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Tangram of Sodium and Fluid Balance
Domenico Bagordo, Gian Paolo Rossi ,  Christian Delles ,  Helge Wiig ,  Giacomo Rossitto  

ABSTRACT: Homeostasis of fluid and electrolytes is a tightly controlled physiological process. Failure of this process is a 
hallmark of hypertension, chronic kidney disease, heart failure, and other acute and chronic diseases. While the kidney 
remains the major player in the control of whole-body fluid and electrolyte homeostasis, recent discoveries point toward more 
peripheral mechanisms leading to sodium storage in tissues, such as skin and muscle, and a link between this sodium and a 
range of diseases, including the conditions above. In this review, we describe multiple facets of sodium and fluid balance from 
traditional concepts to novel discoveries. We examine the differences between acute disruption of sodium balance and the 
longer term adaptation in chronic disease, highlighting areas that cannot be explained by a kidney-centric model alone. The 
theoretical and methodological challenges of more recently proposed models are discussed. We acknowledge the different 
roles of extracellular and intracellular spaces and propose an integrated model that maintains fluid and electrolyte homeostasis 
and can be distilled into a few elemental players: the microvasculature, the interstitium, and tissue cells. Understanding their 
interplay will guide a more precise treatment of conditions characterized by sodium excess, for which primary aldosteronism 
is presented as a prototype. (Hypertension. 2024;81:490–500. DOI: 10.1161/HYPERTENSIONAHA.123.19569.) • 
Supplement Material.
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Historically, studies and public policies on cardiovascular 
disease and particularly hypertension have focused on 
sodium (Na+) intake, while relatively less attention has 

been devoted to differences in its handling. Old assump-
tions on the constancy of the internal environment have 
now been challenged, revealing that Na+ balance can be 
dynamic and over time not even perfectly balanced.

Approximately 10 years ago, Bhave and Neilson1 
reviewed the mechanisms of body fluid and electrolyte 
dynamics in relation to body compartments and recon-
nected historical principles with novel insights. In this 
review, we will expand on those dynamics, presenting 
new technologies and evidence, but also old experimental 
data that provide ground to our current interpretations. In 
particular, we will discuss the following: (1) the variability 
of day-to-day Na+ balance; (2) the concept of long-term 
uneven Na+ balance in cardiovascular and renal disease, 
long established but nowadays directly visualized as 
Na+ excess in tissues; (3) the evolving interpretation for 
such tissue signal; (4) the importance of interstitial fluid 

balance, microvascular interface, and intracellular com-
partment. In these regard, insights from primary aldoste-
ronism (PA), a prototypic salt-sensitive disease leading to 
hypertension but also to cardiorenovascular damage in 
excess of blood pressure (BP) values, will be presented.

ROLLERCOASTER BALANCE
Urinary Na+ excretion has traditionally been assumed to 
invariably reflect intake. However, the day-to-day validity 
of such equivalence has been recently disproved by long-
term balance studies2,3: the daily Na+ excretion showed 
remarkable oscillations around the amount of salt targeted 
by the dietitians (Figures S1 and S2), in addition to weekly 
and monthly periodicity related to rhythmic hormonal con-
trol.3 The daily Na+ excretion from 1 single 24-hour urine 
collection predicted the recorded Na+ intake within a pre-
defined±25 mmol 2-sided interval only in 49% of cases. 
Reassuringly, the average daily Na+ excretion provided 
an accurate estimate of mean salt intake, thus reflecting 
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the ultimate achievement of a steady-state balance, and 
repeated 24-hour collections (but not nocturnal only4 or 
spot urine5) improved the precision.3,6 In keeping with a 
variability of 24-hour collections, half of the subjects 
included in a single-center cohort study switched between 
tertiles of estimated Na+ intake at up to 15-year follow-
up collections, compared with a reference baseline. With 
the limit of a noninterventional design and lack of control 
on dietary changes, disease, and medications over time, 
this reclassification significantly affected the observed 
relationship between Na+ intake and long-term cardiovas-
cular and renal outcomes.7 Averaging multiple collections 
strengthened the association,7 as later confirmed.8

Should we abandon the use of 24-hour urine collec-
tions for the estimation of daily Na+ intake in patients? We 
should not, because of 2-fold considerations. First, single 
24-hour urine collections from adequately sized cohorts 
offer a precise estimate of group—albeit not of individual—
Na+ intake,9 which is relevant for researchers and study 
designs. Second, if the goal of sensible clinicians is to 
detect true excess intake and not a precise value, to avoid 
false positives and consequent unnecessary and potentially 
stressful changes in dietary habits, the focus should be on 
a 1-sided end, rather than 2-sided CI. This clinical approach 
requires less precision: a 270 mmol Na+/day, for example, 
is unlikely to reflect anything but high Na+ intake, which is 
universally recognized as a cardiovascular risk factor.10 In 
the setting of our hypertension clinics where dietary advice 
and medications are controlled,11 24-hour urine collection 
remains a valuable and inexpensive tool to decipher the 
biochemical screening of secondary forms,12 to estimate 
adherence to lifestyle recommendations and to provide 
semiquantitative metrics for positive patient reinforcement 
upon clinically significant reductions at follow-up, provided 
that data are interpreted with the patient and cum grano 
salis—much welcome in this occasion.

TANGRAM
Ultra-Long-Term or Life-Long Balance May 
Obey Different Rules
Long-term human balance studies, in keeping with 
previous experimental reports of positive Na+ (but not 
water) balance on extremely high Na+ intake,13 found 

considerable changes in total body Na+ without paral-
lel changes in body weight.2,14 Similarly, multiple stud-
ies in rodents identified a dissociation between Na+ and 
water tissue content.15–17 The degree of Na+-associated 
fluid retention upon high Na+ intake was first shown to 
differ in animal models of normotension, salt-resistant, 
and salt-sensitive hypertension, with the former show-
ing the highest water-independent Na+ storage capac-
ity.15 Subsequent body composition studies, conducted 
by desiccation and ashing of whole rat carcasses or 
specific parts (ie, bones, quadriceps muscles, and skin), 
suggested the skin as the main depot for excess Na+ 
accumulation.16–19 If one sees the analogy of body fluid 
and electrolyte compartmentalization20 with a Tangram, 
an old dissection puzzle consisting of a few pieces that 
are variably combined to form different shapes, these 
unphysiological findings of a water-free Na+ excess 
would seem like one of those Tangram paradoxes with 
seemingly redundant (or missing, depending on one’s 
perspective) pieces (Figure 1).

The most obvious answer to the question “where is 
the salt?”21 pointed to the extracellular space, that is, 
the compartment where 98% of total body Na+ is con-
fined.20 A volume-independent hypertonic extracellular 
accumulation of Na+ appeared most likely, as volume-
paralleled extracellular expansion was at odds with the 
unchanged extracellular volume measured across differ-
ent Na+ intake phases in the original reports.13 Although 
the magnitude of the increase in Na+ intake between 
experimental groups and the inulin-based measure of 
extracellular volume have been criticized,22 the hypoth-
esis of a hypertonic interstitium was strengthened by evi-
dence of TonEBP (tonicity-responsive enhancer- binding 
protein) activation in the skin resident mononuclear 
phagocytic cells of salt-loaded rodents.18 TonEBP- 
mediated signaling included Vascular Endothelial Growth 
Factor-C (VEGF-C) secretion, VEGF receptor 3 activa-
tion, and plastic expansion of the lymphatic vascular net-
work, to provide enhanced local Na+ excess clearance.19 
Disruption of this pathway resulted not only in skin Na+ 
accumulation but also in salt-sensitive hypertension.19,23 
These findings led to conclude that water-independent 
binding of Na+ to the negatively charged glycosamino-
glycan network, particularly represented in the skin inter-
stitium and expanded by dietary NaCl loading,24 could 
explain the puzzling tangram appendage (Figure 1), that 
is, where the retained sodium was being stored. The 
plasticity of glycosaminoglycans in regulating tissue Na+ 
binding and storage was supported by subsequent rat25,26 
and human27 data, including distinct responses in ani-
mals and patients with genetically altered glycosamino-
glycan structure.28,29 The concept of glycosaminoglycan 
binding and osmotic inactivation of Na+ is, however, prob-
lematic because this would rely on repulsion and thereby 
excretion of chloride (Cl−),30 found to be increased rather 
than reduced in rat skin during high-salt conditions.19 

Nonstandard Abbreviations and Acronyms

BP blood pressure
CKD chronic kidney disease
IF interstitial fluid
NaE exchangeable Na+
PA primary aldosteronism
PV plasma volume
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Moreover, experiments designed to assess glycosamino-
glycan binding of Na+ in skin indicated that such binding 
was negligible.31 Recent observations in rats and mice 
also showed no increase in skin glycosaminoglycans by 
salt loading, or even a decrease with mineralocorticoid 
(deoxycorticosterone acetate [DOCA]) treatment, despite 
significant tissue Na+ storage.31,32 These heterogeneous 
observations may be explained by methodological differ-
ences or by additional players such as inflammation and 
mechanical stress (shown to induce glycosaminoglycan 
production in cardiac fibroblasts33 and skin34) rather than 
a solely Na+-dependent control of glycosaminoglycans.35 
While the implication of interstitial mucopolysaccharides 
in the regulation of circulation dates back to Guyton et 
al,36 how this links to tissue Na+ and the direction of the 
reported associations still remain unclear.

I WAS BLIND BUT NOW I SEE (JOHN 9:25)
The development of 23Na magnetic resonance spectros-
copy and high-magnetic field imaging (MRI) in the last 
decade has given us the chance of seeing Na+.

23NaMRI, originally validated against direct chemical 
analysis of tissues and calibrated with phantoms contain-
ing NaCl at different concentrations,37 revealed excess 
skin and muscle Na+ content in patients with resistant 
hypertension or PA,38,39 diabetes,40–42 heart failure,43,44 but 
also systemic inflammatory conditions,45–48 lipedema,49 
and obesity, but only in the presence of high circulating 
inflammatory markers.50 Chronic kidney disease (CKD), a 
highly salt-sensitive condition, has been the most exten-
sively studied: patients on maintenance hemodialysis, 
particularly those with concomitant diabetes,51 harbor 
high tissue Na+ content,52–54 comparable to heart fail-
ure.55 Tissue Na+ in patients with CKD was higher than in 
controls even before the end stage56 and correlated with 
left ventricular mass better than total body overhydration 
or BP.57 A similar association of tissue Na+ with target 
organ remodeling, independent of age, gender, diuretic 
use, and 24-hour ambulatory BP, has been found in dia-
betes for retinal vessels.58 When Bhave and Neilson1 
contended that only about 5% of essential hypertension 
in American patients may involve alterations in (tissue) 
Na+ storage, that is, those on a diet >300 Na+ mEq/day, 
they could not know this pandemic scale of tissue Na+ 
excess, even exceeding values found in hypertensives, as 
later revealed by 23NaMRI.41

Nonetheless, a few related technical aspects are 
worth additional considerations. Similar to most reported 
chemical analyses of homogenized tissues, only recently 
coupled with a reliable extracellular volume tracer to 
provide some compartmental information,31 current 
23NaMRI can only measure whole-tissue Na+. In fact, it 
was recently claimed that 23NaMRI protocols used in the 
clinical setting predominantly reveal signals from free 
(dissolved) ions,42,59 thus lending scarce support to the 
hypothesis of excess glycosaminoglycan-bound Na+ in 
cardiovascular disease; however, whether it is possible 
to reliably discriminate the amount of Na+ that is free 
or bound (and this definition may extend to the intra-
cellularly constrained pool) remains much debated.59 
For sure, and at odds with the suggested hypertonic-
ity, all authors reported that whole-tissue Na+ levels for 
the above pathologies are ≤40 mmol/L, far below the 
Na+ concentration typically found in plasma,1 but also 
in lymph or interstitial fluid eluate.60 This may reflect the 
presence of a relatively Na+-poor intracellular fraction in 
all tissues, which would dilute the signal from the intersti-
tium in the final whole-tissue readout.61,62 Unfortunately, 
the attempt to separate the intracellular from extracel-
lular fractions is limited by MRI spatial resolution and by 
a similar relaxation time of Na+ in the 2 compartments63 
or by toxicity of extracellular-limited shifting agents.64 To 

Figure 1. The Tangram of water and sodium.
The Tangram shapes (left) depict the traditional distribution of 
body water and sodium in compartments.20 Experimental salt 
loading of humans and rats led to a puzzling excess of sodium 
compared with water,13–17 which reminds of Tangram paradoxes (E 
shapes): 2 figures composed with the same 7 pieces, one of which 
incomprehensibly seems to be a subset of the other (solution shown 
in Figure S3). B indicates bone; CC, dense connective tissue and 
cartilage; E, exchangeable fraction; IC, intracellular; IF, interstitial/
lymphatic fluid; NE, nonexchangeable fraction; P, plasma; and TC, 
transcellular.

https://www.ahajournals.org/doi/suppl/10.1161/HYPERTENSIONAHA.123.19569
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date, multinuclear, multicompartment modeling, which 
has shown promise, is still in its infancy and not devoid 
of limitations.59,65 The feasibility of tissue Na+ imaging 
down to a cellular scale has recently been proven with 
the alternative approach of X-ray fluorescence spectro-
microscopy, but the technique is destructive and yielded 
extracellular and intracellular concentrations opposite 
to what is expected from physiology, likely due to the 
chemical treatment used for the sample preparation.66 
Therefore, while waiting for validated and clinically appli-
cable advancements, the available 23NaMRI data should 
be interpreted as total tissue Na+.

ON THE SHOULDERS OF GIANTS
Our predecessors were blind but knowledgeable. Not 
only did they deduce morphological information on tis-
sues and their constitutive compartments from purely 
chemical measurements since the 40s but they also 
knew that tissue electrolytes change with aging, toward 
excess Na+ and Cl− (and loss of K+).67–70 Moreover, in vivo 
studies from the 70s and 80s performed with nuclear 
whole-body counting, revealed high total and exchange-
able Na+ (NaE) retained somewhere in the body of 
patients with many of the conditions in which 23NaMRI 
was later applied, including some forms of hypertension. 
Those studies, at the time conducted in patients with 
overt increase in BP but on no treatment or in adequate 
washout, showed that excess body Na+ (or Cl−) does not 
necessarily involve all patients with hypertension at any 
stage of the disease.71,72 In particular, NaE was signifi-
cantly increased in PA but was normal in patients pre-
sumed to have essential hypertension and in those with 
unilateral renal artery stenosis or even below normal in 
young hypertensives aged ≤35 years.73 Nevertheless, the 
correlation of NaE with arterial pressure was positive and 
significant in almost all patients with hypertension,71,73 as 
for NaE and total body Na+ (r=0.91; P<0.001).71 Mod-
ern 23NaMRI studies overall confirmed these findings, 
suggesting that young, noncomorbid subjects with early-
stage hypertension may not show any increase in tissue 
Na+, at variance with resistant hypertension or PA,38,41,74 
although definitive conclusions are prevented by limita-
tions including sample size, lack of adequate controls, 
and of conclusive screening for secondary hypertension.

PA, a prototypic form of salt-dependent hypertension, 
has offered valuable insights into these aspects over 
the years. Conn studied isotope dilution over 28 days 
in 6 patients with PA and reported evidence of a dimin-
ished NaE pool that did not readily equilibrate within 
24 hours.75 This was interpreted as diminished bone 
sodium, in keeping with the later recognition of a chronic 
bone-resorptive state, driven by the hypercalciuria and 
hyperparathyroidism, typical of PA.76,77 Such a diminished 
slowly exchangeable pool could not be confirmed by later 
approaches of noninvasive whole-body counting,78 but 

these were hampered by a one-off, relative rather than 
absolute, overall complex and likely less sensitive nature 
of the methodology, compared with a 4-week daily 
blood dilution measurement. Nevertheless, they sufficed 
to provide compelling evidence of high total body Na+ 
and NaE in PA, which were reduced by spironolactone 
or amiloride and by curative surgery (Figure 2, left).78 
Almost 30 years before seeing tissue Na+37 we knew it 
was there, somewhere.

SHRINKING BUCKETS
Recent work, only apparently unrelated with aspects 
pertaining Na+ localization, linked excess sodium to a 
metabolic shift toward catabolism. The authors of the 
original observation noted a decrease in water intake, 
without changes in urine volume, during high compared 
with low salt intake in the aforementioned human long-
term balance studies.80 Parallel experiments in rodents 
exposed to (admittedly extreme) salt loading, including 
pair-feeding approaches, revealed surplus generation 
of endogenous water by muscle protein catabolism and 
hepatic ureagenesis, coupled with reduced free water 
clearance by urea-driven water reabsorption in the kid-
neys.81 Analogy was made with animals experiencing 
dormancy during conditions of aridity and high tempera-
tures, suggesting a multiorgan water conservation sys-
tem to prevent natriuresis-induced water loss during high 
Na+ intake. More recently, the same authors reported 
that these mechanisms operate also in other experi-
mental models prone to dehydration, like impaired urine 
concentration ability in 5/6 nephrectomy,82 vasopressin 
antagonism,83 and psoriatic skin barrier defect.84 Others 
independently confirmed that mild water deficit achieved 
by chronic restriction shifted metabolism toward cata-
bolic water production, increased energy expenditure, 
and high food intake, ultimately shortening life span in 
mice.85 In a retrospective analysis of patients with essen-
tial hypertension, we identified similar water-preserving 
mechanisms upon high Na+ intake, arguably sustained by 
energy-consuming renal changes and characterized by 
peripheral metabolomic signatures suggestive of protein 
catabolism.86 Similarly, a high-salt diet decreased free 
water clearance and increased the excretion of amino 
acids involved in the urea cycle in a randomized trial 
including 20 lean and 20 abdominally obese individu-
als.87 In fact, a secondary analysis of the DASH (Dietary 
Approaches to Stop Hypertension)-sodium randomized 
trial could not confirm different energy requirements 
across different dietary sodium levels, but weight did 
vary despite the attempt for controlled energy intake and 
measures for body composition were missing.88

Collectively, evidence suggests that under conditions 
of salt excess, the cellular mass may shrink because of a 
water-preserving catabolic state. In free-living conditions, 
different energetic sources, either endogenous (muscle 



RE
VI

EW

494  March 2024 Hypertension. 2024;81:490–500. DOI: 10.1161/HYPERTENSIONAHA.123.19569

Bagordo et al Sodium and Fluid Balance

mass) or exogenous (excess food), can be exploited, thus 
complicating absolute and relative assessments. More-
over, water balance depends not only on intake, diuresis, 
and catabolism but also on water in ingested food and 
exchange via other routes, including respiration, feces, 
and skin,84,89 all substantively affected by environmental 
and lifestyle factors.90

All these considerations are key for interpreting any 
Tangram compartment puzzle: no surprise that watery vol-
umes or weights were missing, if one accounts for the 
parallel (subclinical) loss of cellular mass with salt loading. 
This contention still lacks conclusive experimental confir-
mation; however, in the representative model offered by 
PA, simultaneous assessment of the whole-body elemen-
tal composition revealed a significant potassium deficit 
(Figure 2, left), and total body potassium is an old but still 
one of the most precise measures of cell mass.1,91

TO BE OR NOT TO BE
Changes in the relative proportion of extracellular and 
intracellular volumes can profoundly impact on whole-
tissue Na+ content and concentration.61 However, 
uncertainties about cell mass (and intracellular volume, 
accordingly) are not the sole factor affecting the syllo-
gism that long-term divergence of Na+ and water bal-
ance would equal hypertonic accumulation.

Our chemical analysis of multiple tissues in salt-loaded 
rats and of skin biopsies from patients with hyperten-
sion, by us and others,62,92 did not support the hypothesis 
of a hypertonic Na+ excess, since tissue water largely 
paralleled tissue Na+. We interpreted the findings as a 
systemic expansion of the extracellular volume, that is, 

subtle isotonic edema. Interestingly, the isolation of inter-
stitial fluid and lymph draining the skin of rats during salt 
accumulation induced by a high-salt diet or deoxycorti-
costerone pellet implantation revealed Na+ concentration 
that was not different from plasma.60 While this cannot 
exclude the preferential binding of Na+ to the glycos-
aminoglycan network in the ECM (extracellular matrix), 
its quantitative relevance has been challenged,31 as dis-
cussed above. Moreover, the stoichiometry of any Na+ 
binding in excess of water, which is similarly attracted by 
glycosaminoglycans, remains unclear. In fact, in agree-
ment with previous data,60,62,93 high-salt diet caused 
an increase in skin water content; the sum of cations 
remained within physiological ranges in the whole tis-
sue and only modestly increased in the dermis, in paral-
lel with increased Na+ concentration in the serum.31 This 
increase is well below those reported in both high salt 
and control animals in the original studies that suggested 
Na+ hypertonicity.18 Moreover, a chemical analysis cou-
pled with extracellular volume tracking with 51Cr-EDTA 
confirmed that the extracellular space undergoes expan-
sion with salt loading, particularly in the loose dermis.31 
Even in dermis, extracellular Na+ concentration never 
exceeded ≈120 mmol/L, when intracellular Na+ was 
conveniently assumed to be fixed at 10 mmol/L (which 
may have magnified the extracellular estimates if true 
intracellular values were higher; see below).

Does this evidence dismantle the concept of hyper-
tonic tissue Na+ accumulation? No, it does not. First, 
except for the specialized renal medulla, there is cur-
rently no firm evidence to confirm or exclude that local 
gradients of Na+ exist in tissues. If present, they would 
likely to be smaller than initially suggested, but lack of 

Figure 2. Sodium, potassium, 
and fluid balance in primary 
aldosteronism.
Left, Nuclear whole-body counting, 
revealing high total body Na+ (TBNa) and 
exchangeable Na (NaE) in patients with an 
aldosterone-producing adenoma without 
treatment (primary aldosteronism [PA]); 
both were reduced by spironolactone or 
amiloride (potassium-sparing diuretics; 
PSD) and by adrenalectomy. Total body K+ 
(TBK) and exchangeable K+ (KE) revealed 
opposite trends. Data are presented as 
mean±SD.  Right, Changes induced 
in 5 patients with PA by withdrawal of 
spironolactone and by adrenalectomy. 
**P<0.01, ****P<0.0001 vs normal values. 
Drawn from Williams et al.78 Copyright © 
1984, Lippincott-Raven Publishers. Data 
are presented as mean±SEM. Adapted 
from Wenting et al79 with permission. 
Copyright ©1977, Wolters Kluwer Health.
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magnitude does not equal lack of biological relevance: 
excess Na+ can modulate multiple immune cells and 
polarize them toward an inflammatory phenotype, as 
extensively reviewed elsewhere.94,95 Furthermore, even 
mild increases reflecting repeated (dietary) insults96 or 
long-term mishandling may eventually be pathogenic 
over a life span. Recently, serum Na+ values as low as the 
upper limits of normal were associated with long-term 
risk of developing left ventricular hypertrophy and heart 
failure in a population-based prospective cohort study,97 
consistent with old cellular studies.98 Second, the epider-
mis of salt-loaded rats indeed showed hyperosmolarity 
but due to osmolytes other than Na+, like urea.60 This 
may link with water loss at the epidermal surface89 or to  
counter-mechanisms preserving body water in conditions 
of water deficit and (relative) Na+ excess.81,84,99 However, 
it seems unlikely that this surface hyperosmolarity can 
substantially affect deeper cells, since the interstitial fluid 
Na+ (and protein) concentration is similar in normal and 
high-salt conditions.35,60 This contention was proven by 
the evidence of similar, or even reduced, shift of fluids 
from blood capillaries into the interstitium in human heart 
failure compared with age- and sex-matched controls.100

One last key, previously suggested1 but generally 
neglected aspect to consider is the shift of Na+ inside the 
cells. Recent experimental evidence revealed that skeletal 
and cardiac muscle of salt-loaded rats indeed accumulate 
Na+, without changes in total Na++K+ concentration31,62 
but with marked increases in intracellular Na+ concen-
tration.31 Also skin, where ≈25% of the fluid is intracel-
lular,31 is a potential compartment for Na+/K+ exchange 
and skin cells may act as Na+ reservoir that may appear 
as 'bound' irrespective of sulfated glycosaminoglycans. In 
fact, the concept is not new in the field of hypertension 
and there are old reports of excess intracellular Na+ in 
smooth muscle, as well as circulating cells.101 Unfortu-
nately, definite conclusions were limited by methodologi-
cal inconsistencies, which possibly still impact the herein 
discussed field. We are now aware of multiple molecular 
mechanisms and pathogenic correlates of excess sodium 
entering immune cells95,96 to support those early descrip-
tive findings. In addition, recent evidence extends the 
phenomenon to body cell mass at large, including skeletal 
and cardiac muscle cells, with obvious electromechanical 
and energetic implications for their function. This makes 
our Tangram even more complicated.

FROM A UNIQUE HUMAN MODEL 
TOWARD A UNIFYING VIEW
PA does not generally present with overt signs of fluid 
overload, that is, detectable edema. This is explained by 
the so-called aldosterone escape, whereby administra-
tion of large doses of aldosterone does cause an initial 
decrease in urinary sodium excretion, but this phase 

is followed by a gradual increase to eventually match 
intake, thus attaining a new equilibrium and avoiding overt 
Na+ and water retention.102–104 This process depends 
on increased renal perfusion pressure, high sodium 
delivery to the distal nephron that overrides the usual  
mineralocorticoid-driven reabsorption, and increased 
natriuretic peptides.105 At least 2 of these mechanisms 
are driven by volume expansion that a quick clinical look 
may miss but that original investigators spotted as slight 
periorbital puffiness.102 In fact, in our experience of sys-
tematically searching for and subtyping PA,12 patients 
with hypertension who temporarily undergo washout 
from drugs like mineralocorticoid receptor antagonists do 
often report some degree of subjective swelling. A small 
study, conducted on 5 patients with overt PA submitted 
to a protocol of spironolactone washout in a metabolic 
ward, revealed that sodium space and exchangeable 
sodium rose until 10 to 15 days and declined afterward, 
although eventually remaining higher than during spi-
ronolactone treatment (Figure 2, right). Plasma, blood 
volumes, and body weight returned to values that are 
only minimally, but not significantly, higher than baseline. 
All parameters normalized at long-term follow-up after 
surgery.80 Unfortunately, the study did not track K+, which 
(1) is missing in patients with PA at whole-body counting 
(Figure 2, left)78; (2) when expressed as either plasma 
concentration, exchangeable K+, or total body K+, cor-
related inversely and significantly with BP in patients 
with hypertension71; (3) at variance with Na+, never 
reached a new equilibrium between excess excretion 
and intake in the early escape experiments.103 Although 
it would be key to know whether the cell mass shrank in 
those 5 patients on a fixed diet over the course of the 
almost-2-month washout, evidence for a parallel weight 
loss in PA remains anecdotal,103 conflicting for plasma 
volume,106–108 but certainly conclusive for an expanded 
NaE, Cl−, and extracellular fluid volume.106,107,109,110 The 
phenomenon may not be restricted to a prior history of 
hypertension80 and recapitulate the cardiovascular con-
tinuum that spans from a variety of subclinical states to 
overt interstitial congestion, or heart failure, to which PA 
demonstrates high risk of progression.111 Similar to PA, 
all these pre-heart failure states (eg, resistant hyper-
tension, diabetes, CKD) feature excess tissue Na+ at 
23NaMRI. Additionally, in the context of metabolic syn-
drome or CKD, absolute or relative cell mass reduction is 
both a determinant and a result of disease.112,113 Whether 
this is also paralleled by intracellular Na+ accumulation 
remains to be established, but the high 23Na signal from 
skeletal muscle,38,41,53,55 in addition to the dermis, would 
suggest so.

In summary, our interpretation of the tissue Na+ excess 
deserves a reappraisal of the Tangram: (1) small intersti-
tial hypertonic niches, (2) more or less clinically visible 
edema, (3) intracellular Na+ accumulation, (4) or relative 
cell mass loss (driven by aging, whole-body sodium-water 
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imbalance, and the ensuing water-preserving catabolic 
state) may all present with the final readout of excess 
tissue Na+ signal (Figure 3).

OPEN MIC! MICROVASCULATURE, 
INTERSTITIUM, AND CELLS
We propose a small functional unit to interpret excess 
tissue Na+ in hypertension and cardiovascular disease. 
This MIC unit includes (1) the blood and lymphatic 
microvasculature (M) down to capillaries, which are 
responsible for fluid extravasation and removal, respec-
tively; (2) the interstitium (I), a highly dynamic inter-
face; (3) parenchymal cells (C), which are impacted by 
but also active determinants of the extracellular—and 
ultimately whole body—Na+ content (Figure S4). Each 
component of the MIC unit has either been discussed 
above (shrinking buckets) or reviewed elsewhere in 
relation to Na+ handling by the blood vessel wall and 
its permeability,114 the role of lymphatics in interstitial 
homeostasis, the composition and biophysics of the 
interstitial matrix, and the local forces that impact stro-
mal and immune cells.1,115–118

Despite the unique sodium handling by salt-sensitive 
and salt-resistant subjects,119–121 all these players have 
received little experimental attention due to a difficult 
investigation and the wrong belief that there was little 
left to discover.1 This hasty conclusion disregards his-
torical evidence. Tarazi et al122,123 found that the ratio of 
plasma volume (PV) to interstitial fluid (IF) volume was 
significantly lower in uncomplicated, untreated essen-
tial hypertensive patients compared with normotensive 
subjects. The difference was independent of diminished 
PV, rather indicating a shift of extracellular fluid from the 
intravascular to the interstitial compartments. In patients 
with variable degrees of CKD, salt loading consistently 
expanded the extracellular volume; however, the PV/IF 
ratio decreased in those with mild estimated Glomerular 
Filtration Rate (eGFR) reduction and increased in those 
with more severe impairment. PV/IF change directly 
correlated with the change in BP (Figure S5).124 In rats, 
undergoing sequential removal of both kidneys, Lucas 
and Floyer125 found changes in the PV/IF ratio similar to 
those in patients with more severe CKD but also a marked 
increase in interstitial tissue pressure and a fall in intersti-
tial compliance after saline infusion. A similar pattern was 
found in one-kidney one-clip rats,126 suggesting modula-
tion of those parameters and their determinants by the 
renin-angiotensin-aldosterone system. Later studies (in 
which both PV and IF volume were directly measured, 
rather than calculated from changes in total extracellular 
volume) confirmed different changes in PV during exper-
imental dehydration and fluid load but not different inter-
stitial compliance in one-kidney one-clip rats compared 
with one-kidney sham-clipped normotensive controls.127 

However, the interstitial pressure and volume at baseline 
were higher in hypertensive compared with control rats 
and their change after peritoneal dialysis or the change 
in the interstitial colloid osmotic pressure after saline 
load differed. Unfortunately, there was no follow-up to 
these old studies. All in all, available data suggest differ-
ent tissue-capillary filtration forces and dynamics in dif-
ferent patients of the cardiovascular-renal spectrum of 
hypertensive disease.

Figure 3. Reappraisal of the Tangram for interpretation of 
tissue Na excess.
Top, Physiological reference tissue, composed of extracellular and 
intracellular volumes (ECV and ICV), rich in Na+ (squares) and K+ 
(dots), respectively. Middle, Different pathophysiological patterns 
resulting, at whole-tissue analysis (eg, in 23NaMRI), in tissue Na+ 
excess: (1) hypertonic tissue Na+ accumulation, whereby Na+ would 
bind glycosaminoglycans (shaded) in the extracellular matrix in 
excess of water; (2) absolute expansion of the ECV, that is, edema; 
(3) accumulation of Na+ inside the cells, as for muscle; (4) relative 
but not absolute ECV predominance due to shrinking ICV (with or 
without additional edema). These patterns may coexist in different 
disease states. Bottom, Suggested mechanism described in long-
term/experimental excess Na+ intake80,81 and other water-losing 
conditions,82–84 by which free water deficit or loss would induce a 
catabolic state and a loss of cellular mass and of K+, resulting in 
relative tissue Na+ excess, in the attempt to generate endogenous 
water moieties from the breakdown of proteins. Loss is depicted as 
a black X.

https://www.ahajournals.org/doi/suppl/10.1161/HYPERTENSIONAHA.123.19569
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SUMMARY AND CLINICAL PERSPECTIVES
There is no polished surface (Supplemental Material S6)  
in the field of sodium balance. The old intracellular- 
extracellular 2-compartment model of fluid and electrolyte  
homeostasis was first expanded to 3 compartments, in 
which the interstitium featured as a separately regulated 
space. Our body’s Na+ balance was found to disregard 
the need for strict equilibrium not only on a day-to-day 
basis but also in the ultra-long term: Na+ accumulates 
in tissues with aging, cardiorenovascular and inflam-
matory diseases. Investigators from the 70s could 
already guess it, but recent technological advancement,  
namely 23NaMRI, enabled us to see the invisible. At odds 
with its initial intended use for the extracellular space, the 
anatomic approach of 23NaMRI led us to further rethink 
the 3-compartment model and dignify the intracellular 
space. For too long regarded as a constant in the equation, 
intracellular volume emerged as (1) a key determinant of 
the architecture of tissues and of their total chemical com-
position; (2) the immediate target of catabolic processes 
triggered by conditions of water and Na+ imbalance; (3) 
one additional key site for tissue Na+ accumulation, par-
ticularly in muscles but also skin, with electromechanical 
implications that remain to be unraveled. Finally, we real-
ized that at least part of the interstitial Na+ storage is not 
independent of water, in keeping with old beliefs.

Even reshuffling this Tangram, thanks to a decade of 
progress built on the shoulders of giants, still does not fill 
many of the blanks. We can now see and better interpret 
tissue Na+ excess based on evidence-based pathophysi-
ological patterns (Figure 3); however, we do not know 
which (or which combination) best applies to each timing 
of each disease. We have proposed the MIC unit to help 
researchers, and hopefully clinicians in the future, to dis-
entangle the crucial interplay of physics, biomechanics, 
and energetic balance at such a microscopic scale and 
understand their full therapeutic implications.

One last, but compelling and overarching question 
remains: does sodium and water retention, even at sub-
clinical scale, affect organ function, translate into organ 
damage, and ultimately affect prognosis? Data from 
patients with PA, herein referenced as the epitome for 
the discussed aspects, would suggest so. Although 
traditionally considered a benign form of hypertension 
because of the undetectable renin levels,128 extensive 
work from us and others has robustly associated PA with 
excess left ventricular hypertrophy, LV fibrosis, vascular 
remodeling, microalbuminuria, endothelial dysfunction, 
and with a high risk of stroke, myocardial infarction, heart 
failure, and atrial fibrillation.112 Of note, surgical cure of 
PA was associated with a decrease of incident atrial 
fibrillation and regression of left ventricular hypertrophy 
via reverse inward remodeling,129 in line with the concept 
that removal of the mineralocorticoid-mediated salt-
retaining excess is associated with a decrease of body 

fluid volumes. Such evidence from this salt-dependent 
and reversible disease model may guide the investigation 
of the molecular mechanisms implicated in the pandemic 
of tissue Na+ excess. In perspective, it may be relevant to 
more precise treatment of many other cardiorenovascu-
lar diseases and possibly beyond.
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