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Abstract
Complement inhibition has shown promise in various disorders, including COVID-19. 
A prediction tool including complement genetic variants is vital. This study aims to 
identify crucial complement-related variants and determine an optimal pattern for 
accurate disease outcome prediction. Genetic data from 204 COVID-19 patients hos-
pitalized between April 2020 and April 2021 at three referral centres were analysed 
using an artificial intelligence-based algorithm to predict disease outcome (ICU vs. 
non-ICU admission). A recently introduced alpha-index identified the 30 most pre-
dictive genetic variants. DERGA algorithm, which employs multiple classification 
algorithms, determined the optimal pattern of these key variants, resulting in 97% 
accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 
variants per patient, with 977 total variants detected. This study demonstrates the 
utility of alpha-index in ranking a substantial number of genetic variants. This ap-
proach enables the implementation of well-established classification algorithms that 
effectively determine the relevance of genetic variants in predicting outcomes with 
high accuracy.
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1  |  INTRODUC TION

The ongoing coronavirus disease (COVID-19) pandemic, caused 
by the severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2), has resulted in remarkable global morbidity and mortality 
among patients.1 Despite continuing vaccination efforts, there is 
still a need to reduce the impact of the disease, particularly in spe-
cific populations. Studies have revealed that SARS-CoV-2 triggers 
a cycle of immune dysfunction, endothelial injury,2 and microan-
giopathy,3 resulting in severe COVID-19 being characterized as a 
multisystemic vascular disease.4 Given that complement is a sig-
nificant regulator of endothelial injury syndromes such as throm-
botic microangiopathies (TMAs), and severe COVID-19 seems to 
resemble complement-mediated TMAs, researchers have studied 
the role of complement activation in severe COVID-195,6 and dis-
covered genetic variants that may increase an individuals' suscep-
tibility to severe disease. Additionally, a number of studies have 
investigated the use of complement inhibitors as a potential treat-
ment for severe COVID-19,7,8 with encouraging results mostly 
seen in case series. Complement inhibitors such as eculizumab,9–15 
ravulizumab,16,17 Cp40,18,19 AMY-101,20,21 emapalumab,22 narso-
plimab,23,24 conestat alpha,25,26 and LFG-31627 have the poten-
tial to impact the treatment of severe disease. However, broader 
use of these drugs is limited by cost and accessibility, as well as 
the need for more appropriate patient selection and larger stud-
ies. To address these challenges, robust prediction tools utilizing 
critical genetic variants, age and gender are essential in identi-
fying patients who may benefit from complement inhibition. The 
authors of this study aim to identify key complement-related ge-
netic variants that predict severe COVID-19 using a recently pro-
posed alpha-index. This index was initially introduced for ranking 
haematological indices that impact the outcome of COVID-19 
cases.28 In addition, a novel data ensemble refinement greedy al-
gorithm (DERGA) is utilized, in order to demonstrate the optimal 
subset combination (pattern) of these genetic variants with the 

best prediction accuracy regarding the outcome of each patient's 
illness.

2  |  MATERIAL S AND METHODS

2.1  |  Study population

Our study recruited adult patients who were hospitalized for COVID-19 
at three referral centres (Georgios Papanicolaou, Attikon Hospital and 
Johns Hopkins Hospital) from April 2020 to April 2021. We studied 
204 patients, 124 hospitalized in intensive care units (ICU) and 80 in 
COVID-19 general ward. Figure 1 summarizes demographics accord-
ing to disease severity, age and gender. Participants were confirmed to 
have SARS-CoV-2 infection through RT-PCR (reverse-trancriptase pol-
ymerase chain reaction) testing. The medical history and progress of 
each patient were recorded by their treating physicians and followed 
until their discharge or death. Patients with non-available data on clini-
cal course and outcome were not included in the latter analysis. The 
study was approved by the Institutional Review Boards of the referral 
centres and conducted in accordance with the Declaration of Helsinki.

2.2  |  Genetic analysis

The study utilized next-generation sequencing (NGS, Illumina, 
San Diego, California) to analyse DNA that was extracted from 
peripheral blood samples. The analysis focused on a panel of 
complement-related genes, which included complement factor H/
CFH, CFH-related, CFI, CFB, CFD, C3, CD55, C5, CD46 and thrombo-
modulin/THBD, as well as TMA-associated ADAMTS13 (a disinte-
grin and metalloproteinase with thrombospondin type 1 motifs). 
The design of probes was done using DesignStudio (Illumina, 
San Diego, California) to include all exons and an additional 15 
bases of the intronic regions, resulting in 98% coverage. The 

F I G U R E  1 Study population 
categorized by age, gender and disease 
severity (requiring or not hospitalization in 
intensive care unit [ICU]).
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initial amount of DNA material used was 10 ng per pool and the 
libraries were quantified using Qubit (Thermofisher Scientific, 
Waltham, Massachusetts). The sequencing of the libraries was 
performed on an Illumina System in a 2 × 150 bp run (Illumina, 
San Diego, California). Both Ensembl and Refseq resources were 
utilized to annotate the output files. The variants' clinical signifi-
cance was determined using ClinVar and the current version of the 
Complement Database.

2.3  |  Compilation of genetic variants database

According to the genetic analysis conducted in 204 patients with 
COVID-19, a database, that was comprised from 204 datasets and 
corresponded to the 204 patients, was synthesized. Each dataset 
was specified by 980 parameters. The first two parameters cor-
responded to age and gender of the patient, the next 977 corre-
sponded to genetic variants detected in the patient, and the last 
parameter specified the severity of the patient's illness. Database is 
appended to this paper as Data S2 (excel file entitled Database—with 
all 977 Genetic Variants).

2.4  |  Optimal pattern of variants affecting the 
COVID-19 outcome

The main objective of this study is to identify the optimal pattern 
of genetic variants that determines the outcome of the patients' ill-
ness, specifically whether they require admission to the intensive 
care unit (ICU). To achieve this goal, appropriate techniques and al-
gorithms of artificial intelligence have been employed, under the as-
sumption that the number of variants and their respective possible 
combinations were not excessively large. Additionally, the database 
must be reliable and able to statistically describe the phenomenon 
being studied.

The database for 204 patients and 977 variants has been anal-
ysed and the possible combinations have been determined through 
the application of the following equation.

where nv is the number of the genetic variants in database. Setting the 
value nv = 977, we get 2.554676 × 10294 possible combinations.

To address this issue, two objectives were identified: (i) reduce 
the number of 977 variants to a subset which contains the most cru-
cial variants that predict the outcome of the patients' illness and can 
be rapidly computed, and (ii) identify the optimal pattern using only 
this subset of crucial variants.

Taking into consideration these objectives, the next two sections 
present a recently proposed index for identifying the most crucial 
variants and a novel algorithm for identifying the optimal subset of 
variant combinations.

2.5  |  Crucial genetic variants

In order to reduce the 977 variants into a much smaller subset which 
comprise only the variants that affect outcome of the disease, alpha-
index, which was recently proposed by the authors for ranking hae-
matological indices that also affect the outcome of patients with 
COVID-19, was utilized.28 This index is defined as

where
i corresponds to ith genetic variant (i = 1–977),
μnot in ICU
i

 is the mean value of the ith genetic variant for COVID-19 
infected patients who did not require hospitalization in ICU andμin ICU

i
 

is the mean value of the ith genetic variant for COVID-19 infected pa-
tients who require hospitalization in ICU.

Based on the above equation, the index takes values between 
−100 and 100. A genetic variant's effectiveness in determining 
whether a patient will be admitted to the ICU is directly proportional 
to this index value:

1.	 First, if a genetic variant is present in both sets of patients 
(ICU/not in ICU) the index has a value of 0, indicating that 
the variant does not affect a patient's admittance to the ICU.

2.	 Second, if a genetic variant is present only in the set of patients 
admitted to the ICU and not present in the set of patients not 
admitted to the ICU the index has a value of −100, indicating that 
the variant has a significant effect on a patient's admittance to the 
ICU.

3.	 Third, if a genetic variant is not present in the set of patients ad-
mitted to the ICU and is present only in the set of patients not 
admitted to the ICU the index has a value of 100, indicating that 
the variant has a significant effect on a patient's non-admittance 
to the ICU.

The above-stated index was used to rank the 977 variants. A 
subset of the most crucial variants that segregate with requirement 
for hospitalization in the ICU was selected.

2.6  |  DERGA, the proposed greedy algorithm

Based on the previously presented alpha-index, the number of ge-
netic variants that predict severity of a COVID-19 patient's illness 
can be significantly reduced. However, the number of possible com-
binations of these variants that can be used as input parameters in a 
classification model to predict ICU admission remains large, and the 
solution process remains challenging. To address this issue, a new 
data ensemble refinement greedy algorithm (DERGA) is proposed in 
this section. The objective of DERGA is to identify the optimal com-
bination of essential genetic variants by first ranking them through 
the alpha-index and subsequently employing a set of classification 

(1)Combinations = 2

nv
∑

i=1

nv !

i ! (nv − i) !
= 2

(

2nv − 1
)

(2)alpha (i) − index =
(

μnotinICU
i

− μinICU
i

)

100
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algorithms with combinations of the remaining variants, after rank-
ing them using the alpha-index.

The proposed algorithm can be described in the following finite 
number of steps:

Step 1. A set Α, |Α| = m, is defined using widely adopted classifi-
cation algorithms in the literature. Each algorithm, Ai, i = 1, …, m, will 
be fitted to training data for predicting if a COVID-19 patient will be 
admitted to ICU or not.

Step 2. During the training and development of the heuristic 
classification algorithm Ai in Step 1, the entirety of the genetic vari-
ants (nm) that have been selected using the alpha-index are used as 
input parameters. Performance indices are determined with respect 
to the achieved prediction level.

Step 3. Next, the algorithm is fitted for nm cases of parameters, 
with one genetic variant removed each time. Performance indices 
are determined for each case, with respect to the achieved predic-
tion level. From the nm cases of algorithm execution, the one that 
corresponds to the smallest value of the performance index for the 
prediction level, defines which genetic variant affects the prediction 
level the least and is removed from the set of nm variants. This pro-
cess is repeated for nm-1 times, removing a variant each time.

With the completion of this procedure, the following are 
determined:

1.	 The achieved prediction for the case, where all genetic vari-
ants are used as input parameters in the currently executed 
heuristic classification algorithm.

2.	 The optimal combination of genetic variants (pattern) in the 
currently executed heuristic classification algorithm that corre-
sponds to the best prediction level.

3.	 The ranking of all variants according to their contribution to the 
prediction.

4.	 The ranking of the remaining variants according to their signifi-
cance of prediction in contrast to other black box metaheuristics, 
which only determine the remaining variants and not their relative 
significance.

5.	 The most crucial variant, which is the one remaining during the 
repetitive process of the proposed algorithm.

6.	 The above five findings correspond to each executed algorithm 
Ai. The optimal among all the algorithms executed define the best 
algorithm and the global optimum genetic variant pattern, as well 
as the global crucial genetic variant.

The proposed algorithm (DERGA), is characterized as greedy 
and local hill-climbing heuristic, as it seeks to remove the variant 
(input parameter) that contributed the least to the prediction level 
in each iteration j = 0,…,29 of the currently executed algorithm Ai, 
i = 1,2,…,m. By removing a variant from the training datasets in each 
iteration, the algorithm makes data reduction in steps of removing 
columns from the training data.

The reliability of the proposed algorithm is established by the 
magnitude of the achieved prediction level. The greater the pre-
diction score, the greater the reliability of the proposed algorithm 

and the proposed combination of genetic variants (patterns). 
Additionally, for the studied case of predicting if a COVID-19 patient 
will require hospitalization in ICU or not, the achieved accuracy of 
prediction must be greater than 95%.

3  |  RESULTS

The proposed algorithm used a database of 204 COVID-19 patients, 
consisting of 204 datasets and containing 977 genetic variants. The 
number of genetic variants per patient varied ranging from 40 to 
161. By applying the alpha-index, the 30 most crucial genetic vari-
ants were identified and ranked in decreasing absolute value, as 
shown in Figure 2. The database of 30 most crucial genetic variants 
is appended to this paper as Data S1 (excel file entitled Database—
with 30 most crucial Genetic Variants).

The proposed DERGA algorithm was used to find the optimal 
combination of the 30 most crucial genetic variants, by utilizing five 
different classification algorithms. These algorithms were selected 
from widely adopted and available literature, including Decision 
Trees,29 Extra Trees,30 Random Forrest,31 Gradient Boost32 and 
Gaussian Process classification algorithms,33 for their superior per-
formance in solving the current problem.

The 204 datasets of the database, containing the 30 most crucial 
genetic variants, were divided into two distinct groups. Specifically, 
one group, constituting 70% of the data and referred to as the 
Training datasets, was utilized for the training of the proposed algo-
rithm. The other group consisted of the remaining 30% of the data, 
termed the Testing datasets, employed to assess the performance of 
the algorithm. Notably, these two data groups were selected from 
10 random partitions (70–30) to minimize performance indices devi-
ation between Training and Testing datasets. This careful selection 
enhances the reliability and robustness of the algorithm evaluation 
process.

Accuracy plots of proposed DERGA algorithm for the five dif-
ferent classification algorithms are demonstrated in Figure  3. 
Additionally, Table 1 presents the achieved performance indices34–37 
for each of these five algorithms, along with the number of genetic 
variants used as input parameters for the best prediction score of 
whether a COVID-19 patient was admitted to the ICU or not.

Figure 3 demonstrates the efficacy of proposed algorithm in suc-
cessively identifying and eliminating the least critical genetic variants 
from the initial set of 30 key variants selected with the alpha-index 
(Figure 1). The peak of the curve for each algorithm represents the 
maximum prediction score attainable with that particular algorithm 
and determines the number of parameters, that is, genetic variants 
that are omitted and not considered in the estimation process for 
determining ICU admission for a patient.

The results in Figure  3 and Table  1 display that the Decision 
Trees algorithm performed best, with an accuracy of 0.9706, while 
only employing 22 out of the 30 genetic variants. Table 2 lists the 
genetic variants that were used as input parameters for the optimal 
Decision Tree classifier. The ranking in the leftmost column is based 
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on the reverse order of removal of variants during the execution of 
the proposed DERGA algorithm.

The high prediction score achieved demonstrates the ef-
fectiveness and reliability of the proposed DERGA algorithm. 
Additionally, it is noteworthy that for the optimal Decision Trees 
algorithm as well as for all the algorithms studied, the most crucial 
variant is rs551397 (gene CFH), which confirms the reliability of 
the alpha-index for ranking genetic variants in terms of their asso-
ciation with ICU admission.

4  |  DISCUSSION

In this study, we introduce a novel prediction tool based on robust 
variables which demonstrates a high degree of accuracy in predict-
ing the outcome of COVID-19. Additionally, this study showcases 
the reliability of the recently proposed alpha-index28 in ranking ge-
netic variants according to their impact on disease outcomes.

To date, genome-wide association studies (GWAS) have iden-
tified multiple genetic loci that are either associated with intense 

F I G U R E  2 Ranking of the top 30 
genetic variants based on the proposed 
new alpha-index. Red colour signifies 
that the occurrence of the variant is 
dominating in patients admitted to ICU, 
while blue signifies the occurrence of the 
variant for those not admitted in ICU.

F I G U R E  3 Accuracy plots for the 
DERGA procedure for each used 
classification algorithm.
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disease severity or increased susceptibility to COVID-19.38 For dis-
ease severity, key findings include variants in genes such as DPP9,39 
TLR7,40,41 IFNAR2 and FOXP4.14 In addition, associations have been 
observed with genes that modulate the immune response to viral 
infection, such as TYK239 and IFNAR2.14,38 Regarding COVID-19, 
genetic susceptibility is primarily linked to polymorphisms in the 
angiotensin-converting enzyme 2 (ACE2) gene,14,42,43 ABO blood 
group,44,45 SLC6A20 gene46,47 and interferons.43,48

As far as complement-related variants, few studies about 
COVID-19 have emerged with significant outcomes. A recent study, 
aimed at exploring the association between genetic variation at 
chromosome 3p21.31 and the ABO blood group with complement 
activation and COVID-19 severity, identified a variant (rs11385942) 
that predisposes individuals to severe COVID-19. This variant was 
found to be associated with increased complement activation, as 
evidenced by elevated levels of circulating C5a, sC5-C9 and C5a in 
individuals belonging to the non-O blood group.49 Moreover, a ge-
netic and transcriptional analysis documented 23 study-wide signif-
icant SNPs in 12 complement genes.50 Integrative analysis of these 
data highlighted 4 SNPs in human complement genes (C4BPA, C5AR1 
and C3) that encode for missense polymorphic variants (rs2230199, 
rs1047286, rs45574833 and rs4467185) associated with SARS-
CoV-2 susceptibility.51 In addition, Delanghe et  al characterized 
C3 polymorphisms as confounders in the spread and outcome of 
COVID-19 using a multivariate model.52

There are limited tools for prediction of COVID-19 disease se-
verity that can be applied to clinical practice or trials. We recently 
developed an algorithm to identify variants in C3, CFH and THBD that 
predict COVID-19 severity.36 The algorithm predicted COVID-19-
related ICU hospitalization based on a combination of variants with a 
rate of over 80%; however, it did not account for key morbidity and 
mortality factors, such as age and gender. To overcome this limita-
tion, we improved the algorithm to include both ICU and non-ICU 
patients and identified variants in complement-related genes (CFRH, 
THBD, C3 and CFH), known to be dysregulated in complement-related 
disorders.35 The updated algorithm was further implemented using 
an Artificial Neural Network (ANN) that incorporated age and gen-
der, providing not only the ability to predict morbidity but also mor-
tality in COVID-19 patients. The present study expands upon our 
prior work through the use of the recently proposed alpha-index28 to 
identify critical complement-related genetic variants. These variants, 
when combined with the application of a novel data ensemble re-
finement procedure (DERGA algorithm) based on six different classi-
fication algorithms, yielded a remarkable predictive score for the ICU 
admission of COVID-19 patients. For instance, DERGA-Decision Tree 
algorithm managed to attain a 97% prediction accuracy using only 22 
key variants, a result that has not been achieved in previous works.

Gender is considered a major risk factor for COVID-19 disease. 
Healthy male individuals show higher levels of complement activa-
tion and increased morbidity and mortality.53,54

Studies to date support an important role for the alternative path-
way of the complement system in COVID-19 pathogenesis, as it is di-
rectly activated by SARS-CoV-2.55 Based on the results of alpha-index TA
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ranking, as well as the removal turn of each classification algorithm, 
the most crucial genetic variant was rs551397, which has been char-
acterized as a high-risk factor for age-related macular degenera-
tion (AMD).56 In accordance with our findings, recent studies have 
demonstrated that COVID-19 patients with AMD are at a significantly 
increased risk of experiencing severe disease and death.50 The com-
bination of genetic variants in complement-related genes identified in 
our study may be suggestive of COVID-19 disease biology.

The utilization of machine learning techniques has been em-
ployed in the development of prediction models for COVID-19. 
These models have incorporated various data sources, including co-
morbid diseases,57,58 clinical factors,59,60 genetic factors39,42,61 and 
SARS-COV-2 viral clades.62–64 Given the promising results obtained 
from therapeutic approaches, including complement inhibition,65 in 
the treatment of COVID-19, the development of reliable prediction 
tools based on complement-related variants is of utmost importance. 
The utilization of similar tools in the precision medicine era, holds 
the potential for early patient identification and the implementation 
of a personalized, secure and effective therapeutic approach.66

5  |  LIMITATIONS AND FUTURE WORK

The major limitation of this study is the moderate number of patients 
comprising the variants database. The authors intend to increase the 

size of the database by collecting data from various sources in future 
work. This will lead to greater reliability of the classification proce-
dures presented in this work and establish them as a valuable tool 
for predicting admittance to ICU for COVID-19 patients. Additional 
limitations include the inability of our model to account for the 
effect of vaccination status on clinical outcome, as many of our 
samples were collected prior to the availability of widespread vac-
cination. Further, the majority of patients in our study were infected 
with the alpha variants of SARS-CoV-2 and therefore, the effects 
of the individual spike protein variants on disease severity are not 
extensively studied in our model. Moreover, our cohort comprised 
only from adult patients. In the paediatric population, the identifica-
tion of novel complement variants67 poses a challenge to the gener-
alization of our findings. Consequently, there is a need for additional 
studies to address this limitation. Lastly, our model provides high ac-
curacy and prediction rates irrespectively of traditional confounders 
and comorbidities.

6  |  CONCLUSIONS

This study shows the effectiveness of using the recently proposed 
alpha-index to rank a large number of genetic variants. This facili-
tates the use of well-established classification algorithms in the ma-
chine learning literature, which are orchestrated in a data ensemble 

Ranking Variants

DERGA Alpha-index rs Gene Position

1 1 rs551397 CFH 196,642,072

2 11 rs2230204 C3 6709,848

3 28 rs12614 CFB 31914,179

4 12 rs5860990 CFI 110,678,819

5 23 rs1629038 CFD 860,852

6 19 rs1962149 CD46 207,956,559

7 7 rs2547438 C3 6718,078

8 26 rs2285489 ADAMTS13 136,289,374

9 2 rs432823 C3 6702,246

10 24 rs28641026 ADAMTS13 136,314,952

11 9 rs438781 CFHR1 196,796,240

12 29 rs2241394 C3 6685,230

13 8 rs1065489 CFH 196,709,774

14 10 rs435628 CFH 196,705,886

15 3 rs400344 CFHR3 196,757,392

16 17 rs385791 C3 6694,399

17 5 rs11120753 CD55 207,527,285

18 16 rs399507 CFHR1 196,796,184

19 14 rs3753396 CFH 196,695,742

20 22 rs482934 CFH 196,658,497

21 4 rs112132860 C3 6710,584

22 6 rs534399 CFH 196,711,067

TA B L E  2 Ranking of genetic variants 
used as input parameters in proposed 
optimal DERGA-Decision Tree algorithm.
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refinement procedure. The procedure is used to quickly and effec-
tively determine the significance and relevance of the genetic vari-
ants in predicting the admittance of COVID-19 patients in the ICU, 
with a high accuracy.

Studies have indicated the existence of genetic polymorphisms, 
in genes responsible for encoding complement proteins across di-
verse populations.68 Such genetic variations have been associated 
with disparities in complement function and regulation. The impli-
cations of these genetic differences extend to influencing suscepti-
bility to specific diseases and responses to infections. Consequently, 
there is a pressing need for further research endeavours to deepen 
our understanding of this complex interplay.

Given the evolving landscape of literature on the long-term im-
plications of COVID-19,69 in order to attain risk prediction within 
comparable accuracy and sensitivity, further large and high-quality 
studies are needed.

In summary, it is worth noting that the innovative DERGA algo-
rithm proposed in this study can be applied to a broad spectrum of 
classification problems. This versatility extends to various domains, 
including the medical field, where it can contribute to unveiling the 
nature of cardiovascular diseases, as well as in engineering and sci-
entific applications. Particularly in scenarios with a substantial num-
ber of parameters, the suggested DERGA algorithm has the potential 
to prove highly effective. The demonstrated versatility positions it 
as a promising and effective tool with potential applications across 
diverse fields.
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