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ORIGINAL RESEARCH

Quantitative Prediction of Right Ventricular 
Size and Function From the ECG
Son Q. Duong , MD, MS;* Akhil Vaid , MD;* Vy Thi Ha My , PhD; Liam R. Butler , BS; 
Joshua Lampert, MD; Robert H. Pass, MD; Alexander W. Charney, MD, PhD; Jagat Narula , MD, PhD;  
Rohan Khera , MD, MS; Ankit Sakhuja, MBBS, MS; Hayit Greenspan, PhD; Bruce D. Gelb , MD; 
Ron Do , PhD; Girish N. Nadkarni , MD, MPH

BACKGROUND: Right ventricular ejection fraction (RVEF) and end-diastolic volume (RVEDV) are not readily assessed through tra-
ditional modalities. Deep learning–enabled ECG analysis for estimation of right ventricular (RV) size or function is unexplored.

METHODS AND RESULTS: We trained a deep learning–ECG model to predict RV dilation (RVEDV >120 mL/m2), RV dysfunc-
tion (RVEF ≤40%), and numerical RVEDV and RVEF from a 12-lead ECG paired with reference-standard cardiac magnetic 
resonance imaging volumetric measurements in UK Biobank (UKBB; n=42 938). We fine-tuned in a multicenter health sys-
tem (MSHoriginal [Mount Sinai Hospital]; n=3019) with prospective validation over 4 months (MSHvalidation; n=115). We evalu-
ated performance with area under the receiver operating characteristic curve for categorical and mean absolute error for 
continuous measures overall and in key subgroups. We assessed the association of RVEF prediction with transplant-free 
survival with Cox proportional hazards models. The prevalence of RV dysfunction for UKBB/MSHoriginal/MSHvalidation cohorts 
was 1.0%/18.0%/15.7%, respectively. RV dysfunction model area under the receiver operating characteristic curve for UKBB/
MSHoriginal/MSHvalidation cohorts was 0.86/0.81/0.77, respectively. The prevalence of RV dilation for UKBB/MSHoriginal/MSHvalidation 
cohorts was 1.6%/10.6%/4.3%. RV dilation model area under the receiver operating characteristic curve for UKBB/MSHoriginal/
MSHvalidation cohorts was 0.91/0.81/0.92, respectively. MSHoriginal mean absolute error was RVEF=7.8% and RVEDV=17.6 mL/
m2. The performance of the RVEF model was similar in key subgroups including with and without left ventricular dysfunction. 
Over a median follow-up of 2.3 years, predicted RVEF was associated with adjusted transplant-free survival (hazard ratio, 1.40 
for each 10% decrease; P=0.031).

CONCLUSIONS: Deep learning–ECG analysis can identify significant cardiac magnetic resonance imaging RV dysfunction and 
dilation with good performance. Predicted RVEF is associated with clinical outcome.

Key Words: cardiac MRI ■ deep learning ■ ECG ■ right ventricle

Right ventricular (RV) size and functional metrics 
have important prognostic implications for many 
diseases, including cardiomyopathy, pulmonary 

hypertension, and structural heart disease.1 Volumetric 
measurements such as RV ejection fraction (RVEF) 
and end-diastolic volume (RVEDV) are correlated 
with major adverse outcomes2 and have particular 

importance in patients with congenital heart disease3 
and pulmonary hypertension.4

However, current tools for accurate quantification 
of RVEF and RVEDV are limited. Estimation of vol-
umes by traditional 2-dimensional echocardiographic 
RV measurements are not recommended in adults or 
children5,6 due to poor reproducibility, especially in the 
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setting of significant pathology.7 Three-dimensional 
echocardiography is a promising novel technology but 
has significant technical and processing limitations 
and is not broadly available.8,9 Cardiac magnetic reso-
nance imaging (cMRI) is the clinical reference standard 
for volumetric quantification, but cMRI is not globally 
accessible, is time and resource intensive, and can-
not be performed in some patients, such as those with 
implanted devices and those who will not tolerate the 
examination.

There is an urgent clinical need for novel methods to 
assess RV size and function that are validated against 
gold-standard metrics, widely available, and simple to 
perform. We sought to develop such a method through 
application of modern machine learning techniques to 
a ubiquitous clinical tool: the ECG.

Recent developments in deep learning (DL) tech-
nology have produced models to interpret ECG for 
accurate diagnosis of structural heart disease and 
prognosis,10 but the use of DL on ECG to quantify 
RVEDV and RVEF has not been explored. We hypoth-
esized that we could develop a DL algorithm to accu-
rately quantify RVEDV and RVEF from a pathological 
clinical cohort and a large healthy registry of paired 
ECG and cMRI and that ECG assessment of RV func-
tion was associated with clinical outcome.

METHODS
This project was approved by the institutional review 
board of the Icahn School of Medicine at Mount Sinai 
School of Medicine and waiver of informed consent 
was obtained. The code pipeline is available at https://​
github.​com/​akhil​vaid/​RVSiz​eFunc​tion. The code pro-
vided in the repository contains all functions required 
to load and analyze data using a choice of models. The 
ECG data and some specialized code for preprocess-
ing these data cannot be released due to concerns 
of patient privacy and institutional intellectual property, 
respectively.

Overview
Broadly, we trained a convolutional neural network 
(CNN) on a larger data set of paired ECG and cMRI 
data from the UK Biobank (UKBB) and then fine-tuned 
the model on a smaller, retrospectively collected co-
hort of clinically indicated cMRI–ECG pairs from a 
single urban referral center. We then performed a pro-
spective validation on the subsequent 4 months follow-
ing the model training/testing set.

UKBB Data Set
We accessed paired ECG and cMRI data from the 
UKBB. Participant enrollment and cMRI acquisition 
parameters have been described previously.11 We 
used a previously validated automated segmentation 
method to obtain RVEDV and RVEF12 from the bal-
anced steady-state free precession cine short-axis 
stack. This method contours the right ventricle to in-
clude the papillary muscles within the RV volume. A 
cMRI-trained cardiologist (S.D.) performed manual 
segmentation of 10 randomly selected studies for 
comparison with the automated method, with Bland–
Altman analysis results shown in Figure  S1. RVEF 
mean difference was 3.7 (95% upper limit of agree-
ment, 12.8%; lower limit of agreement, −5.4%), and 
RVEDV indexed to body surface area mean difference 
was −2.9 mL/m2 (95% upper limit of agreement, 17.7; 
lower limit of agreement, −23.5%). We excluded en-
tries with RVEF values <10% or >80%. Per the UKBB 
study protocol, a standard 12-lead ECG was obtained 
at the same visit as cMRI. ECG acquisition parameters 
have been previously published13 and were accessed 
in Extensible Markup Language format with preproc-
essing per below.

Clinical Data Set
As the UKBB did not contain a high prevalence of dilated 
or dysfunctional RV measurements, we fine-tuned the 
model on a clinical cohort of diverse patients in a large 
urban health system with 5 hospitals (MSHoriginal [Mount 
Sinai Hospital, New York, NY]). We queried our cMRI 

RESEARCH PERSPECTIVE

What Is New?
•	 We developed and fine-tuned a deep learning 

algorithm on ECGs that estimates right ven-
tricular volume and ejection fraction; the ECG-
predicted right ventricular ejection fraction was 
significantly associated with composite cardiac 
outcome.

What Questions Should Be 
Addressed Next?
•	 How does this deep learning model perform 

across a wider range of pathological conditions?
•	 How does the model perform in external valida-

tion across multiple centers?

Nonstandard Abbreviations and Acronyms

AUPRC	 area under the precision-recall curve
CNN	 convolutional neural network
DL	 deep learning
MSH	 Mount Sinai Hospital
RVEDV	 right ventricular end-diastolic volume
UKBB	 UK Biobank
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reporting software (Precession, Intelerad, Montreal, 
Canada) for studies performed from April 4, 2012, to 
November 22, 2022, in patients aged ≥18 years and 
collected clinically indicated cMRI reports paired with 
ECGs within 2 weeks before or 2 weeks after cMRI ex-
amination. The MUSE Cardiology Information System 
(GE, Boston, MA) ECG database was queried for rel-
evant patient medical record numbers, filtered by date 
of acquisition, and exported as Extensible Markup 
Language files. We excluded patients with congenital 
heart disease as an indication for MRI, or without a 
recorded ECG within the inclusion time frame. Like the 
UKBB data set, we excluded entries with RVEF val-
ues <10% or >80%. We extracted clinically measured 
RVEDV and RVEF from reports. MRI is typically per-
formed on a 1.5T scanner using balanced steady-state 
free precession sequences with manual contouring of 
the cine short-axis stack to include RV papillary mus-
cles within the blood pool for the RV, though all reports 
were included. Left ventricular volume (contoured to 
exclude the papillary muscles from the blood pool) and 
ejection fraction were also collected. Patient age at 
cMRI, sex, indication for cMRI, cardiac rhythm at cMRI, 
weight, and height were also collected from the report.

ECG Preprocessing
ECG waveforms represented as a time series of volt-
age sampled at 500 Hz in each lead were extracted as 
Extensible Markup Language files from both the UKBB 
and MSH data sets. We included 8 channels from the 
12-lead ECG: leads I, II, and V1 to V6 as the other leads 
are linear transformations without additional informa-
tion. Our ECG preprocessing pipeline was described 
in detail previously.14 Briefly, we corrected for base-
line wander through the application of a median filter 
applied over a 2-second window and a subsequent 
Butterworth bandpass filter applied to a 0.5- to 40-Hz 
range. We excluded low-quality ECG recordings/ECGs 
with missing lead information by discarding ECGs 
with variations in QRS amplitude or frequency greater 
than +/−3 SD of the population mean for that lead. 
A total of 633 (3.4%) ECGs in the MSH data set and 
549 (1.3%) ECGs in the UKBB data set were removed 
(see Figure 1). ECGs were then restricted to the first 
5 seconds to ensure all patients had equivalent data 
and plotted to images with standardization of lead am-
plitude to the minimum and maximum voltages within 
each preprocessed lead.

Model Construction and Training
The model input was the preprocessed cMRI-paired 
ECG. The model outputs of interest were numerical 
RVEF (%) and RVEDV/body surface area (mL/m2) (ie, 
supervised learning for regression tasks) as well as 
these values dichotomized into pathological thresholds 

of RVEF<40% and RVEDV ≥120 mL/m2 (ie, supervised 
learning for classification tasks). Thus, for each data 
set, 4 separate models were trained: (1) RVEF regres-
sion, (2) RVEF classification, (3) RVEDV regression, and 
(4) RVEF classification. In the UKBB study protocol, 
only 1 ECG was obtained per subject and cMRI, which 
was randomly split into 80% training and 20% testing 
subsets. For the MSHoriginal data set, as multiple ECGs 
per cMRI could occur within the inclusion time frame, 
patients were group shuffle split into 80% train and 
20% test groups. This method ensured that no patient 
was represented both in the test and training set but 
allowed multiple ECGs obtained in the inclusion period 
for a patient to be considered in the training set. For the 
MSHoriginal test set, only 1 subject with 1 paired ECG 
closest to the time of cMRI was included.

We selected a DenseNet-201 2-dimensional CNN ar-
chitecture that had been previously trained on >700 000 
ECGs14 as initialization parameters. Neural network 
architectures are uniquely able to extract information-
rich features from complex waveform data and form 
the basis of several published DL-ECG models.14–18 
We trained the network using the Adam optimizer with 
cross-entropy as the loss function for classification and 
mean absolute error for regression tasks, respectively. 
To minimize overfitting, we monitored train-test loss 
over training epochs against an internal validation set 
of 5% of ECGs within the training cohort. Training was 
stopped at the epoch that performed best with respect 
to this internal validation set, despite continuing training 
with an adaptive learning rate for several more epochs. 
This method is functionally equivalent to early stopping 
as a form of regularization.

We first trained on the UKBB data set as a way of 
training features specific to the right ventricle, but the 
data set has a low prevalence of RV pathology. We 
then fine-tuned the model to predict outcomes in the 
MSH cohort, which had a higher outcome prevalence 
to learn features specific to RV pathology. Fine-tuning 
a neural network refers to the process of using pre-
trained parameters (as opposed to random parame-
ters) from a related task as a starting point for training 
on a new task or data set. This may potentially improve 
model performance on smaller data sets because the 
network may have already learned the basic features 
needed for the new task. We also tested whether using 
a pretrained model resulted in better performance 
compared with random initialization of parameters 
and found that use of the pretrained model increased 
model performance in the MSHoriginal (Tables  S1 and 
S2) and UKBB test sets.

Model Evaluation
We evaluated model performance with area under 
the receiver operating characteristic curve (AUROC) 
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and area under the precision-recall curve (AUPRC) 
for classification tasks. Precision-recall curves are 
generated by plotting the precision (ie, the positive 
predictive value) against the recall (ie, the sensitiv-
ity) over the range of predictions generated. AUPRC, 
by emphasizing the ability of the classifier to predict 
outcomes, is useful to evaluate the performance of 
a classifier in the setting of class imbalance where 
outcomes are more important to detect than non-
outcomes.19 Unlike AUROC, AUPRC depends on the 
baseline prevalence of disease and therefore can be 
interpreted as the ability of the classifier to identify a 
group “enriched” for disease over the baseline. We re-
ported sensitivity, specificity, positive predictive value, 
negative predictive value, positive likelihood ratio (LR), 
and negative LR with bootstrapped 95% CIs at the 
probability threshold defined by the maximum sum of 
sensitivity and specificity (Youden’s J). We also eval-
uated classification model performance in key sub-
groups, including sex, left ventricular (LV) dysfunction 

(defined as left ventricular ejection fraction [LVEF] 
<50%), arrhythmia, obesity (body mass index ≥30), 
and age ≥60 years. We performed AUROC com-
parisons and tested for effect modification between 
subgroups using the method of DeLong.20 Patients 
with missing subgroup data (see Table  1) were ex-
cluded from subgroup analysis. For regression tasks, 
we visualized predicted versus expected scatterplots 
and described the relationship using nonparametric 
Passing–Bablok regression analysis, which is com-
monly used to compare 2 measurement methods.21 
The relationship between the predicted (ECG) and 
expected (cMRI) RV metric was also evaluated with 
linear R2 calculation and Lin’s concordance correla-
tion coefficient. Difference plots in which the differ-
ence between ECG-predicted and cMRI RV metric 
were plotted against the cMRI reference standard, 
and a linear slope with prediction CIs based on 
1.96*SD of the residuals were reported as recom-
mended by Bland and Altman.22 Mean absolute error 

Figure 1.  Study Inclusion flow diagram.
Cardiac MRI and ECG inclusion diagram chart for UK Biobank (left) and Mount Sinai Hospital data sets (right). MRI indicates magnetic 
resonance imaging.
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of the models with 95% CI was calculated through 
500 bootstrap iterations. We also performed saliency 
mapping using the GradCAM library to highlight the 
regions of a given ECG input image that were most 
associated with a prediction.

Temporal Validation
We performed temporal validation (MSHvalidation) of the 
final classification models in the period of November 
23, 2022 to March 21, 2023, from a cohort of patients 
with clinically indicated cMRI and paired ECG within 
+/−14 days of cMRI like the MSHoriginal data set. Patients 
with prior ECG or cMRI included in the MSHoriginal data 
set were excluded. AUROC and AUPRC metrics were 
reported as above.

Survival Analysis for Composite Outcome
We reviewed the medical records of patients included 
within the MSHoriginal test set to ascertain date of last 
known follow-up, death, and date of heart transplant 
if performed. We performed survival analysis to evalu-
ate the association between predicted numerical 
RVEF and the combined outcome of death or heart 
transplantation. This composite outcome is commonly 
used to represent end-stage heart failure in heart fail-
ure prediction models.23 Kaplan–Meier survival plots 
stratified by MRI-LVEF and ECG-predicted RVEF 
were generated. Using Cox proportional hazards for 
multivariable modeling, we tested several variables 
associated with heart failure outcome including MRI–
quantified LVEF, age, sex, obesity (body mass index 

Table 1.  Demographic and Clinical Characteristics in Mount Sinai Data Set

MSHoriginal training  
set (n=2415)

MSHoriginal test  
set (n=604)

MSHvalidation temporal  
validation (n=115)

Age, y, mean (SD) 56.0 (16.4) 55.9 (17.0) 56.3 (16.1)

Sex, female, n (%) 865 (37.5)* 209 (36.3)† 45 (39.8)‡

Sex, male, n (%) 1550 (62.5) 395 (63.7) 70 (60.2)

Race or ethnicity, n (%)
White

995 (41.2) 258 (42.7) 41 (35.7)

Black 476 (19.7) 101 (16.7) 28 (24.4)

Other/Unknown 944 (39.1) 245 (40.6) 46 (40)

BSA, m2, mean (SD) 1.95 (0.29) 1.96 (0.27) 1.95 (0.29)

BMI 27.7 (6.4)* 27.6 (5.8)† 27.6 (6.2)

BMI ≥30 kg/ht2, n (%) 663 (28.5)* 152 (26)† 36 (31.3)

Indication for cMRI, n (%)
Cardiomyopathy

1959 (81.1) 485 (80.3) 86 (74.8)

Abnormal ECG 183 (7.6) 56 (9.3) 1 (0.9)

Tumor 107 (4.4) 22 (3.6) 8 (7.0)

Valvular function 20 (0.8) 5 (0.8) 0 (0)

Other/unknown 146 (6.0) 36 (6.0) 20 (17.4)

Rhythm at cMRI, n (%)
Normal sinus

1957 (91.1)* 476 (90.5)† 106 (95.5)‡

Sinus with ectopic beats 97 (4.5) 25 (4.8) 2 (1.8)

Atrial fibrillation/flutter 78 (3.6) 21 (4.0) 1 (0.9)

Other 15 (0.7) 4 (0.7) 2 (1.8)

Admitted as inpatient at time of MRI 863 (35.7) 217 (35.9) 45 (39.1)

LVEF, median (IQR) 53 (36–61)* 53 (36–62) 52 (34–63)

LVEF <50%, n (%) 1016 (42)* 261 (43.4) 44 (38.3)

RVEF, median (IQR) 54 (46–61) 53 (46–60) 54 (47–59)

RVEF ≤40%, n (%) 411 (17.0) 109 (18.0) 18 (15.7)

LVEDVi, median (IQR) 84 (69–110)* 84 (70–108)† 85 (65–107)

RVEDVi, median (IQR) 78 (63–95)* 80 (64–99)† 70 (58–81)

RVEDVi ≥120, n (%) 202 (8.7) 62 (10.6) 5 (4.3)

BMI indicates body mass index; BSA, body surface area; cMRI, cardiac magnetic resonance imaging; IQR, interquartile range; LVEF, left ventricular ejection 
fraction; LVEDVi, left ventricular end-diastolic volume indexed to body surface area; MRI, magnetic resonance imaging; MSH, Mount Sinai Hospital; RVEDVi, 
right ventricular end-diastolic volume indexed to body surface area; and RVEF, right ventricular ejection fraction.

*Training set missing data: rhythm at cMRI, n=268; patient sex, n=108; LVEDVi, n=91; BSA; BMI; RVEDVi, n=87; LVEF, n=4.
†Test set missing data: rhythm at cMRI, n=78; BSA; BMI; LVEDVI; RVEDVI, n=20 missing; LVEF, n=3 missing; patient sex, n=28 missing.
‡Temporal validation set missing data: patient rhythm, n=4; patient sex, n=2.
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>30), hospitalization at time of MRI (as a proxy for 
severe heart failure),23 and self-reported race or eth-
nicity.24 Variable selection was determined using the 
Akaike information criterion for the model excluding 
RVEF, and then the additive value of ECG-predicted 
RVEF versus MRI-quantified RVEF was evaluated 
using Akaike information criterion and Harrell’s C-
statistic. The linear risk assumption for continuous 
variables was assessed visually through martingale 
residual plots with a running mean smoother line plot-
ted to identify nonlinearity. A nonlinear inflection point 
in risk related to age at around 60 years old was identi-
fied, and therefore age was dichotomized at ≥60 years 
old. We tested proportional hazards assumptions in 
the final model by evaluating the relationship between 
scaled Schoenfeld residuals and time. A P value <0.05 
was considered statistically significant.

Software
Model training was performed in Python (version 3.8; 
Python Software Foundation, Beaverton, OR) with 
pandas, numpy, scipy, scikit-learn, PyTorch, torchvi-
sion, PIL, matplotlib, seaborn, and GradCAM pack-
ages. Data visualization and descriptive statistics 
were performed in R (R Foundation for Statistical 
Computing, Vienna, Austria) and Stata13 (StataCorp, 
College Station, TX). Continuous metrics are reported 
as mean (SD).

RESULTS
Demographic and Clinical Information
We included 42 938 patient MRI-ECG pairs from UKBB 
after quality control. Mean age was 64.7 years, 48% 
were men, 96.5% were White individuals, and the most 
common comorbidities were hypertension (22.5%) and 
hyperlipidemia (17.3%). Heart surgery and history of 
myocardial infarction were reported in 1.8% and 1.4%, 
respectively. The mean RVEF was 57% (SD, 6.3), with 
RV dysfunction (RVEF ≤40%) present in 425 (1.0%). 
Mean RVEDV was 82 (15.6) mL/m2, with RV dilation 
(RVEDV ≥120 mL/m2) in 680 (1.6%).

The MSHoriginal data set consisted of 3019 patients 
that were split 80% to 20% into training and test co-
horts. The training set consisted of 2415 patients and 
13 673 ECG recordings meeting the inclusion crite-
ria. The test set contained 604 patients, each with 
1 paired cMRI and ECG. Test set mean age was 56 
(17) years, and cardiomyopathy was the predominant 
indication for cMRI (80%). Prevalence of RV dysfunc-
tion was 18%, and prevalence of RV dilation was 11%. 
Demographic, clinical, and MRI characteristics of the 
MSHoriginal cohorts split by test and training groups are 
listed in Table 1. A comparison between the available 
overlapping variables of the MSH and UKBB data sets 

are shown in Table S3. A graphical overview of patient 
and ECG inclusion is shown in Figure 1.

The MSHvalidation group consisted of 115 patients, 
each with 1 paired ECG and cMRI. Demographic 
and clinical characteristics were concordant with the 
MSHoriginal group, except for smaller RVEDV measure-
ments and a lower prevalence of RV dilation (n=5; 
4.3%). However, presence of RV systolic dysfunction 
was similar (n=18; 15.7%). Clinical and demographic 
information of the MSH training, test, and temporal val-
idation cohorts is shown in Table 1.

RVEF Classification Models
Model performance characteristics to classify RV sys-
tolic dysfunction (defined as RVEF ≤40%) in UKBB and 
MSH data sets are shown in Figure 2. In UKBB (base-
line prevalence 1.0%), AUROC was 0.86 (0.80–0.90), 
and AUPRC was 0.17 (0.11–0.26). In the MSHoriginal 
data set (baseline prevalence, 18.0%), AUROC was 
0.81 (0.77–0.86), and AUPRC was 0.59 (0.49–0.69). At 
Youden’s J threshold, there was a sensitivity of 65% 
(95% CI, 57–75), specificity of 86% (83–89), positive 
predictive value of 51% (43–59), negative predictive 
value of 92% (89–94), positive LR of 4.7 (3.7–6.2), 
and negative LR of 0.40 (0.29–0.50) in the MSHoriginal 
test data set. Performance between clinically relevant 
subgroups in the MSHoriginal test data set is shown in 
Table 2. RVEF model AUROC did not differ between 
any tested subgroup, including those with and without 
LV dysfunction.

RVEDV Classification Models
Model performance to classify RV dilation (defined 
as RVEDV ≥120 mL/m2) is shown in Figure  2B. In 
UKBB (baseline prevalence, 1.6%), AUROC was 0.91 
(0.89–0.93), and AUPRC was 0.21 (0.15–0.26). In 
the MSHoriginal data set (baseline prevalence, 10.6%), 
AUROC was 0.81 (0.76–0.86), and AUPRC was 0.35 
(0.24–0.46). At Youden’s J threshold, there was a 
sensitivity of 84% (95% CI, 75–93), specificity of 66% 
(63–71), positive predictive value of 23% (18–29), nega-
tive predictive value of 97% (95–99), positive LR of 2.5 
(2.1–3.0), and negative LR of 0.24 (0.10–0.38) in the 
MSHoriginal test data set. Classification performance 
between clinically relevant subgroups in the MSH data 
set is shown in Table 2. RVEDV model performance dif-
fered in patients aged ≥60 versus <60 years (AUROC, 
0.67 versus 0.81; P=0.015) and those with LV systolic 
dysfunction versus normal LV function (AUROC, 0.87 
versus 0.75; P=0.024).

Prospective Validation
The RVEDV and RVEF classification models were fur-
ther tested in a temporal validation data set consisting 
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of ≈4 months of data collected after development of 
the final models, the MSHvalidation group. For RV systolic 
dysfunction classification, model AUROC was 0.77 
(0.65–0-88), and AUPRC was 0.37 (0.18–0.56). For RV 
dilation classification, model AUROC was 0.92 (0.81–
1.00), and AUPRC was 0.45 (0.06–1.00).

RVEDV and RVEF Regression Models
We developed models to predict the numerical value 
of RVEDV and RVEF. They were subsequently fine-
tuned in the MSH data set, with test set regression 
results shown in Figure 3. For RVEF prediction, the 
mean absolute error between predicted and ex-
pected RVEF was clinically reasonably low at 7.8%, 
the R2=0.360 for the linear fit between the 2 mea-
sures, and there was moderate agreement (concor-
dance correlation coefficient, 0.57). Passing–Bablok 
regression analysis demonstrated systematic 

differences between the ECG-predicted and cMRI 
RVEF evidenced by significant differences in the re-
gression intercept and slope from 0 and 1, respec-
tively (see Figure 3A). Difference plots for RVEF are 
shown in Figure 3B. The errors are nonnormally dis-
tributed, with ECG overestimating cMRI RVEF at low 
(pathological) values and ECG underestimating cMRI 
RVEF at higher values, and 95% prediction CI of +/− 
14.0%. In the RVEDV model, the mean absolute error 
was 17.6 mL/m2, R2=0.250, and the concordance 
correlation coefficient was 0.43. Like the RVEF mod-
els, Passing–Bablok regression demonstrated sys-
tematic differences between methods (Figure  3C), 
and difference plots exhibited nonnormally distrib-
uted error with a 95% prediction CI of +/− 27.5 mL/
m2. ECG overestimated cMRI RVEDV at low values, 
and ECG underestimated cMRI RVEDV at higher 
(pathological) values (Figure 3D).

Figure 2.  Classification of abnormal right ventricular ejection fraction and end-diastolic volume.
Receiver operating characteristic curves (blue) and precision recall curves (orange) to classify RV systolic dysfunction (A, left) and RV 
dilation (B, right) in UK Biobank data set (top), MSH data set (middle), and MSH prospective validation data set (bottom). Red dashed 
lines on receiver operating characteristic curves represent no model skill, and on precision recall curves represent baseline incidence 
of disease. AUROC indicates area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; 
MSH, Mount Sinai Hospital; and RV, right ventricular.
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Saliency Mapping
RV dilation and RV dysfunction classification model 
saliency mapping examples from the MSHoriginal test 
set are shown in Figure 4. Qualitative review of several 
saliency mapping examples suggested that P waves 
and QRS complexes in leads II, V1, and V5/6 are par-
ticularly influential.

Survival Analysis
Follow-up information was available for 575 of 604 
(95%) patients in the MSHoriginal test cohort, with a me-
dian follow-up time of 2.27 (interquartile range, 0.67–
5.03) years. The combined outcome of death or heart 
transplantation occurred in 65 of 604 (10.8%; n=59 
deaths and n=6 heart transplants) patients. Kaplan–
Meier survival curves are illustrated in Figure  5. 
Multivariable modeling excluding RVEF as a predictor 
identified the optimal baseline model including LVEF, 
age (dichotomized at ≥60 years), and hospitalized sta-
tus to be by Akaike information criterion (Table  S4). 
Addition of either ECG-predicted or MRI-quantified 
RVEF to the baseline model modestly improved 
Akaike information criterion and C-statistic, though 
MRI-quantified RVEF resulted in greater improvement 
of the baseline model compared with ECG-predicted 
RVEF (Table S5). The final multivariable survival model 
including ECG-predicted RVEF is shown in Table 3. 
In a model including MRI-quantified LVEF and age 

and hospitalized status, ECG-predicted RVEF was 
significantly associated with increased risk of death/
transplant (hazard ratio, 1.40 for each 10% decrease 
in RVEF; P=0.031). No significant interaction was 
identified between LVEF and RVEF. The proportional 
hazards assumption and linearity assumptions for 
the remaining continuous variables (LVEF and RVEF) 
were satisfied (Figure S2). We repeated the analysis 
using MRI-quantified RVEF and found similar results 
(Table S6).

DISCUSSION
In summary, we used DL on ECGs to quantify RVEDV 
and RVEF on the basis of paired cMRI as reference 
standard. We first developed this model in a large co-
hort of mostly healthy participants in the UKBB registry, 
then further fine-tuned the model in a smaller cohort of 
clinically indicated paired ECG and cMRI samples from 
MSH. Finally, we prospectively validated the model in 
the subsequent ≈4 months after model development. 
The classification models to detect RV dilation (RVEDV 
≥120 mL/m2) and RV dysfunction (RVEF ≤40%) have 
good performance in a clinical cohort. Regression 
models demonstrated moderate predictive ability 
of ECG for numerical estimation of cMRI-measured 
RVEDV and RVEF, and ECG-predicted RVEF was as-
sociated with worse short-term freedom from death/
heart transplantation. Saliency mapping suggested 

Table 2.  Classification Model Performance, MSH Subgroup Analysis

Model AUROC (95% CI) Model AUROC (95% CI)

n MSH RVEDV classification P value* MSH RVEF classification P value*

Overall 604 0.81 (0.76–0.86) 0.81 (0.77–0.86)

Subgroup

Female 209 0.72 (0.62–0.81) 0.40 0.79 (0.69–0.90) 0.46

Male 395 0.77 (0.70–0.83) 0.84 (0.79–0.89)

Age ≥60 y 272 0.67 (0.57–0.76) 0.015 0.80 (0.72–0.87) 0.58

Age <60 y 332 0.81 (0.74–0.87) 0.82 (0.76–0.89)

Arrhythmia† 50 0.74 (0.53–0.94) 0.56 0.81 (0.67–0.94) 0.69

Nonarrhythmia 476 0.80 (0.74–0.86) 0.84 (0.79–0.89)

LVEF <50% 261 0.87 (0.81–0.94) 0.024 0.74 (0.68–0.81) 0.93

LVEF ≥50% 340 0.75 (0.67–0.83) 0.75 (0.53–0.98)

BMI ≥30 kg/ht2 152 0.80 (0.75–0.88) 0.79 0.88 (0.73–0.86) 0.053

BMI <30 kg/ht2 432 0.80 (0.68–0.91) 0.79 (0.73–0.86)

Race

White 258 0.83 (0.74–0.92) 0.83 0.82 (0.74–0.91) 0.90

Black 101 0.78 (0.64–0.92) 0.82 (0.74–0.91)

Other/Unknown 245 0.82 (0.75–0.89) 0.79 (0.72–0.88)

BMI indicates body mass index; and LVEF, left ventricular ejection fraction; RVEDV, right ventricular end-diastolic volume; and RVEF, right ventricular ejection 
fraction.

*P value for comparison of area under the receiver operating characteristic curves between subgroups.
†Defined as normal sinus rhythm vs sinus with atrial/ventricular ectopy, atrial fibrillation/flutter, or other.
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P-wave and QRS complexes of leads II, V1, and V5/V6 
as particularly important. This represents a significant 
advancement in prediction of RV enlargement by 12-
lead ECG, which is known to be insensitive by tradi-
tional methods (eg, voltage criteria),25 and this work is 
the first to show that RV volumetric markers of dilation 
and dysfunction can be predicted from ECG.

We find the classification models to be more clini-
cally applicable, as they provide good test performance 
characteristics at clinically important RVEF and RVEDV 

values on the basis of AUROC and AUPRC metrics. 
We provided test statistics at probability thresholds on 
the basis of statistical criteria (Youden’s J) for the MSH 
RVEDV and RVEF classification models, but it is import-
ant to note that selection of an appropriate threshold is 
a clinical decision based on the use-case of the model. 
It is also worth noting that AUROC may be deceiv-
ingly inflated in the setting of class imbalance, as is the 
case in the UKBB data set, and therefore AUPRC is 
an important metric to consider in this case. However, 

Figure 3.  RVEF and RVEDV regression models, MSH data set.
MSHoriginal regression model with ECG-predicted vs cMRI-expected scatter plots to predict numerical RVEF (A) and numerical RVEDV 
(C). Scatter plots plotted with line of perfect concordance (dashed black line) and Passing–Bablok regression best-fit line (solid blue) 
with 95% CIs (dashed blue line). Difference plots analysis of RVEF (B) and RVEDV (D) with regression slope (red line) and 95% CIs of 
the errors (blue line) displayed. CCC indicates concordance correlation coefficient; EF ejection fraction; MAE, mean absolute error; 
MRI, magnetic resonance imaging; MSH, Mount Sinai Hospital; RV, right ventricle; and RVEDV, right ventricular end-diastolic volume.

A

C D

B
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AUPRC should be interpreted in relation to the baseline 
prevalence of disease, which explains why AUPRC is 
lower in the UKBB cohort compared with the MSH co-
hort. As an example of this, at a baseline prevalence of 
RV dysfunction of ≈18% in the MSH data set, examina-
tion of the AUPRC reveals that at a prediction thresh-
old recall (sensitivity) of ≈50%, the precision (positive 
predictive value) is ≈60%. In other words, an ECG in 
this population could alert the practitioner to half of all 
cases of RV dysfunction in the population, and of cases 
identified, over half would have true RV dysfunction. 
Contrast this with the performance of the UKBB model, 
with only a 1% baseline prevalence of RV dysfunction. 
At a similar recall (sensitivity) of 50%, the precision (pos-
itive predictive value) is ≈20%, demonstrating a higher 
false-positive rate despite a higher AUROC value, but 
still a large enrichment in positive cases over random 
selection from the baseline population. Future clinical 
implementation should take into consideration the pop-
ulation distribution of disease when determining the 
clinical utility of this algorithm and in development of 
appropriate probability thresholds for model prediction.

In contrast to the classification model perfor-
mance, our regression model performance is less 
clinically applicable at this time, as difference plot 
analysis suggested there is high bias at the extremes 

of measurement (which are the pathological cases) 
and wide limits of agreement between ECG and MRI. 
Passing–Bablok regression confirms that the 2 mea-
surement methods are not equivalent. However, the 
fact that a correlation is detected at all is itself a novel 
breakthrough in DL-ECG analysis. Additionally, ECG-
predicted RVEF added predictive performance to a 
multivariable survival model and was associated with 
combined outcome of death/heart transplant in short-
term follow-up. This demonstrates the potential clinical 
utility of this algorithm for prediction of patient out-
come. It is interesting that both ECG-predicted RVEF 
and MRI-quantified RVEF were associated with poorer 
short-term survival, whereas LVEF was not in our mul-
tivariable model. Low RVEF is a strong risk factor for 
poor outcome in several conditions, including myocar-
ditis and ischemic cardiomyopathy. We suspect that 
LVEF was not a significant predictor of outcome for 
reasons related to cohort and follow-up time. As the 
most common cause of RV dysfunction is pulmonary 
hypertension due to left heart dysfunction, RV dys-
function is observed to be a “common final pathway” 
in heart failure.1 Thus, it is possible that RVEF may be 
a more sensitive marker for short-term outcomes than 
LVEF, and the statistical observation of LVEF nonsig-
nificance, therefore, might be explained as a statistical 

Figure 4.  Saliency mapping.
Saliency mapping ECG examples from the MSHoriginal test set. Leads are arranged from bottom to top: lead I, II, V1-V6. Increasing 
shades of red indicate increasingly influential pixels in the model. A shows a true-positive example of RV dysfunction. The P and QRS 
portions of V1, V5, and V6 are particularly influential. B shows a true-negative example of RV dilation. QRS complex of lead I and P-
wave in V1 is particularly influential. MRI indicates magnetic resonance imaging; RVEF, right ventricular ejection fraction; and RVEDV, 
right ventricular end-diastolic volume.
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adjustment for a mediator (ie, RVEF) in the causal path-
way of poor short-term outcome. It is possible that in a 
larger sample size or longer follow-up time LVEF would 
become a significant predictor, as is well described in 
established risk prediction models.23 Further explora-
tion of this is beyond the scope of this report, as our 
intention was to demonstrate clinical utility of ECG-
predicted RV.

DL-ECG models have been shown to predict LV 
systolic dysfunction, elevated LV mass, and primarily 
left-sided structural heart disease.14,16,26,27 ECG de-
tection of LVEF has been incorporated into clinical 
workflow to increase detection of asymptomatic low 
LVEF in the primary care setting.28 The right heart is 
largely uninvestigated in this field. We have previously 
shown that DL-ECG analysis can detect the qualita-
tive presence of RV systolic dysfunction or RV dila-
tion by 2-dimensional echocardiography.14 However, 
the limitations of 2-dimensional echocardiography in 
quantitative assessment of the right ventricle are well 
described, and our model represents an advancement 
over this prior work through training on a diverse group 
of data sets with paired reference standard cMRI RV 
measurements, thus allowing us to quantify RV size 
and systolic function by an important clinical metric. 
Although further work is needed, this algorithm might 
eventually be incorporated into on-cart analysis to pro-
vide a useful screening tool for RV health that is val-
idated against reference standard metrics. This may 

Figure 5.  Unadjusted survival curves.
Kaplan–Meier survival curves by presence of LVEF and RVEF dysfunction. Note that curves are truncated 
at 8 years due to low sample size after this time point. Risk table is displayed at bottom of figure. LVEF 
indicates left ventricular ejection fraction; and ECG-RVEF, electrocardiogram-predicted right ventricular 
ejection fraction.

Table 3.  Survival Analysis for Freedom From Death/Heart 
Transplant, Bivariable and Multivariable Analyses

Model variable HR (95% CI) P value

ECG-predicted RVEF (every 10% 
decrease)

1.40 (1.03–1.91) 0.031

cMRI LVEF (every 10% decrease) 0.98 (0.83–1.17) 0.86

Age ≥60 y 2.81 (1.65–4.79) <0.001

Hospitalized at cMRI 1.86 (1.10–3.15) 0.022

cMRI indicates cardiac magnetic resonance imaging; HR, hazard ratio; 
LVEF, left ventricular ejection fraction; and RVEF, right ventricular ejection 
fraction.
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allow for better assessments of the RV with a simple 
test to further inform the need for further diagnostics 
or therapies. Additional possible benefits of developing 
non–cMRI-based automated methods for RV quan-
tification include a possible reduction in variability of 
measurement, as manually contoured RV volumes 
from cardiac MRI have increased variability compared 
with the left ventricle with coefficients of variation in 
the 6% to 9% range for RVEDV, and 8% to 12% for 
RVEF.29–31

In the MSH cohort, LV and RV dysfunction were 
often found together, but our model performed well in 
the subgroups with and without concomitant LV dys-
function. This suggests that our model can distinguish 
RV systolic dysfunction separately from LV dysfunc-
tion. Similarly, equivalent performance in those with 
and without arrhythmia suggests that the model rec-
ognizes RV systolic dysfunction independently of car-
diomyopathy associated with abnormal rhythm. Our 
subgroup analysis suggests the classification mod-
els have robust performance across subgroups with 
described differences in ECG morphology including 
body mass index, sex, and race, which suggests de-
mographic parity in potentially vulnerable groups that 
may be affected by model unfairness. A more detailed 
examination of model fairness is an important future 
step in model deployment.32 Finally, we did identify dif-
ferences in the RVEDV (but not RVEF model) in perfor-
mance across age and LVEF subgroups. This should 
be addressed in future work through expansion of the 
training set to include additional patients from these 
subgroups in a multicenter fashion.

Although the depolarization and repolarization 
patterns on the 12-lead ECG are dominated by the 
higher myocardial mass of the left ventricle, prior 
work has described crude correlations between ECG 
pattern and RV systolic function,33–35 which provide 
a potential scientific rationale for our findings. In 
our study, saliency mapping demonstrated the im-
portance of lead V1 in evaluating the right ventricle, 
which may be physiologically explained by its prox-
imity to the right atrium and right ventricle. Further 
study to differentiate how and why these models can 
evaluate RV dysfunction independently from LV dys-
function are needed to enhance the explainability of 
DL-ECG RV models.

We chose a 2-dimensional CNN architecture for 
deep learning because this theoretically allows us to 
input images of ECGs (eg, .pdf files, pictures). Not all 
centers may store ECG data as 1-dimensional vectors, 
which makes an image-based approach more uni-
versally acceptable. Additionally, a 2-dimensional ap-
proach allows us to take advantage of availability of 2D 
CNN models pretrained on millions of images which 
may enhance performance. The use of 2-dimensional 
image–based input for DL-ECG analysis may have 

superior performance compared with 1-dimensional 
signal-based ECG input methods,36 though several 
groups also report excellent results using a non–
image-based approach.15–17 Further research to deter-
mine the generalizability of our models using different 
sources of ECG images is required.

This work should be viewed in the light of some lim-
itations. First, model training and fine-tuning was per-
formed in only 2 data sets in 2 settings, which may 
limit the generalizability of these models to other rel-
evant cardiac conditions. The overwhelming majority 
of patients in the MSH cohort had indication of car-
diomyopathy for cMRI, and a higher-than-expected 
number of patients were admitted to the hospital at 
the time of MRI. This was likely in part due to the tight 
inclusion period imposed on paired MRI-ECG samples 
to ensure that ECGs were valid representations of RV 
health. However, as MRI is more commonly a sched-
uled outpatient procedure, it is possible that other 
important patient subgroups are underrepresented. 
Additionally, we did not subtype the cardiomyopathy 
due to limitations in the reporting fields in which the 
indication for MRI was extracted. Therefore, external 
validation in other populations where ECG patterns are 
likely to differ, for instance, in pulmonary hypertension, 
congenital heart disease, and across different forms 
of cardiomyopathy, will ensure the generalizability and 
clinical applicability of these models. The LVEF ECG 
model used for pretraining was trained on a similar co-
hort of patients from similar institutions. In experiments 
performed after our initial model trainings, we identified 
that ≈30% of cases were present in both the original 
LVEF model and the MSH RVEF and EDV models (in 
the MSHoriginal test set, 183/604 patients overlapped 
with the original LVEF pretrained model). We examined 
the model performance between groups with overlap 
and without and found no difference in model perfor-
mance (AUROC for overlapping data was 0.82 [95% 
CI, 0.72–0.89], AUROC for nonoverlapping samples 
was 0.81 [95% CI, 0.75–0.87]; data not shown above). 
We therefore believe the effect of this possible “data 
leakage” (in which the model makes predictions for 
data on which it has already been trained) is minimal. 
Furthermore, the MSHvalidation set, due to temporal in-
clusion criteria, does not contain patients included in 
the original LVEF model and exhibited generally stable 
performance characteristics. The theoretical effect of 
data leakage is to inflate the performance of the model 
in the validation set through overfitting to nongeneral-
izable aspects of the overlapping data. We believe we 
did not observe this because the labels between the 
current and pretrained models, RVEF and RVEDV ver-
sus LVEF, are biologically different enough phenomena 
that this overlap does not make a difference. Still, this 
concern, in addition to other concerns raised about 
the need to ensure generalizability across health care 
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systems and patient groups, emphasizes the need for 
external validation of this model.

Second, we did not compare performance across 
different CNN architectures because the chosen 
Densenet-201 architecture had been pretrained to de-
tect LVEF from prior works,14 which we demonstrated 
had superior accuracy compared with a nonpretrained 
model (Table S1). To judge whether alternate architec-
tures are superior, we would need to retrain several 
model architectures across a large corpus of ECGs for 
LVEF prediction and subsequently use this model as 
pretraining for the current task. These experiments are 
important from a data science perspective, but beyond 
the scope of the current project goals to demonstrate 
the feasibility of DL-ECG analysis to quantify metrics of 
RV size and systolic function. Similarly, our decision to 
include 8 of 12 available leads in the model was based 
on a priori knowledge that the augmented leads aVF, 
aVL, and aVR, and lead III are linear transformations 
of the other leads and should theoretically not provide 
additional information to the model. As these models 
have been built on prior works, we are unable to test 
model performance across different lead configura-
tions without significant model retraining. Further work 
to describe the optimal lead configuration for DL-ECG 
models should be an area of further research.

Third, we trained models on the large UKBB data 
set, in which RV volumes were automatically contoured 
through a cMRI segmentation algorithm. This method 
may be more prone to error and systematically biased 
compared with clinician labeling, and this method dif-
fered from the MSH cohort in which we derived RV 
measurements from clinician-verified cMRI reports. 
We performed a comparison between manual and au-
tomated contouring methods and found minimal mean 
differences between methods, though some variability 
was observed (Figure S1). We fine-tuned the model on 
MSH data to account for the differences in distribu-
tion between data sets, but it is possible that we might 
have obtained better performance if the UKBB data 
set were contoured by clinicians. However, this is in-
feasible due to the large number of studies (> 40 000) 
in UKBB. It is also important to note that we did not 
conduct experiments to demonstrate the added value 
of using the large amounts of UKBB data that went into 
model training (total n>42 000 ECGs with paired cMRI). 
Our group has demonstrated that CNN architectures 
continue to increase performance with increasing 
amounts of ECG data even above 500 000 training ex-
amples.18 Given these prior works, we did not seek to 
demonstrate the additive value of UKBB data, which 
would require multiple model retrainings at different 
training sample sizes. This is an interesting direction of 
research in the data science realm and would be useful 
to establish minimum sample size estimates for neural 
network training in the ECG analysis.

Finally, our regression models demonstrate the po-
tential of DL analysis to derive unseen functional data 
from the ECG; however, currently they exhibit clinically 
unacceptable limits of agreement with cMRI. The re-
gression models demonstrate the tendency for the 
networks to predict closer to the population mean. The 
model architecture we selected is complex enough to 
fit the training data; however, high variance still exists. 
Further steps to improve prediction may require exper-
imentation with different model architectures and train-
ing on additional pathological cases (increasing sample 
size), but it may also be that the ECG is too limited to 
allow for accurate numerical prediction, in which case 
the classification models may still be useful to rule in or 
rule out cases. Performance appeared stable in pro-
spective validation, but due to small sample size of the 
validation group and a shift in baseline prevalence, we 
may miss subtle differences in performance. As these 
models improve, research into the usefulness of serial 
DL-ECG analysis to trend RV size or function should be 
explored, as trending of RV metrics over time is an im-
portant clinical application of this technology that may 
reduce the need for serial cMRI.

In summary, we developed and validated a DL al-
gorithm to predict RV dilation or systolic dysfunction 
as defined by reference standard cMRI metrics. This 
method can provide novel RV quantification from a 
simple and globally available tool. These prediction 
tools may be useful in decreasing the need for costly 
cMRI, with implications for disease screening, risk 
stratification, and progression of disease. Future work 
to improve accuracy of prediction to validate findings 
in heterogeneous clinical populations, and clinical 
trials to show improved workflow and outcomes are 
required.
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