
Atypical Vocal Quality in Women with the FMR1 Premutation: An 
Indicator of Impaired Sensorimotor Control

Laura Friedman, Ph.D. CCC-SLP1, Meagan Lauber, B.S.1, Roozbeh Behroozmand, Ph.D.1, 
Daniel Fogerty, Ph.D. CCC-SLP2, Dariusz Kunecki, B.S.3, Elizabeth Berry-Kravis, M.D, 
Ph.D.3, Jessica Klusek, Ph.D. CCC-SLP1

1University of South Carolina, Department of Communication Sciences and Disorders

2University of Illinois Urbana-Champaign, Department of Speech and Hearing Science

3Rush University Medical Center, Department of Pediatrics

Abstract

Women with the FMR1 premutation are susceptible to motor involvement related to atypical 

cerebellar function, including risk for developing fragile X tremor ataxia syndrome. Vocal quality 

analyses are sensitive to subtle differences in motor skills but have not yet been applied to 

the FMR1 premutation. This study examined whether women with the FMR1 premutation 

demonstrate differences in vocal quality, and whether such differences relate to FMR1 genetic, 

executive, motor, or health features of the FMR1 premutation. Participants included 35 women 

with the FMR1 premutation and 45 age-matched women without the FMR1 premutation who 

served as a comparison group. Three sustained /a/ vowels were analyzed for pitch (mean F0), 

variability of pitch (standard deviation of F0), and overall vocal quality (jitter, shimmer, and 

harmonics-to-noise ratio). Executive, motor, and health indices were obtained from direct and self-

report measures and genetic samples were analyzed for FMR1 CGG repeat length and activation 

ratio. Women with the FMR1 premutation had a lower pitch, larger pitch variability, and poorer 

vocal quality than the comparison group. Working memory was related to harmonics-to-noise ratio 

and shimmer in women with the FMR1 premutation. Vocal quality abnormalities differentiated 

women with the FMR1 premutation from the comparison group and were evident even in the 

absence of other clinically evident motor deficits. This study supports vocal quality analyses as a 

tool that may prove useful in the detection of early signs of motor involvement in this population.
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The fragile X messenger ribonucleoprotein 1 (FMR1) gene is responsible for the production 

of FMRP, which is a protein that regulates the translation of neuronal proteins vital to 

synaptic function (Hagerman & Hagerman, 2013). The number of cytosine-guanine-guanine 

(CGG) trinucleotide repeats in FMR1 varies across individuals, with the typical range 

being 5–44 repeats (Darnell et al., 2011; Maddalena et al., 2001; Spector et al., 2021). 

Expansion of the CGG sequence to 55–200 repeats is known as the FMR1 premutation. 

Expanded CGG sequence and associated elevated levels of FMR1 mRNA and abnormal 

RAN translation products result in various biological dysfunctions that can manifest as 

distinct cognitive and physiological phenotypes ranging across the lifespan (Hessl et al., 

2005; Hocking et al., 2017). The FMR1 premutation is highly prevalent, occurring in 

1 in 113–178 women (Hantash et al., 2011; Seltzer et al., 2012; Toledano-Alhadef et 

al., 2001). Though women with the FMR1 premutation were previously thought to be 

clinically unaffected, it is now evident that the genotype is associated with a variety of age-

related health concerns, including early menopause and motor deficits; additionally, anxiety, 

depression, and executive function deficits are variably present and increase with age 

(Cordeiro, Abucayan, Hagerman, Tassone, & Hessl, 2015; Hagerman et al., 2018; Klusek, 

Hong, Sterling, Berry-Kravis, & Mailick, 2020; Maltman et al., 2022; Moser, Schmitt, 

Schmidt, Fairchild, & Klusek, 2021; O’Keefe et al., 2015; O’Keeffe et al., 2019; Roberts 

et al., 2016; Wittenberger et al., 2007). Furthermore, women with the FMR1 premutation 

are at risk for neurodegenerative disorders, including fragile X-associated tremor/ataxia 

syndrome (FXTAS), which affects 8–16% of women with the FMR1 premutation over the 

age of 50 (Coffey et al., 2008; Rodriguez-Revenga et al., 2009). FXTAS is associated with 

atrophy and white matter lesions in the cerebrum and cerebellum, and the clinical profile is 

characterized by intention tremors, balance problems, muscle stiffness, slow movement, and 

neurocognitive difficulties (Greco et al., 2006; Leehey, 2009).

Women with the FMR1 premutation may experience an atypical motor profile regardless of 

FXTAS expression (Kraan et al., 2013; O’Keefe et al., 2015). Emerging studies on motor 

control in middle-aged women with the FMR1 premutation, even those without FXTAS, 

have demonstrated deficits in various domains, including postural control, oculomotor 

inhibition, and precision sensorimotor control (Kraan et al., 2013, 2014b; McKinney et 

al., 2020, 2019; Moser et al., 2021; O’Keefe et al., 2015; O’Keeffe et al., 2019; Park et al., 

2019; Shelton et al., 2014; Wang et al., 2021; Wang, Khemani, Schmitt, Lui, & Mosconi, 

2019). The presence of these motor deficits has been hypothesized to be a marker of early 

or atypical aging as well as a precursor to the development of FXTAS, though this is not 

yet clear. The risk for developing FXTAS increases with higher CGG repeat lengths (Greco 

et al., 2006; Tassone et al., 2007), and several studies have reported that motor impairments 

are associated with higher CGG repeat lengths (Kraan et al., 2013; McKinney et al., 2019; 

O’Keeffe et al., 2019; Wang et al., 2019). Additionally, activation ratio (the percentage of 
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cells with the normal allele on the active X chromosome) has been found to be associated 

with motor control in women with the FMR1 premutation (O’Keefe et al., 2015).

The methods to identify motor impairments are often complex, requiring expensive 

equipment (i.e., force platforms, precision load cells) and analyses that currently present a 

barrier to feasible wide-scale application to the identification of early disease or aging across 

a large range of people. The development of methods that can identify early, subclinical 

signs of motor difficulties and that are accessible to medical professionals as well as easy to 

administer is key to the early detection and enhanced clinical management of FXTAS and/or 

general age-related motor deficits associated with the FMR1 premutation.

One established, sensitive, early motor marker for neurodegenerative movement disorders 

that has not yet been applied to the FMR1 premutation is vocal quality analysis. The 

complexity of the phonatory system and the motor sensitivity required for producing the 

vast range of sounds that make up human speech makes phonation an ideal system to 

examine subtle motoric changes that may precede clinical deficits (Fagherazzi, Fischer, 

Ismael, & Despotovic, 2021; Toth et al., 2017; Tracy, Özkanca, Atkins, & Hosseini Ghomi, 

2020). Therefore, subtle yet quantifiable changes in vocal quality could theoretically be used 

to identify the early stages of disease or risk for later disease onset, thus presenting an 

opportunity for early diagnosis, intervention, and prevention. Vocal quality parameters are 

highly sensitive to structural and functional changes from both normative aging and presence 

of pathologies (Harel, Cannizzaro, & Snyder, 2004; Hlavnika et al., 2017; Midi et al., 2008; 

Rusz et al., 2011). Age-related changes can be detected using vocal quality analyses, and 

occur as early as the age of 50 (Russell, Penny, & Pemberton, 1995; Stathopoulos, Huber, 

& Sussman, 2011), though a recent meta-analysis suggested that marked changes happen 

after 80 years of age (Rojas, Kefalianos, & Vogel, 2020). Consequently, vocal quality 

abnormalities may be the first observable manifestation of neurodegenerative disorders 

(Rahn, Chou, Jiang, & Zhang, 2007), and are often detectable prior to deficits on direct 

kinematic motor measures (Fagherazzi et al., 2021; Toth et al., 2017; Tracy et al., 2020). A 

major advantage of vocal quality analyses is that they provide a feasible, low-cost method 

for early detection of sensorimotor abnormalities, as special equipment is not required 

(e.g., vocal samples can be reliably assessed from smartphone recordings; Grillo, Brosious, 

Sorrell, & Anand, 2016; Uloza et al., 2015), and free, user-friendly software is available 

(e.g., Praat; Boersma & Weenink, 2018). Interpretation for clinicians who are not experts 

in voice disorders is simplified by the availability of published norms (Goy, Fernandes, 

Pichora-Fuller, & Van Lieshout, 2013).

Several vocal features can be indexed from a simple sustained phonation task, such 

as production of the vowel /a/ for several seconds. These features include fundamental 

frequency (i.e., F0, pitch) and standard deviation of F0, harmonics-to-noise ratio (the ratio 

between periodic and non-periodic speech), jitter (perturbation related to F0), and shimmer 

(perturbation related to vocal intensity). Several studies have found that these features 

successfully distinguish those with neurodegenerative disorders, including dementia-related 

diseases and motor diseases such as Parkinson’s, from controls (Burk & Watts, 2019; 

Jiménez-Jiménez et al., 1997; López-de-Ipiña et al., 2013; Martínez-Nicolás, Llorente, 

Martínez-Sánchez, & Meilán, 2021; Meilán et al., 2014; Midi et al., 2008; Ramig, Titze, 
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Scherer, & Ringel, 1988; Sauder, Bretl, & Eadie, 2017; Tracy et al., 2020; Tsanas, Little, 

McSharry, Spielman, & Ramig, 2012). For example, using vocal quality analyses, Meilán 

et al. (2014) accurately distinguished participants with Alzheimer’s disease from controls 

with 85% accuracy. In another report, Tsanas et al. (2012) used vocal quality analyses to 

distinguish participants with Parkinson’s disease from controls with 99% accuracy (Meilán 

et al., 2014; Tsanas et al., 2012). These findings suggest that the analysis of vocal quality 

abnormalities can be used to reliably discriminate between healthy individuals and those 

with various forms of neurodegenerative disease.

Present Study

Vocal quality analyses can differentiate and predict a variety of neurodegenerative 

conditions, can easily be extracted and quantified from a short vowel production sample, 

and are non-invasive and inexpensive to collect. Therefore, it stands to reason that the 

application of vocal quality analysis in women with the FMR1 premutation may lend insight 

into subtle deficits in motor control that may not be detectable with tasks involving other 

motor systems. The present study addressed four research questions:

1. Does the vocal quality of women with the FMR1 premutation differ from 
control women? Based on prior evidence of motor dysfunction in women 

with the FMR1 premutation, we predicted that aspects of vocal quality, which 

index sensorimotor control of the phonatory system, would be affected in this 

population.

2. Is vocal quality associated with age within women with the FMR1 premutation 
or control women? Given prior evidence of age-specific associations suggesting 

potentially accelerated aging in the FMR1 premutation (e.g., Moser et al., 2021; 

Sterling, Mailick, Greenberg, Warren, & Brady, 2013), we predicted that women 

with the FMR1 premutation would show age-related decline in vocal quality. 

We did not predict similar age associations in controls, given that our average 

sample age was younger than when age-related changes in vocal quality typically 

emerge.

3. Is vocal quality associated with motor function, physical health, and executive 
function? We posed this question to better understand the interface between 

vocal quality dysfunction and other key features of the FMR1 premutation 

phenotype that may be linked to the later development of FXTAS. We predicted 

that vocal quality dysfunction (i.e., lower mean F0, larger standard deviation 

of F0, lower harmonics-to-noise ratio, increased jitter and shimmer) would be 

linked with deficits in motor function and physical health, as indicated by direct 

quantitative assessment of balance and self-reported measures of functional 

tremor symptoms and physical health limitations. We also predicted that vocal 

quality dysfunction would be associated with poorer performance on executive 

measures of working memory, inhibition, and attention (O’Keefe et al., 2015; 

Storey et al., 2021).

4. Is vocal quality associated with FMR1-related molecular genetic indices? Based 

on prior evidence suggesting associations between molecular genetic indices 
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and motor dysfunction, we hypothesized that increased CGG repeat length 

and higher activation ratio would be associated with increased vocal quality 

dysfunction.

Methods

Participants

Participants were 35 women with the FMR1 premutation and a comparison group of 45 

women who did not carry the FMR1 premutation. Groups were closely matched on age 

(t[78] = 0.09, p = .928, d = −0.02), with a mean age of 48.12 years (range = 26–73). All 

women were enrolled in a larger study focused on language phenotypes in women with 

the FMR1 premutation. Women with the FMR1 premutation had 55–200 CGG repeats on 

the 5’ untranslated region of FMR1, as confirmed through genetic testing, and had children 

with fragile X syndrome, the FMR1 premutation, or a family history of fragile X-associated 

conditions. Although those with FXTAS were not explicitly excluded from the study, none 

of the women with the FMR1 premutation had a clinical FXTAS diagnosis, according 

to self-report. Women in the comparison group did not have a family history of fragile 

X-associated conditions and completed genetic testing through the larger study to rule out 

the FMR1 premutation. The comparison group was comprised of either mothers of children 

with autism spectrum disorder or mothers of children without any diagnosed developmental 

disabilities. In the present study, these groups were collapsed given that both groups 

represented women without FMR1-related conditions and initial analyses indicated that 

these groups did not differ on any of the vocal quality parameters examined. The majority of 

the sample identified as White (89%), with no differences in the racial distribution across the 

groups (χ2(1, N=79)=2.14, p = .143). Women with the FMR1 premutation were recruited 

through national organizations, social media, word of mouth, or prior study participation 

(Klusek, Fairchild, & Roberts, 2019). Women in the comparison group were recruited 

through flyers in pediatricians’ offices, social media, or word of mouth.

Procedure

Participants traveled to the University of South Carolina to complete testing in the university 

laboratory and provided written consent prior to study participation. Study protocol was 

approved by the university’s Institutional Review Board. Questionnaire data were gathered 

in the two weeks preceding the assessment via a REDCap survey (Harris et al., 2019, 

2009) and included questions on demographics and current medication use. The vocal 

quality sample was administered approximately one hour into the assessment, following 

administration of standardized cognitive and language measures. Buccal swabs for genetic 

testing were collected at the end of the assessment.

Measures

Vocal Quality Indices—Vocal quality was indexed from sustained vowel samples and 

consisted of values averaged from three repetitions of the vowel /a/, sustained for 5 

seconds. All voice samples were collected with a HOTEC H-W07 professional microphone 

positioned at a 45-degree angle, approximately eight inches from the participant’s mouth. 

Audio files were analyzed in Praat using system default settings (Boersma & Weenink, 
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2018). Sustained vowels were trimmed to segment and isolate the medial three seconds 

of the vowel. System default settings were used to calculate values for mean F0 (pitch) 

and standard deviation of F0 (pitch variability), harmonics-to-noise ratio (overall vocal 

quality), jitter % (perturbation related to frequency), and shimmer % (perturbation related to 

intensity).

Indices of Motor Function and Physical Health

Functional Tremor Disability Questionnaire.: The Functional Tremor Disability 

Questionnaire assesses tremor symptoms related to limitations of daily function (Louis et al., 

2000) and has previously been used to assess tremor symptoms in women with the FMR1 
premutation (Jacquemont et al., 2004; Klusek et al., 2022, 2017). Participants are asked to 

rate the amount of difficulty they experience completing various everyday tasks (e.g., tying 

shoes, threading a needle) on a 3-point scale, ranging from “no problem” to “I need to 

modify the way I perform this task; the task is difficult.” A higher overall score reflects more 

severe functional tremor symptoms and increased limitations. This questionnaire has good 

concurrent validity and test-retest reliability, and it is associated with direct assessments of 

tremor (Louis et al., 2000).

NIH Toolbox Standing Balance Test.: The balance scale of the National Institute of 

Health (NIH) Motor Toolbox (Reuben et al., 2013) is a measure of balance as indicated 

by postural sway while participants hold five progressively demanding poses while wearing 

an accelerometer at waist level (Rine et al., 2013). Raw scores were converted to T-scores, 

which corrected for age and other demographic variables. Lower scores indicate poorer 

balance (Gershon et al., 2013). This task has good test-retest reliability and acceptable 

criterion validity (Peller et al., 2022). Similar balance tasks have been used to assess motor 

deficits in women with the FMR1 premutation (Kraan et al., 2013; O’Keefe et al., 2015).

RAND-36 Health Short Form Survey.: The RAND 36-Item Health Short Form Survey 

assesses eight health components measuring quality of life related to physical and mental 

health (Hays, Sherbourne, & Mazel, 1993), and has previously been used to characterize 

health in women with the FMR1 premutation (Mailick et al., 2018). A physical health 

component summary score (RAND Health PCS) was computed as described by Ware et al. 

(1994). Standardized scores for the general health, physical functioning, bodily pain, and 

role limitations due to physical health problems are positively weighted, and the remaining 

subscales are negatively weighted (role limitations due to emotional health problems, 

emotional well-being, social functioning, and energy and fatigue); the weighted scores are 

then summed to produce a component summary score that reflects physical aspects of health 

(Ware, Kosinski, & Keller, 1994). Statistically, this score avoids floor and ceiling effects 

relative to the individual subscale scores. A lower score indicates more issues with physical 

health. This measure has high internal consistency and high convergent validity (VanderZee, 

Sanderman, Keyink, & de Haes, 1996).

Executive Function Indices

Spatial Addition.: Working memory was measured with the spatial addition subtest of the 

Wechsler Memory Scale – Fourth edition (WMS-IV; 48). This is a visual addition task in 
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which the participant looks at two subsequent grids with blue and red circles and is then 

asked to add or subtract the location of the circles based on a set of rules. The spatial 

addition task measures visual-spatial working memory. Standard scores were computed 

based on a normative sample. Two women with the FMR1 premutation were older than the 

normative sample for this subtest; therefore, standard scores were not calculated for these 

participants, and they were not included in analyses with the spatial addition scores. This 

subtest has good ecological validity (Drozdick & Cullum, 2011) as well as high internal 

consistency, ranging from 0.89 to 0.93 (Holdnack, Drozdick, & Wechsler, 2009).

Hayling Sentence Completion Test.: Inhibition was measured using the Hayling Sentence 

Completion Test converted error score (Burgess & Shallice, 1997). In the first part of this 

task, the examiner reads a series of 15 sentences, each of which has the last word missing. 

The participant provides a word that completes the sentence as quickly as possible. In the 

second part, the examiner reads a different series of 15 sentences with the last word missing, 

but the participant provides a word that is unconnected to each sentence as quickly as 

possible, which requires inhibition of prepotent responses. Responses from the second set 

are scored for category A errors (responses that are connected to the sentence) and category 

B errors (responses that are somewhat connected). The total number of category A and B 

errors are each converted using a scale provided on the protocol; these converted scores are 

summed, yielding a converted A+B error score. Error scores can range from 0 to 78, with 

a higher score reflecting impaired inhibition. This measure has good construct validity and 

adequate test-retest reliability (Andrés & Van der Linden, 2000; Burgess & Shallice, 1997).

Brown Attention-Deficit Disorder Scales.: Attention was assessed with the Brown 

Attention-Deficit Disorder (ADD) Scales, Ready Score-Adult (T. E. Brown, 1996). This 

40-item scale assesses a range of inattention symptoms. Scores can range from 0 to 120, 

with higher scores reflecting more symptoms of inattention. This scale demonstrates high 

internal consistency (.96) and evidence of validity (T. E. Brown, 2001).

FMR1 Molecular Genetic Variables—DNA was isolated from buccal samples using 

standard methods. CGG repeat length was determined by polymerase chain reaction (PCR) 

using the Asuragen AmplideX® Kit (Chen et al., 2010; Grasso et al., 2014). Activation ratio 

was determined using Asuragen AmplideX® FMR1 mPCR Kit (Chen et al., 2011). Analyses 

were conducted in the laboratory of Dr. Berry-Kravis at Rush University Medical Center. 

Due to insufficient amounts of DNA for analyses, one participant was missing CGG and 

activation ratio data and two participants were missing activation ratio data.

Medication Use—Participants completed an in-house questionnaire that inquired about 

current medication use that was used to quantify the use of medications known to 

affect vocal quality (i.e., antihistamines, hormones, corticosteroids, antivirals, and tricyclic 

antidepressants; Abaza, Levy, Hawkshaw, & Sataloff, 2007; Murry, McRoy, & Parhizkar, 

2007)
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Data Analysis

All data analyses were conducted in R (R Core Team, 2020). Our first research question 

regarding group differences in voice quality variables was analyzed using linear regression 

models. Prior to analyses, all variables were examined for normality and descriptive 

statistics were computed (Table 2). All sustained vowel variables were normally distributed, 

except the standard deviation of F0 and jitter, which were both positively skewed. 

These variables were therefore analyzed using a generalized linear model with a gamma 

distribution and a log-link function which was determined to be an appropriate fit for the 

skewed distribution. Although the groups did not differ on the percent using medications that 

can affect vocal quality, χ2[1, N=80]=0.00, p = .977, we further controlled for this potential 

confound by controlling for medication use in analyses, as reflected by a dichotomous 

variable (present/absent). The Benjamini-Hochberg false discovery rate correction was 

applied at the level of the model F to account for multiple comparisons (Benjamini 

& Hochberg, 1995). Partial eta-squared was calculated as a measure of effect size and 

interpreted as 0.01=small effect, 0.06=medium effect, 0.14=large effect.

We addressed the second research question regarding the relationship between vocal quality 

and age within women with the FMR1 premutation and control women using general linear 

models for all variables, except models with standard deviation of F0 and jitter as outcome 

variables, which were examined with a generalized linear model with a gamma distribution 

and a log-link function. All models assessing vocal quality and age controlled for medication 

use. The third research question addressing associations between vocal quality and indices 

of motor and executive function within the FMR1 premutation group and control groups was 

also addressed using linear models or generalized linear models controlling for medication 

use. Specifically, models with the standard deviation of F0 and jitter as outcome variables 

were analyzed with generalized linear models with a gamma distribution and a log-link 

function to account for non-normality. Because this aim is exploratory in nature, we did not 

apply a correction to the p-values.

Finally, we explored associations between CGG repeats, activation ratio, and vocal quality 

parameters in women with the FMR1 premutation using linear regression or generalized 

linear models. CGG repeats and activation ratio were analyzed in separate models. 

Medication use was controlled for in all models. For the models predicting standard 

deviation of F0 and jitter, we applied a gamma distribution with a log-link function which 

best fit the models. Given prior findings on curvilinear associations between CGG repeats 

and behavioral aspects of the FMR1 premutation phenotype (Klusek et al., 2018; Mailick, 

Hong, Greenberg, Smith, & Sherman, 2014), we probed higher order polynomial CGG 

terms; no higher order values were significant, so they were not retained in the models.

Results

Group Differences in Vocal Quality

Women with the FMR1 premutation had a significantly lower mean F0 with a medium 

effect size (F[1,77]=9.32, FDR-corrected p =.015, ηp
2 = .11), indicating a lower pitch. 

Higher standard deviation of F0 was also observed with a medium effect size (F[1,77]=5.15, 
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FDR-corrected p =.026, ηp
2 = .07), indicating poorer vocal control during the sustained 

vowel. Finally, women with the FMR1 premutation had a lower harmonics-to-noise ratio 

(F[1,77]=6.89, FDR-corrected p =.043, ηp
2= .08) than the comparison group with a medium 

effect size, indicating poorer vocal quality. Groups did not differ in jitter (F[1,77]=1.20, 

FDR-corrected p =.339, ηp
2 = .04) or shimmer (F[1,77]=0.93, FDR-corrected p =.339, ηp

2 = 

.01). Group differences are depicted in Figure 1.

Relationship between Vocal Quality and Age

Within women with the FMR1 premutation, age was not associated with mean F0 

(F[2,32]=0.55, p = .473, ηp
2 = .02), standard deviation of F0 (F[2,32]=1.32, p = .258, ηp

2 = 

.04), harmonics-to-noise ratio (F[2,32]=0.35, p = .559, ηp
2 = .01), jitter (F[2,32]=0.45, p = 

.506, ηp
2 = .05), or shimmer (F[2,32]=1.57, p = .219, ηp

2 = .05).

Within control women, age was not associated with mean F0 (F[2,42]=1.61, p = .287, ηp
2 = 

.03), standard deviation of F0 (F[2,42]=2.59, p = .115, ηp
2 = .07), harmonics-to-noise ratio 

(F[2,42]=0.05, p = .823, ηp
2 = .00), jitter (F[2,42]=0.27, p = .608, ηp

2 = .02), or shimmer 

(F[2,42]=1.67, p = .204, ηp
2 = .04).

Relationship between Vocal Quality and Motor Function, Physical Health, and Executive 
Function

Of the executive function variables, lower scores on the spatial addition task (i.e., working 

memory) was associated with poorer vocal quality, specifically harmonics-to-noise ratio 

(p = .003, ηp
2 = .30) and shimmer (p = .003, ηp

2 = .29) within women with the FMR1 
premutation; see Figure 2. No significant associations were observed with the motor and 

physical health variables for this group (see Table 2 for coefficients for women with 

the FMR1 premutation). Among the control women, lower scores on the Brown ADD 

questionnaire (i.e., attention) was associated with lower mean F0 (p = .045, ηp
2 = .10), and 

lower NIH Balance scores were associated with increased standard deviation of F0 (p = 

.020, ηp
2 = .14; see Table 2 for coefficients for control women).

Association between Vocal Quality and FMR1 Indices

There were no significant associations between the molecular genetic indices and vocal 

quality. Within women with the FMR1 premutation, CGG repeat length was not associated 

with mean F0 (F[2,31]=0.11, p = .741, ηp
2 = .00), standard deviation of F0 (F[2,31]=2.55, 

p = .121, ηp
2 = .06), harmonics-to-noise ratio (F[2,31]=1.07, p = .310, ηp

2 = .03), jitter 

(F[2,31]=2.09, p = .159, ηp
2 = .14), or shimmer (F[2,31]=3.03, p = .092, ηp

2 = .09). 

Activation ratio also was not associated with mean F0 (F[2,29]=0.04, p = .848, ηp
2 = 

.00), standard deviation of F0 (F[2,29]=3.99, p = .055, ηp
2 = .10), harmonics-to-noise ratio 

(F[2,29]=0.52, p = .478, ηp
2 = .02), jitter (F[2,29]=0.23, p = .636, ηp

2 = .02) or shimmer 

(F[2,29]=0.01, p = .937, ηp
2 = .00). Following (Leehey et al., 2008), we also probed for 

CGG effects while controlling for activation ratio, and inferences did not change for any 

model.
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Discussion

Emerging research suggests that women with the FMR1 premutation, even those without 

a diagnosis of FXTAS, have an atypical motor profile as demonstrated by a variety of 

subtle and often subclinical symptoms (Kraan et al., 2013, 2014b; McKinney et al., 2020, 

2019; Moser et al., 2021; O’Keefe et al., 2015; O’Keeffe et al., 2019; Park et al., 2019; 

Shelton et al., 2014; Wang et al., 2021, 2019). The present study took a novel approach 

toward characterizing these motor deficits via vocal quality analyses, which are sensitive 

to differences between individuals with and without neurodegenerative diseases as well 

as subtle changes in aging (Harel et al., 2004; Hlavnika et al., 2017; Midi et al., 2008; 

Rusz et al., 2011). We found that women with the FMR1 premutation differed from a 

comparison group comprised of women who did not carry FMR1 mutations on measures of 

pitch, pitch stability, and overall vocal quality. We also found that, among women with the 

FMR1 premutation, overall vocal quality was related to working memory. These findings 

contribute to the burgeoning body of literature on motor issues within women with the 

FMR1 premutation and have implications for the utility of vocal quality analyses within this 

population.

Consistent with our hypotheses, we found that women with the FMR1 premutation differed 

from the comparison group on several vocal quality parameters. Specifically, women with 

the FMR1 premutation had a lower mean F0, larger standard deviation of F0, and lower 

harmonics-to-noise ratio, indicating atypical pitch, heightened pitch variability, and overall 

poorer voice quality. This finding adds to growing evidence that women with the FMR1 
premutation who do not have FXTAS experience motor problems (Kraan et al., 2013, 2014b; 

McKinney et al., 2020, 2019; Moser et al., 2021; O’Keefe et al., 2015; O’Keeffe et al., 2019; 

Park et al., 2019; Shelton et al., 2014; Wang et al., 2021, 2019) by demonstrating that vocal 

quality – reflecting sensorimotor control of the phonatory system – is also affected in this 

group. The vocal quality differences observed in this study may arise from neural structures 

that support speech motor control and phonation, such as the cerebellum (Song et al., 

2022), which has been suggested to be implicated in women with the FMR1 premutation, 

even those without FXTAS (Kraan et al., 2013; Storey et al., 2021). Notably, vocal quality 

dysfunction was evident in the present sample of women with the FMR1 premutation prior 

to the emergence of other clinically evident motor problems; the present sample did not 

have clinical diagnoses of FXTAS and did not have balance, functional tremor, or physical 

health scores indicative of clinical motor problems. This finding is consistent with prior 

studies suggesting that vocal quality analyses are sensitive to early signs of disease relative 

to direct kinematic measures (Fagherazzi et al., 2021; Toth et al., 2017; Tracy et al., 2020), 

and therefore may be useful in the early detection of emergent motor problems.

Poorer working memory skills were associated with several vocal quality features within 

women with the FMR1 premutation, including lower harmonics-to-noise ratio and higher 

shimmer (perceived as hoarseness). Within those with the FMR1 premutation, deficits in 

executive function skills, such as working memory, are an early indicator of those who 

later develop FXTAS (Famula et al., 2022; Kogan & Cornish, 2010), and working memory 

deficits in women with the FMR1 premutation are associated with motor impairments such 

as gait variability and tremor (Kraan et al., 2014a; Storey et al., 2021). Thus, this finding 
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suggests that vocal quality deficits in women with the FMR1 premutation may align with 

other established early features of FXTAS (i.e., executive dysfunction), supporting vocal 

quality analysis as a potentially useful indicator of risk for the later development of FXTAS. 

Moreover, we did not find similar associations between working memory and vocal quality 

in control women, which provides a preliminary indication of group-specific associations. 

A remaining question for future research is whether vocal quality and working memory 

difficulties originate from shared neurocognitive mechanisms within women with the FMR1 
premutation. Specifically, the sensorimotor cortex is implicated in voice production, and 

sensorimotor processes are theorized to play a role in visuospatial working memory 

(Olthoff, Baudewig, Kruse, & Dechent, 2008; Wilson, 2001). Thus, examining sensorimotor 

cortex changes among women with the FMR1 premutation may be a fruitful avenue for 

future research.

While our finding of atypical vocal quality in women with the FMR1 premutation is in itself 

indicative of motor dysfunction, we did not observe concurrent associations between vocal 

quality indices and other more frank motor problems (i.e., balance deficits and tremor). 

By focusing on women with the FMR1 premutation who did not have FXTAS or frank 

motor involvement in the present study, we were able to add to an emerging evidence 

base supporting the presence of sensorimotor control deficits (indicated in the present 

study by vocal quality abnormalities) in women with the FMR1 premutation who do not 

have FXTAS. However, it remains unclear whether the atypical vocal quality detected 

in the present study reflects a preclinical marker for the later development of FXTAS 

or a broader premutation-associated motor phenotype. As vocal quality is a predictor of 

neurodegenerative disorders (Harel et al., 2004; Hlavnika et al., 2017; Midi et al., 2008; 

Rahn et al., 2007; Rusz et al., 2011), atypical vocal quality may be explored in future 

studies as a potential precursor to FXTAS. Specifically future focus on an older sample or 

a sample symptomatic for FXTAS may better clarify how vocal quality dysfunction maps 

onto other motor symptoms seen in the FMR1 premutation; the low level of tremor and 

balance problems in our sample may have prevented the detection of such an association. 

Vocal changes in FXTAS have been described in case studies, which note perceived vocal 

tremor (Fay-Karmon & Hassin-Baer, 2019). Future studies should compare vocal quality to 

other measures that differentiate women with the FMR1 premutation from controls (e.g., 

measures of sensorimotor precision control or postural control; 23,24) as well as examine 

the predictive value of vocal quality on other aspects of motor control longitudinally, both 

within and outside of the context of FXTAS.

Vocal quality indices were not related to age in women with the FMR1 premutation or 

control women. This may be because our participants, on average, were overall younger than 

the typical age of onset for vocal quality changes (Russell et al., 1995; Stathopoulos et al., 

2011). It may also be the case that the atypical vocal quality observed in women with the 

FMR1 premutation is a marker for neuropathological motor issues that are not age-linked. 

Further research is needed to clarify effects, such as longitudinal research and focus on older 

samples.

Finally, we did not detect significant associations between vocal quality and CGG repeat 

length or activation ratio within women with the FMR1 premutation. Previous studies 
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have shown that CGG repeat length, without or without controlling for activation ratio, is 

associated with ataxia and postural control in women with the FMR1 premutation (Kraan 

et al., 2013; Leehey et al., 2008), and activation ratio has previously been linked to balance 

in women with and without FXTAS (O’Keefe et al., 2015). Our sample size was relatively 

small and we did not have participants who had higher premutation CGG repeat lengths 

which occur less frequently in the population; this limited range may have affected our 

ability to detect associations with CGG repeats. Future research should aim to elucidate 

potential associations between vocal quality and FMR1 indices in a larger sample size, as 

characterization of motor features and their associations with molecular indices is critical to 

defining the expression of the FMR1 premutation phenotype.

Strengths, Limitations, and Future Directions

This study presents several strengths. Our use of vocal quality analyses for a sustained 

vowel task is a key strength of this study, as it represents a quick and inexpensive method 

for identifying vocal quality impairments. Recent work has highlighted the development 

of automatic vocal quality analyses that use machine learning algorithms to yield computer-

aided diagnoses of various diseases, including Parkinson’s disease (Gómez-García, Moro-

Velázquez, & Godino-Llorente, 2019; Madruga, Campos-Roca, & Pérez, 2021; Vashkevich 

& Rushkevich, 2021). A key future direction for this research includes exploring the 

utility of these automated vocal quality analyses for women with the FMR1 premutation. 

Another strength was our inclusion of both direct and self-report measures of motor and 

executive function indices, which provided a muti-modal approach toward understanding the 

association between these constructs and vocal quality. We employed measures of functional 

tremor and physical health that capture functional deficits experienced in daily life and 

therefore have strong clinical relevance; however, the use of direct assessment measures of 

tremor or physical health in future work may illuminate more nuanced relationships with 

vocal quality. Direct assessment of FXTAS, instead of reliance on self-reported clinical 

diagnoses, may have been useful in allowing us to further characterize our sample. Future 

research should include FXTAS measures, as well as examine vocal quality among those 

who develop FXTAS, which would enhance our understanding of the utility of phonatory 

analyses as an early marker of FXTAS. Relatedly, without longitudinal data, the emergence 

and trajectory of atypical vocal quality remain unclear. This study also does not address 

neural underpinnings; future studies might explore atypical aging via cerebellar changes as 

a potential mechanism for the vocal quality differences observed in the present study, given 

that cerebellar dysfunction is implicated in aging among those with the FMR1 premutation 

without FXTAS (S. S. G. Brown, Basu, Whalley, Kind, & Stanfield, 2018; Kraan et al., 

2013; Storey et al., 2021). Additionally, the present study was designed to document 

group differences in vocal quality and begin to elucidate the relationships between vocal 

abnormalities in the FMR1 premutation and other aspects of the phenotype, and therefore 

lacked the sample size to test associations within both groups within the same statistical 

model. We also did not correct for multiple models, as these analyses were exploratory. 

Finally, our sample lacked racial diversity, which limits the generalizability and should be 

addressed in future work.
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Conclusions

This study documents vocal quality abnormalities in women with the FMR1 premutation 

which are detectable prior to the onset of other clinically evident motor problems. Future 

studies may contribute to our understanding of the utility of vocal quality analysis as a 

potential preclinical marker for neurodegeneration in women with the FMR1 premutation. 

Early detection of the onset of motor involvement in women with the FMR1 premutation 

may aid in the early initiation of prevention or treatments to promote age-related health in 

this population.
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Figure 1. 
Group Differences in Mean F0 (A), Standard Deviation of F0 (B), Harmonics-to-Noise 

Ratio (C). Jitter % (D), and Shimmer % (E)
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Figure 2. 
Association Between Poorer Working Memory and Lower Harmonics-to-Noise Ratio (A) 

and Increased Vocal Intensity Perturbation (B) in Women with the FMR1 Premutation
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Table 1

Descriptive Statistics

Group

FMR1 Premutation
n=35

M (SD) [range]

Comparison Group
n=45

M (SD) [range]

Vocal Quality Indices

 Mean F0 (Hz) 161.99 (27.56), 96.02–221.86 182.29 (30.91), 115.05–265.66

 Standard deviation of F0 (Hz) 21.28 (17.88), 1.20–61.55 14.20 (11.60), 1.41–37.73

 Harmonics-to-noise ratio (dB) 10.37 (4.36), 3.48–19.04 13.16 (4.95), 2.02–22.85

 Jitter % 0.78 (0.52), 0.26–2.69 0.65 (0.63), 0.16–3.81

 Shimmer % 10.37 (5.21),0.77–19.51 9.22 (5.55), 0.96–24.33

Motor and Executive Function Indices

 Tremor Disability Questionnaire Score 1.07 (1.57), 0–6 1.33 (2.42), 0–9

 RAND Health PCS 51.11 (7.72), 34.08–61.69 50.38 (9.89), 25.17–62.63

 NIH Balance Standard Score 97.35 (15.56), 79–139 102.20 (17.41), 59–144

 WMS-IV Spatial Addition Standard Score 99.66 (13.22), 75–135 99.76 (15.49), 65–125

 Hayling Converted Error Score 4.45 (5.78), 0–32 4.34 (5.33), 0–25

 Brown ADD Total Score 34.97 (21.01), 4–74 27.12 (22.31), 3–106

FMR1 Genetic Indices

 CGG repeats 91.85 (13.31), 64–117 32.34 (4.30), 25–43

 Activation ratio 0.46 (0.16), 0.05–0.75 N/A

Percentage using of medication(s) that can affect vocal quality1 57% 60%

Note.

1
Drug classes that affect vocal quality include antihistamines, hormones, corticosteroids, antivirals, and tricyclic antidepressants (Abaza et al., 

2007; Murry et al., 2007).
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