/adduct patterns are 

used to assign confidence levels to annotation results relative to publicly available databases, 

such as T3DB. The annotated environmental chemicals for T2 and T3 are shown in Table 

3 and Table 4, respectively. More environmental chemicals were annotated in T2 than T3 

serum, yielding 17 and 7, respectively, and these included matches to chemicals widely 

used for anti-inflammatory, anticonvulsant and antipsychotic drugs, quaternary ammonium 

salt, pesticides, herbicides, fungicides, plasticizers, preservatives, cleaning materials, and 

flavorings. Importantly, at this level of investigation, these annotations are only suspect 

chemicals and require further investigation and verification (see below). The average 

abundance of these chemicals based upon relative intensities of the mass spectral signals was 

between 10% and 30% higher in women who went on to develop breast cancer compared to 

those who did not (p ≤ 0.05, Tables 3 and 4).

3.4. Metabolome-Wide association study (MWAS) of T2 environmental chemicals

Prior studies have identified inflammatory lipid pathways (linoleate, arachidonate, 

prostaglandin), lipid and energy metabolism pathways (fatty acids, TCA cycle), oxidative 

stress pathways (methionine and cysteine), and nitrogen metabolism pathways (urea cycle, 

pyrimidine, purine) as top metabolic pathway associations with environmental chemicals 

and breast cancer (Hu et al. 2019; Li et al. 2020; Walker et al. 2019). Data-driven 

analysis of features annotated as environmental chemicals (Table 3) showed three metabolic 

communities labeled in Fig. 1 as Community 1 (C1, orange), Community 2 (C2, blue) and 

Community 3 (C3, green). C1 was positively associated with m/z 315.1957 (F1, Fig. 1, 

Table 3). Pathway enrichment analysis of the 716 metabolic features associated with C1 

showed that the associated pathways included linoleate, arachidonate and prostaglandins 

(Fig. 2A), which are closely related to inflammation and oxidative stress. Database 

searches showed that m/z 315.1957 matched multiple lipids (e.g., prostaglandins, resolvins), 

consistent with the strong associations with related lipid species having activities in 

inflammation. The vitamin A pathway was also associated with C1 (Fig. 2A), and targeted 

mass spectrometry with MS/MS analysis showed a likelihood that m/z 315.1957 was 4-

hydroxyretinoic acid (F1, Supplemental Fig. S1).

C1 extensively overlapped with Community 2 (C2, blue), which was positively associated 

with m/z 334.2090 (F2, Fig. 1, Table 3). In addition to pathway associations with 

prostaglandins, linoleic acid and arachidonic acid, a subset of C2 included phospholipids, 

e.g., sphingosine, phosphatidyl choline (PC), and triglyceride (blue, Fig. 1), associated 

with glycerophospholipid metabolism. Thus, this chemical defines a separate cluster of 

metabolites associated with breast cancer than those in C1, but this feature remains 
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unidentified because subsequent mass spectrometry analysis failed to provide support for 

identification. Together, results from C1 and C2 support prior findings that inflammatory 

lipid and other lipid pathways associated with DDT, PCB and PBB are associated with 

breast cancer, but do not reveal any new suspect environmental chemicals.

A third community, C3, had metabolomic associations (green) which were separated 

from C1 and C2 and positively associated with m/z features annotated as environmental 

chemicals, including an insecticide (F3, nitromethylene-piperidine), a wood preservation 

and dye production chemical (F4, 2,4-dinitrophenol), oxalate (F5), and F6, m/z 156.0666 

and F7, m/z 345.0777 (Fig. 1, Table 3). Of these, oxalate was previously confirmed, and 

supportive targeted mass spectrometry data was obtained for 2-nitromethylene-piperidine 

and 2,4-dinitrophenol (F3 and F5, Supplemental Fig. S1). The m/z feature 156.0666 

(F6) was present at high concentrations in most samples and appeared likely to be 

an endogenous metabolite, N-acetylproline (F6, Supplemental Fig. S1). No supportive 

mass spectrometry data could be obtained for the m/z feature 345.0777 (F7). The 56 

metabolic features in C3 that were positively associated with these annotated environmental 

chemicals were related to pathways for antioxidant methionine (Met) and cysteine (Cys) 

regulation, urea cycle, amino acids (glycine, serine, alanine, threonine, aspartate, asparagine, 

lysine), glycerophospholipids, and purine and pyrimidine nucleotide metabolism (Fig. 

2C). Representative metabolites associated with these pathways of each community are 

indicated next to each community (Fig. 1) and included amino acids (glutamate, serine, 

lysine, aspartate), a pyrimidine (orotidine), a purine (uric acid), and a coenzyme for 

mitochondrial electron transfer and the TCA cycle (dihydrolipoamide). Collectively, the 

results for T2 serum of women who subsequently developed breast cancer show that two 

suspect environmental chemicals, nitromethylene-piperidine and 2,4-dinitrophenol, along 

with oxalate, are closely associated with metabolic perturbations related to amino acid and 

nucleotide metabolism. Other communities included lipids functioning in inflammation, 

sphingolipids and lipids, but no suspect environmental chemicals were identified for these 

communities.

3.5. MWAS of T3 environmental chemicals and alterations in metabolic pathway

Following the same experimental approach shown above, we examined the relationship 

of annotated matches of T3 suspect environmental chemicals (Table 4) and changes in 

metabolites using xMWAS (Uppal et al. 2018). Two major metabolic communities were 

identified (Fig. 3), with the first community (labeled C4, orange) including metabolites 

associated exclusively with m/z 271.1195 (F18) and second community (C5, blue) including 

metabolites associated with m/z 214.9728 (F19), m/z 217.0866 (F20) and m/z 215.0327 

(F21) (Fig. 3). Targeted mass spectrometry analysis of m/z 271.1195 (F18) showed that this 

feature was likely ergosterol or related derivative (F18, Supplemental Fig. S2). Pathway 

enrichment analysis of the 650 metabolic features of C4 showed associated pathways 

for arachidonate, leukotriene, linoleate, vitamin A, prostaglandins, vitamin E and steroid 

hormones (Fig. 4A). Most of these pathways are closely related to inflammation and 

oxidative stress, as also found in T2 associations in C1 and C2 (Fig. 2A, 2B). Targeted 

mass spectrometry analyses showed that m/z 214.9713 (F19) was likely a bromine adduct 

of a benzoic acid metabolite (F19, Supplemental Fig. S2); m/z 217.0866 (F20) had an MS2 
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spectrum with 83% match to benzo[a]carbazole (F20, Supplemental Fig. S2); m/z 215.0327 

(F21) was a high abundance signal from glucose (F21, Supplemental Fig. S2). Pathway 

enrichment analysis of the 155 metabolic features in C5 showed associations for sialic 

acid, pentose phosphate, N-glycan degradation, galactose, phosphatidylinositol, glycolysis 

and gluconeogenesis, butanoate, and glycosphingolipid pathways (Fig. 4B). Representative 

metabolites associated with these pathways are indicated next to each community (Fig. 3). 

Collectively, suspect environmental chemicals in Communities 4 and 5 include a benzoate 

derivative and benzo[a]carbazole, and metabolic pathway associations suggesting that breast 

cancer effects could be mediated through inflammatory lipids, glucose-related metabolism 

and estrogenic signaling.

3.6. Comparisons of T2 and T3 suspect chemical-metabolic pathway associations

In comparison of findings for T3 and T2, metabolic pathways for C4 in T3 showed 

considerable overlap with the pathways associated with C1 and C2 in T2. In contrast, 

the remaining community, C5, in T3 differed substantially from the remaining community, 

C3, in T2. Specifically, in T3, we identified a suspect benzoate and benzo[a]carbazole 

in breast cancer cases that were associated with pathways of carbohydrate metabolism 

functioning in extracellular matrix turnover and complex carbohydrate metabolism. In T2, 

we identified a suspect insecticide, 2-nitromethylpiperidine, a widely used commercial 

chemical, 2,4-dinitrophenol, and oxalic acid, in breast cancer cases that were associated 

with central pathways functioning in amino acid homeostasis, urea cycle, pyrimidine and 

purine metabolism, and defense against oxidative stress.

4. Discussion

The present study applies a new exposome epidemiology approach to discover suspect 

environmental chemicals that may be implicated in breast cancer development. New suspect 

chemicals from this analysis include an insecticide, nitromethylene-piperidine; a common 

commercial chemical, 2,4-dinitrophenol; a heterocyclic amine with diverse commercial 

applications, benzo[a]carbazole; a benzoate derivative which could be derived from natural 

products or environmental chemicals; and oxalate, an endogenous metabolite that is also 

used as a cleaning agent. These chemicals were at higher abundance in serum of women 

decades before breast cancer diagnosis. Importantly, the network analysis is data-dependent, 

raising the possibility that individual chemicals could have a causal role in breast cancer 

or that breast cancer could occur through interaction of multiple chemicals in causal 

mechanisms. In the latter case, individual variations in exposure could have important 

impact on risk.

New approaches to identify suspect carcinogens are critical because research over the last 

50 years has not translated to a strategy for individual breast cancer prevention. The suspect 

chemical signal F18 (m/z 271.1195) in Community 4, was consistent with identification as 

ergosterol, which is derived from yeast and precursor of vitamin D2. Pathway mapping of 

this community showed overlap with inflammatory lipid pathways found in Communities 

1 and 2, and also included vitamin A metabolism, which is consistent with feature F1 

in Community 1, 4-hydroxyretinoic acid, being a suspect chemical. Many diet-derived 
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carotenoids can be converted to isobaric species to 4-hydroxyretinoic acid, and these are not 

distinguished by the HRM methods used. Thus, future research will be needed to address 

the potential for diet-environment interactions, such as implied by the overlap of estrogen-, 

vitamin D- and vitamin A-linked metabolites. Pregnancy impacts initiation, progression, 

and susceptibility to breast cancer (Troisi et al. 2018), and therefore pregnancy provides an 

appropriate time frame for study. Later age at pregnancy is a long-established breast cancer 

risk factor (Albrektsen et al. 2005; MacMahon et al. 1970) which has become increasingly 

common and is still unexplained. Because first birth rates have increased 6-fold for women 

ages 35–39 from 1973 to 2006 (Martin et al. 2015), more detailed understanding of the 

respective contributions and interactions must be a priority to learn how to mitigate risk for 

this population group of higher risk women.

In T2, an additional chemical cluster containing an insecticide (nitromethylene-piperidine), 

a cleaning agent (oxalate), a chemical used in wood preservation and dye production 

(dinitrophenol), and two unidentified chemical features (F2, F7), were associated with 

multiple amino acid pathways and nitrogen metabolism (urea cycle, pyrimidine, purine). The 

amino acid pathways overlap with pathways previously found to vary with persistent organic 

pollutants, p,p’-DDT (Hu et al. 2020) and PBBs (Walker et al. 2019). In a multigenerational 

study, p,p’-DDT exposure in women before puberty was found to be associated with breast 

cancer in mothers (Cohn et al. 2007) and in utero o’,p’-DDT exposure was associated with 

breast cancer in daughters (Cohn et al. 2015). Polybrominated biphenyls (PBB) are also 

persistent organic pollutants that cause breast cancer (IARC 2015). Potential mechanistic 

connections between dintrophenol, nitromethylene-piperidine, oxalate, and these POPs are 

not apparent, and mechanisms by which POPs disrupt central amino acid and nitrogen 

metabolism pathways are not known. In particular, amino acids are essential for growth 

and development, and disruption of pyrimidine and purine metabolism can be expected to 

have long-term consequences on metabolic programming which could contribute to cancer 

susceptibility. Thus, these findings warrant further investigation into underlying mechanisms 

related to breast cancer development.

In T3, the large metabolic community (C4, Fig. 3) containing inflammatory lipids was 

linked to a sparse community (C5, Fig. 3) containing glucose, benzo[a]carbazole and 

a suspect benzoate derivative. Of potential importance in this network, the glucose 

signal was negatively associated with metabolites connected to sialic acid, N-glycan and 

other pathways associated with extracellular matrix and turnover of connective tissue. 

Benzoate is conjugated with glycine for elimination, and the role of glycine in folate-

dependent metabolism through the vitamin B6-dependent hydroxymethyltransferase raises 

the possibility that benzoate derivatives could have unrecognized pathogenic effects. 

Similarly, the heterocyclic amine, benzo[a]carbazole, could be bioactivated by cytochrome 

P450 enzymes to generate mutagenic species which have not been characterized. Future 

hypothesis-driven research will be needed to address these possibilities.

The exposome epidemiology approach used in the present study has important assumptions, 

i.e., that chemical exposures which increase cancer risk can occur decades before breast 

cancer occurrence, that these exposures are detectable and at higher abundance in serum 

decades prior to breast cancer detection, and that network analyses of HRM data are 
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sufficient to detect these exposures and link them to biologic responses. With these 

assumptions, all HRM features from archival blood serum of women collected decades 

before breast cancer diagnosis can be used in a non-targeted manner to select ones that are 

increased (p < 0.05) in association with breast cancer occurrence. This selection criterion 

is not suitable for biomarker development because of multiple testing; however, this cutoff 

is suitable for discovery of potential chemical risk factors because any of the features 

at this cutoff could be correct. The selected HRM features are then used with a toxic 

exposome database, T3DB, to obtain accurate mass matches to known toxic chemicals, and 

these are subjected to non-targeted network and pathway enrichment analyses to identify 

environmental chemical-metabolic network associations linked to breast cancer outcome.

Exposome epidemiology will benefit from populations of tens or hundreds of thousands 

of individuals by enabling detection of exposures impacting small numbers of women 

and/or having only small contributions individually to breast cancer risk. The present study 

with only hundreds rather than thousands of individuals has limited capability to detect 

carcinogens with small effect size. Additionally, selection of HRM features for statistical 

selection in the current study required that features be present in 80% of the samples. 

Environmental chemicals and personal use products such as hair dyes cannot be expected to 

be present in 80% of the women and unlikely to be detectable. Application of untargeted gas 

chromatography-high-resolution mass spectrometry, which provides capabilities to measure 

other hydrophobic and volatile environmental chemicals (Hu et al. 2021), can be used 

to enhance coverage of environmental chemicals. Thus, future studies will benefit from 

larger population sizes, inclusion of complementary chemical analyses, and use of statistical 

methods which can accommodate sparse environmental chemical detection.

5. Conclusion

Recent technological and statistical advances in high-resolution metabolomics (HRM) 

provide capabilities for omics scale biomonitoring of chemicals derived from the 

environment along with endogenous metabolism and chemicals from the diet, intestinal 

microbiome, dietary supplements, pharmaceuticals, and personal use products. Because 

the metabolome is a functional readout of the interactions of a person’s genes with 

exposures, HRM of biologic samples provides one of the most accessible ways to connect 

environmental exposures with biologic status to anticipate breast cancer. As shown in the 

present study, these can be used with network and pathway analysis to identify suspect 

environmental chemicals and functional communities linked to breast cancer outcome. Such 

network approaches can be broadly applied to discover how life-long exposures impact 

personal cancer risks. For breast cancer, we believe that this approach will yield critically 

needed protocols to enhance protection or mediate pregnancy-associated risk.
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FDR false discovery rate
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m/z mass to charge

RT retention time

T2 second trimester
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Fig. 1. 
Metabolome-Wide Association Study (MWAS) of T3DB-annotated chemicals higher in 

second trimester (T2) serum. Association of seventeen T3DB-annotated features (Table 

3) that are higher in breast cancer than non-cases with the metabolome (9,042 metabolic 

features) from T2 serum (n = 384 for non-cases, n = 182 for breast cancer) are examined 

using xMWAS. The outcome of xMWAS analysis is visualized with two separate networks 

at |r| ≥ 0.3. The networks include three communities (C1, C2, C3) and show central 

seven chemicals (F1-F7) with tight connections [C1 (orange). C2 (blue), C3 (green)]. 

Representative metabolites of pathways associated with community are shown next to each 

community. DHET: dihydroxyeicosatrienoic acid, EETA: epoxyeicosatrienoic acid, TG: 

triglyceride, PC: phosphatidylcholine.
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Fig. 2. 
Metabolic pathway associated with second trimester (T2) chemicals. Pathway enrichment 

analysis with metabolites of three network communities in Fig. 1 was conducted using 

mummichog. A) A total of seven pathways were found altered with m/z 315.1957 (F1) in 

C1, B) Eight pathways were altered with m/z 334.2090 (F2) in C2, and C) Seven pathways 

were altered with environmental chemicals and drug metabolites (F3-F7) (p < 0.05). The 

ratio of selected metabolites mapped to the listed pathway over the number of total pathway 

metabolites detected is provided to the right of each bar.
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Fig. 3. 
Metabolome-Wide Association Study (MWAS) of T3DB-annotated chemicals higher in 

third trimester (T3) serum. Association of seven T3DB-annotated chemicals (Table 4) that 

are higher in breast cancer than non-cases with the metabolome (9,042 metabolic features) 

from T3 serum (n = 351 for non-cases, n = 172 for breast cancer) are examined using 

xMWAS. The network is visualized at |r| ≥ 0.3 and includes two communities (C4 and 

C5) showing central four chemicals with tight connections [C4 (orange)] than C5 (blue)]. 

Representative metabolites of pathways associated with community are shown next to each 

community.
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Fig. 4. 
Metabolic pathway associated with T3 chemicals. Pathway enrichment analysis with 

metabolites of two network communities in Fig. 3 was conducted using mummichog. A) 
Seven pathways were found altered with F18 chemical in C1and B) eight pathways were 

altered with chemicals (F19-F21) in C2 (p < 0.05). The ratio of selected metabolites mapped 

to the listed pathway over the number of total pathway metabolites detected is provided to 

the right of each bar.
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Table 1

Characteristics of Study Population.

Non-Cases (N = 413) Cases (N = 201)

Characteristic Median (IQR) Median (IQR)

Year of mother’s birth 1936 (9) 1931 (11)

Year of blood draw 1962 (2) 1962 (2)

Gestational day of T2 blood draw 160 (33) 161 (29)

Gestational day of T3 blood draw 250 (17) 249 (16)

BMI at first prenatal visit (kg/m2)a 22.1 (4.3) 22.6 (4.2)

Characteristic Percent Percent

Race

non-Hispanic Caucasian 70 69

African American 20 19

Hispanic 2 1

Asian 6 7

Mixed 2 3
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Table 2

HRM profiling of T2 and T3 serum samples comparing breast case (BC) and non-case groups (p < 0.05).

T2 (182 BC, 384 non-cases) T3 (172 BC, 351 non-cases)

Total number of metabolic features 9042 9042

Features differing at. p < 0.05 521 557

Differing features with BC/non-cases ratio > 1.0 188 151
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Table 3

T3DB-annotated m/z features higher in T2 serum of women who subsequently developed breast cancer (BC) 

compared with non-cases (p < 0.05).

Feature Name m/z RT (sec) % Higher in BC Category

F1* 4-Hydroxyretinoic acid 315.1957 177 20 Vitamin A metabolite

F2* Unidentified 334.2090 125 20 Unidentified

F3* 2-Nitromethylene-piperidine 141.0670 278 10 Insecticide

F4* 2,4-Dinitrophenol 183.0046 283 10 Multiple commercial uses

F5* Oxalic Acid 88.9883 129 10 Cleaning agent

F6* N-acetyl-proline 156.0666 283 10 Endogenous metabolite

F7* Unidentified 345.0777 51 20 Unidentified

F8 Unidentified 225.0712 139 30 Unidentified

F9 Quaternium-52 610.4093 195 20 Quaternary ammonium salt

F10 Ethyl cyanoacrylate 124.0404 14 10 Cyanoacrylate glue component

F11 2-Chloro-4,5-xylyl N-hydroxy-N-methylcarbamate 228.0427 284 10 Cholinesterase inhibitor

F12 Psoralen, Angelicin 167.0135 20 20 Skin nodule treatment,

F13 Hexazinone 273.1344 32 10 Herbicide

F14 MHP (Methyl hydrogen phthalate) 179.0350 138 10 Organic compound

F15 2-Hydroxyphenyl methylcarbamate 166.0508 212 10 Pesticide

F16 Levodopa (also exists as natural product) 178.0510 23 20 Dopamine precursor drug

F17 Phenylmercuric acetate 337.0157 22 20 Preservative

(*)
Targeted mass spectrometry analysis was performed to aid in identification of features F1 to F7 which were found to occur in central 

communities of Fig. 1, indicated by asterisk.

T3DB annotations are provided for others (F8-F17).
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