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Abstract

Fibrils of the protein α-synuclein (Asyn) are implicated in the pathogenesis of Parkinson Disease, 

Lewy Body Dementia, and Multiple System Atrophy. Numerous forms of Asyn fibrils have been 

studied by solid-state NMR and resonance assignments have been reported. Here, we report a new 

set of 13C, 15N assignments that are unique to fibrils obtained by amplification from postmortem 

brain tissue of a patient diagnosed with Lewy Body Dementia.
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Biological Context

Alpha-synuclein (Asyn) is a 140-residue protein found in the presynaptic termini of 

neurons in the brain (Clayton and George 1999). While the exact function of this protein 

in the brain remains elusive (Lautenschlager, Stephens et al. 2018), the aggregation of 
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Asyn in the form of fibrils has been a pathological hallmark of Parkinson Disease (PD), 

Lewy Body Dementia (LBD) and Multiple System Atrophy (MSA), all which can be 

classified as α-synucleinopathies. Dementia occurs frequently in PD, sometimes beginning 

at approximately the same time as motor symptoms (Dementia with Lewy bodies or DLB), 

or up to 20 years after motor symptoms begin (PD with dementia or PDD). The term LBD 

encompasses the spectrum of clinical presentations classified as DLB and PDD.

Asyn fibrils have been reported to have a range of tertiary and quaternary structures 

(Tuttle, Comellas et al. 2016, Schweighauser, Shi et al. 2020), contributing to an emerging 

understanding of the precise relationships of in vitro and ex vivo conditions. The in vitro 
structures depend on various factors such as mutations (Polymeropoulos, Lavedan et al. 

1997, Kruger, Kuhn et al. 1998, Zarranz, Alegre et al. 2004, Comellas, Lemkau et al. 2011, 

Lemkau, Comellas et al. 2012, Lemkau, Comellas et al. 2013, Khalaf, Fauvet et al. 2014), 

cytosolic components (Guilarte 2010, Shin and Chung 2012, Kwakye, Paoliello et al. 2015), 

lipids (Bodner, Dobson et al. 2009, Bodner, Maltsev et al. 2010, Jakubec, Barias et al. 2021, 

Mahapatra, Mandal et al. 2021), and metals (Uversky, Li et al. 2001). Growing evidence 

indicates that distinct polymorphs are associated with pathologic Asyn accumulation in 

α-synucleinopathies, as detailed by previously reported ex vivo studies (Schweighauser et 

al. 2020, Yang et al. 2022) Therefore, structural determination of these fibrils is vital for 

advancing the understanding of disease etiology, and to aid the development of polymorph-

specific clinical diagnostic tools and novel therapeutics.

We isolated insoluble Asyn fibrils from postmortem LBD tissue. Then, to analyze LBD fibril 

structure by SSNMR, we amplified the Asyn fibril seeds using uniform [13C, 15N] labeled 

wild-type Asyn. Here, we report the 13C and 15N chemical shifts for the amplified Asyn 

fibrils from an LBD autopsy case. The spectra of these postmortem seeded fibrils exhibit 

resonances that differ from those of previously reported in vitro fibril preparations. These 

findings demonstrate a different arrangement of β-strands, supporting the hypothesis that 

fibril structure is directly linked to disease phenotype.

Methods and experiments

Protein expression and purification

Expression of uniform [13C, 15N] labeled wild-type Asyn was carried out in E. coli 
BL21(DE3)/pET28a-AS in modified Studier medium M (Studier 2005). The labeling 

medium contained 3.3 g/L [13C]glucose, 3 g/L [15N]ammonium chloride, 11 mL/L [13C, 
15N]Bioexpress (Cambridge Isotope Laboratories, Inc., Tewksbury, MA), 1 mL/L BME 

vitamins (Sigma), and 90 μg/mL kanamycin. After a preliminary growth in medium 

containing natural abundance (NA) isotopes, the cells were transferred to the labeling 

medium at 37 °C to an OD600 of 1.2, at which point the temperature was reduced to 25 °C 

and protein expression induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) 

and grown for 15 h to a final OD600 of 4.1 and harvested.

Protein purification was done as described previously (Barclay, Dhavale et al. 2018). 

Briefly, cells were lysed chemically in the presence of Turbonuclease (Sigma) to digest 

nucleic acids. Purification began with heat denaturation of the cleared lysate, followed by 
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ammonium sulfate precipitation (Kloepper, Woods et al. 2006). The resolubilized protein 

was bound to QFF anion exchange resin (GE Healthcare Life Sciences, Marlborough, 

MA) and eluted using a linear gradient of 0.2–0.6 M NaCl. Fractions containing Asyn 

monomer, which eluted at about 0.3 M NaCl, were pooled, concentrated, and run over a 

26/60 Sephacryl S-200 HR gel filtration column (GE Healthcare Life Sciences) equilibrated 

in 50 mM Tris-HCl, 100 mM NaCl, pH 8 buffer. Fractions were pooled, concentrated to ~20 

mg/mL Asyn, and dialyzed at 4 °C into 10 mM Tris-HCl pH 7.6, 50 mM NaCl, 1 mM DTT, 

and stored at a concentration of ~14 mg/mL at −80 °C until use. Yields were 95 mg purified 

AS protein/L growth medium for the uniform [13C, 15N] labeled monomer.

Preparation of Insoluble fraction seeds from LBD, MSA and control postmortem tissue

The protocol to sequentially extract human postmortem brain tissue was adapted from 

Appel-Cresswell et al2. Briefly, gray matter dissected from tissue was sequentially 

homogenized in four buffers (3 ml/g wet weight of tissue) using Kimble Chase Konte™ 

dounce tissue grinders (KT885300-0002). In the first step, 300mg of dissected grey matter 

tissue was homogenized using 20 strokes of Pestle A in High Salt (HS) buffer (50 mM 

Tris-HCl pH 7.5, 750 mM NaCl, 5 mM EDTA plus Sigma P2714 Protease Inhibitor (PI) 

cocktail). The homogenate was centrifuged at 100,000 ×g for 20 min at 4 °C and the pellet 

was homogenized in the next buffer using 20 strokes of Pestle B. Extractions using Pestle 

B were performed in HS buffer with 1% Triton X-100 with PI, then HS buffer with 1% 

Triton X-100 and 1 M sucrose, and with 50 mM Tris-HCl, pH 7.4 buffer. In the final 

centrifugation, the resulting pellet was resuspended in 50 mM Tris-HCl, pH 7.4 buffer (3 

ml/g wet weight of tissue). The aliquots of insoluble fraction were stored at −80 °C until use. 

Similar extraction protocol was followed for LBD, MSA and control cases.

Amplification of isotopically labelled LBD fibrils from LBD insoluble fraction seeds

We amplified LBD-fibrils from gray matter dissected from the caudate region. We incubated 

insoluble fraction seeds with an Asyn monomer preparation containing isotopically labeled 

Asyn monomer supplemented with control fraction. The control fraction preparation was 

derived from E.Coli transformed with an empty expression vector, and was purified 

with the same protocol as the natural abundance Asyn monomer (JBC, 2017 V292, 

Pg9034). Asyn monomer and control fraction was filtered through a 50k MWCO Amicon 

Ultra centrifugation filter (Millipore, UFC805204) before use, to remove any preformed 

aggregates.

Insoluble fraction (10 μL) containing 3.3 μg wet wt. of tissue was brought to a final volume 

of 30 μL by addition of 20 mM Tris-HCl, pH 8.0 plus 100 mM NaCl buffer (fibril buffer) in 

a 1.7mL microcentrifuge tube. The insoluble fraction was sonicated for 2 min at amplitude 

50 in a bath sonicator (Qsonica model Q700) with a cup horn (5.5 inch) attachment at 4 °C. 

1.5 μL of 2 % Triton X-100 was added to the sonicated seeds. To this mixture, 50k Amicon 

ultra filtered isotopically labelled Asyn monomer was added to a final concentration of 2 

mg/mL in a final volume of 100 μL. This mixture underwent quiescent incubation at 37 °C 

for 3 days, completing the 1st round of sonication plus incubation. After the first round, the 

mixture was sonicated at 1 min at amplitude 50, and then an additional 300 μL of 2 mg/mL 

Asyn monomer was added. The mixture underwent quiescent incubation at 37 °C for 2 days 
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(2nd round). Then, sonication for 1 min at amplitude 50 and quiescent incubation for 2 days 

was repeated for the third round, followed by sonication for 1 min at amplitude 50 and 

quiescent incubation for 3 days for the 4th round. At the end of 4th round, LBD-amplified 

fibrils were stored at 4 °C until use.

Further expansion of the LBD-amplified fibrils was performed by centrifuging 60 μL of 4th 

round LBD-amplified fibrils at 21,000 xg for 15 min at 4 °C. The pellet was resuspended 

in 100 μL of fibril buffer and sonicated for 1 min at amplitude 50. To this mixture, Asyn 

monomer was added to a final concentration of 2 mg/mL in a final volume of 400 μL in 

fibril buffer. This mix was quiescently incubated at 37 °C for 2 days (5th round). At the end 

of 5th round, samples were centrifuged at 21,000 xg for 15 min at 4 °C and the top 300 

μL of spent Asyn monomer was moved to a separate tube. The pellet was resuspended by 

trituration and sonicated for 1 min at amplitude 50. After sonication, the previously removed 

300 μL of 5th round monomer was added back. Next, an additional 2.5 mg/mL of Asyn 

monomer was added to bring the total volume to 800 μL. This mixture was incubated at 37 

°C for 2 days to complete 6th round of incubation. The increased monomer concentration 

(2.5 mg/mL instead of 2 mg/mL) was calculated based on the average decrease in free Asyn 

monomer due to its incorporation into amplified fibrils. The 6th round fibrils were stored at 4 

°C until use.

Solid-state NMR spectroscopy

Magic-angle spinning (MAS) SSNMR experiments were performed at magnetic field of 

11.7 T (500 MHz 1H frequency) or 17.6 T (750 MHz 1H frequency) using Agilent 

Technologies VNMRS spectrometers. Spinning was controlled with a Varian MAS 

controller to 11,111 ± 30 Hz or 22,222 ± 15 Hz (11.7 T) and 16,667 ± 15 Hz or 33,333 

± 30 Hz (17.6 T). All experiments were done with a variable-temperature (VT) airflow 

setting of 0 °C, primarily to keep samples cool from RF and MAS heating, without freezing 

out molecular motions. The 11.7 T magnet was equipped with a 1.6 mm HCDN T3 probe 

(Varian), with pulse widths of about 1.8 μs for 1H and 13C, and 3.2 μs for 15N. The 17.6 

T magnet was equipped with a HXYZ T3 probe (Varian) tuned to HCN triple resonance 

mode with pulse widths of about 1.9 μs for 1H, 2.6 μs for 13C, and 3.0 μs for 15N. All 

experiments utilized 1H-13C or 1H-15N tangent ramped CP (Metz, Wu et al. 1994) and 

~100 kHz SPINAL-64 decoupling during evolution and acquisition periods (Fung, Khitrin 

et al. 2000, Comellas, Lopez et al. 2011). Where applicable, SPECIFIC CP was used 

for 15N-13Cα and 15N-13C’ transfers (Baldus, Petkova et al. 1998), 13C-13C homonuclear 

mixing was performed using DARR (Takegoshi, Nakamura et al. 2001). Chemical shifts 

were externally referenced to the downfield peak of adamantane at 40.48 ppm (Morcombe 

and Zilm 2003). NUS schedules using biased exponential sampling were prepared using 

the nus-tool application in NMRbox (Maciejewski, Schuyler et al. 2017). Data conversion 

and processing was done with NMRPipe (Delaglio, Grzesiek et al. 1995). NUS data was 

first expanded with the nusExpand.tcl script in NMRPipe, converted, and processed using 

the built-in SMILE reconstruction function (Ying, Delaglio et al. 2017). Peak picking and 

chemical shift assignments were performed using NMRFAM-Sparky (Lee, Tonelli et al. 

2015).
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Extent of assignments and data deposition

Chemical shift assignments were performed for the LBD Asyn fibrils amplified using 

uniform [13C, 15N] labeling (uCN). Resonance assignments were determined using 

2D 13C-13C, 2D 15N-13Cα, 2D 15N-13C’, 3D 15N-13Cα-13CX, 3D 15N-13C’-13CX, 3D 
15N-13C’-13Cα and 3D 13Cα-15N-13C’ data sets following standard procedures (Comellas 

and Rienstra, 2013; Higman, 2018). The 2D 15N-13C’ (Figure 1A) and 15N-13Cα (Figure 

1B) spectra serve as structural fingerprints for the fibril, with a focus on the backbone atoms. 

Critically, these highlight the benefit of adding a 15N dimension to disambiguate shifts, 

particularly for the Ala and Gly regions, which comprise 30% of the primary sequence 

between residues 30 and 100, as well as for key core residues like V71, V74, T75 and 

V77. Overall, there appears to be a predominant defined conformation that likely displays 

some localized heterogeneity. Figure 2 demonstrates representative strips corresponding to 

assignments from 3D 15N-13Cα-13CX, 3D 15N-13C’-13CX, and 3D 13Cα-15N-13C’ from 

T72 to A76.

Comparison to previously structurally characterized fibril

We compare the chemical shift assignments of the postmortem seeded LBD fibrils to 

the extensively studied in vitro fibril preparation (PDB: 2N0A). Figure 3 summarizes the 

differences in the chemical shift values that lead us to the conclusion that the postmortem 

seeded LBD fibrils presented herein are wholly different than the in vitro fibril preparations. 

This is based chiefly on two observations from extensive assignments of both fibril types. 

First, due to differences in dynamics or line broadening attributed to multiple confirmations, 

amino acid sequences that can be unambiguously sequentially assigned within the primary 

structure of Asyn are different. We discount the possibility of multiple confirmations being 

present as there is a single set of resonances assignable to each visible peak within the 

spectrum with no unambiguous peaks assignable to consecutive stretches from the 2D and 

3D datasets. Secondly, unambiguous chemical shifts that are common between in vitro and 

postmortem seeded fibrils display significant chemical shift differences, with an average of 

~1.9 ppm, when scaled with respect to 15N and 13C chemical shift values.
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Figure 1: 
Backbone chemical shift assignments demarked on a 15N-13C’ (A) and a 15N-13Cα (B) 

spectra.
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Figure 2: 
Example backbone assignment strip from T72 to A76 demonstrating connectivity and 

sidechain assignments from a 3D 15N-13Cα-13CX correlation (black), a 3D 15N-13C’-13CX 

correlation (red), and a 3D 13Cα-15N-13C’correlation (blue).

Barclay et al. Page 9

Biomol NMR Assign. Author manuscript; available in PMC 2024 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Secondary structure and chemical shift comparison between postmortem seeded LBD and 

PDB ID: 2N0A. Top: Predicted secondary structure of the LBD case versus the structure of 

the in vitro fibril form from residues 28 to 99. The primary structure is labeled under the 

secondary structure for reference. Bottom: Plot of the residue specific chemical shift RMS 

differences of the LBD postmortem seeded case to the in vitro 2N0A case. RMS Δδ was 

calculated as Δδ = {∑i [(ΔδCi)2 + (0.4 × ΔδN)2] ∕ n}1 ∕ 2
, where i refers to α, β, γ, δ, and ε and n

is the number of assignments used to perform the calculation.
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