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Public platform with 39,472 exome control 
samples enables association studies without 
genotype sharing

Mykyta Artomov    1,2,3,4,9  , Alexander A. Loboda    3,4,5,6,9, 
Maxim N. Artyomov    7 & Mark J. Daly    3,4,8 

Acquiring a sufficiently powered cohort of control samples matched 
to a case sample can be time-consuming or, in some cases, impossible. 
Accordingly, an ability to leverage genetic data from control samples that 
were already collected elsewhere could dramatically improve power in 
genetic association studies. Sharing of control samples can pose significant 
challenges, since most human genetic data are subject to strict sharing 
regulations. Here, using the properties of singular value decomposition 
and subsampling algorithm, we developed a method allowing selection of 
the best-matching controls in an external pool of samples compliant with 
personal data protection and eliminating the need for genotype sharing.  
We provide access to a library of 39,472 exome sequencing controls at  
http://dnascore.net enabling association studies for case cohorts lacking 
control subjects. Using this approach, control sets can be selected from 
this online library with a prespecified matching accuracy, ensuring 
well-calibrated association analysis for both rare and common variants.

The success of genetic association studies critically depends not only 
on the collection of case samples but also on the quality and size of the 
collected control samples to ensure that discovered associations are 
phenotype driven. Control cohort subjects are selected in a way that 
minimizes technical and ancestral biases between case and control 
cohorts. While technical biases are well controlled by using the same 
sequencing technology and data processing standards for case and 
control cohorts, the common genetic background of cases and control 
subjects has to be actively enforced during the study design stage. This 
can be achieved either by recruiting study-specific controls or by select-
ing appropriate controls from already published studies within data-
bases like dbGAP1. The latter, however, is often very challenging from 
both technical and regulatory perspectives. Such databases typically 
consist of multiple relatively small cohorts (hundreds of individuals), 

and each one requires separate access and extensive post-processing 
to combine them into a single dataset before any statistical analysis. 
Even then, only a subset of such samples could serve as appropriate 
controls for a given case cohort, as they would have to undergo rigor-
ous selection based on ancestry matching. Each of these steps requires 
explicit genotype sharing, which serves as one of the major obstacles 
to the efficient utilization of public control pools2.

The theoretical possibility of association studies without sharing 
individual-level data has been discussed widely: UNICORN3 proposed 
to create a potential control repository for GWAS/genotyping array 
studies with precomputed base ancestry space such that both case and 
control data could be projected on it for further matching. Yet, practi-
cal implementation of this concept at scale has not emerged. Several 
methods, for example, TRAPD4, CoCoRV5 and Summix6, proposed 
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local site, and the projections of case genotypes can be obtained. Next, 
we apply a similar SVD operation to the matrix of case coordinates in 
the control basis. The resulting left singular value matrix would rep-
resent the directions of the greatest variance in the genotypes of the 
case cohort within the basis of controls. Unlike individual-level coor-
dinates, sharing such information from the case cohort with a remote 
control repository is permitted without restrictions since it lacks any 
individual-level data. Importantly, this information is sufficient to para-
metrize the Gaussian-like distribution of the case subjects’ projections 
in the space spanned by the left-singular vectors of control genotype 
matrix. This can be accomplished by computing the covariance matrix 
and the mean value using the maximum likelihood estimator. Common 
standards for data quality filtration, outlier detection and missing 
genotypes imputation will apply (‘Shareable data generation’ section 
in Methods and Supplementary Figs. 1–3). We also require sharing the 
summary allele counts that will further be used in evaluation of the 
control selection quality.

On a remote server, we set up the process of subsampling the con-
trol pool in such a way that the distribution parameters of the proposed 
set of controls fit the best to the target distribution of the case samples. 
To measure the similarity between the proposed set of controls and 
a case cohort, we use the Baringhaus–Henze–Epps–Pulley statistic, 
defined as the difference between characteristic functions of the tar-
get distribution and the sample distribution weighted on a Gaussian 
kernel14. The process of selection of an optimal subset of controls is 
then formulated as an optimization problem aimed to minimize the 
BHEP statistic, which is solved with a simulated annealing approach15  
(‘Control selection using a remote server’ section in Methods). Further, 
the summary allele counts are used to compute the association test 
statistic for variants that were used for control matching, and genomic 
inflation is assessed. The largest control set delivering the genomic 
inflation below a user-defined threshold is therefore selected as opti-
mal, and summary allele counts are returned to the user.

Using this approach, we created SCoRe, a public platform with 
39,472 exome sequencing controls (Supplementary Tables 1 and 2), 
and a complementary R package, SVDFunctions (Fig. 1). Further, we 
describe extensive process of evaluation of performance and robust-
ness of the approach using large-scale genetic data from multiple tech-
nical platforms, and major continental and fine-scale ancestry groups.

Global populations dataset of 16,532 exomes
Cross-validation in a random set of cases. To illustrate our approach, 
we first assembled the dataset of exome sequences representing major 
global populations by downloading dbGAP studies suitable for usage 
as control subjects and permitted for general research (Fig. 2a and Sup-
plementary Table 1). All individual studies were combined into a single 
dataset through joint variant calling. The raw dataset was subjected 
to a quality filtering workflow (Supplementary Fig. 4) yielding a final 
data freeze of 16,532 samples. All samples in the aggregated dataset 
were sequenced with Agilent exome capture at the Broad Institute. 
Common coding linkage disequillibrium pruned (LD-pruned) variants 
were selected for constructing the genotype matrix. To simulate an 
association study, we randomly divided the dataset into 500 European 
‘cases’ and a ‘control candidate pool’ of the remaining 16,032 samples, 
which included 8,019 Europeans (Fig. 2a–c).

Following the control selection protocol, the projections of case 
vectors on the basis of the control pool were computed and fitted 
with Gaussian distribution. Next, the parameters of the distribution 
and summary genotype counts of the case cohort were transmitted 
to the control pool.

The BHEP statistic was then optimized for each size of the control 
candidate set (from 100 to 16,000 with a step of 500 samples, Fig. 2d).  
Increasing the size of the control candidate set naturally leads to dete-
riorating control quality, as can be seen by inclusion of samples of 
nontarget ancestry (Fig. 2e). The quality of the control candidate cohort 

computational solutions to utilize publicly available allele frequen-
cies and genotype counts from gnomAD as a pool of controls. Such 
approaches are often limited only to the analysis of rare disease, often 
caused by de novo variants, where population structure does not play 
a critical role in signal detection7 and therefore ancestry matching 
between cases and controls (TRAPD). Alternatively, the ancestry match-
ing is limited to the predefined major continental groups defined in 
gnomAD, substantially limiting the possibility of including admixed 
or fine-scale ancestry cohorts into the analysis (CoCoRV and Sum-
mix). Collaborative Spanish Variant Server framework offered a user 
with an ability to select samples that should be included in the con-
trol subset based on their phenotypes, yet this solution was limited 
only to copy-number variation and Spanish population, without the 
mechanism to perform ancestry matching8. GLADDB solution, pro-
posed recently for sharing genetic data for Latin-American cohorts, 
potentially could be viewed as a step toward practical data sharing; 
however, this solution implies open individual-level data sharing, 
such as individual coordinates of the samples in the principal compo-
nent space. As such, this solution could only be used for cohorts that 
already exist in the public domain and are already approved for open 
individual-level data sharing9.

Currently, several alternatives to direct data sharing are available. 
For example, large-scale analytical initiatives, such as AllofUS10, UK 
Biobank11 and FinnGen12, provide secure cloud environments that per-
mit direct interaction with individual-level data for authorized users. 
While being highly effective, such solutions limit the utility of the data 
for external usage and usually require a thorough multistep process of 
user identification. Conclusively, a practical, fully secure framework for 
case–control association studies without individual-level data sharing 
is a highly desirable, though yet unachieved, goal.

In this Technical Report, we consider a situation in which a 
researcher has assembled a case cohort and is interested in per-
forming an association study using allele frequencies estimated in 
a well-matched control cohort from a common public repository. 
To achieve this, we used insights from singular value decomposi-
tion (SVD) applications13 and developed a methodology for select-
ing background-matched control sets without explicit genotype or 
individual-level data sharing. We evaluated our approach in a series 
of large-scale genetic data analyses and implemented an online portal 
(SVD-based Control Repository (SCoRe), www.dnascore.net) that 
contains 39,472 controls. Our implementation selects optimal control 
subjects and provides summary genotype counts for the selected con-
trol set, such that the investigator can locally perform an association 
study. SCoRe allows researchers worldwide to select the most optimal 
controls in a manner compatible with data sharing regulations, thus 
enabling massive improvement in studies’ statistical power.

Results
Overview of the framework for control selection without 
genotype sharing
In case of shared genotypes, selection of ancestrally matched control 
cohort is conducted through analyzing coordinates of samples in the 
shared principal component space. Individual coordinates, however, 
cannot be shared, and the need for determining relative positioning 
of case and control cohorts in the same coordinate basis is the main 
challenge that our method aims to address.

We assume a situation where genetic data for a cohort of cases are 
directly available for analysis but lack control subjects. First, we use SVD 
to decrease the dimensionality of the centered genotype matrix for the 
control pool. Commonly, the first vector-columns of the left-singular 
vector matrix represent the directions of the maximal variability. We 
assume that the control pool has a broader population structure than 
a cohort of cases, and thus, first vector-columns of the left-singular 
vector matrix derived from the pool of controls, will be used as a basis 
for the case-control matching process. This basis can be shared to the 
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can be evaluated through genomic control for linear regression test 
statistics (λ)16, estimated using summary genotype counts from cases 
and control candidate sets (Fig. 2f).

To select the optimal size of the control set, we computed λ for 
each size of the control candidate pool, and the largest control set with 
λ < 1.05 became an optimal control set (Fig. 2f). Figure 2g illustrates the 
results of running 100 random simulations for a European ‘case’ cohort 
and the reliability of the selection of the control set.

We performed a parameter sensitivity analysis to illustrate that 
our method works consistently well for major continental populations, 
keeps the false positive rate low and benefits from the larger case cohort 
sizes (Supplementary Fig. 5).

Fine-scale ancestry matching in an independent dataset. In the 
above experiment setting, the case cohort was randomly drawn from 
the pool of European samples present in the control dataset. Expect-
edly, such an approach returns the case cohort with distribution of 
European subpopulations similar to the one observed in Europeans 
of the control pool. Moreover, the case and control cohorts were part 
of the same joint variant calling process, which may have eliminated 
the technical biases.

We illustrated the method’s robustness to analytic pipeline dif-
ferences and alterations in composition of subpopulations in case 
cohort compared to the control repository. We used a 1000 Genomes17 
dataset of OMNI microarray genotyping as a source for case cohorts 
from each fine-scale ancestry (only directly genotyped variants were 
used). Importantly, the case and control datasets represent different 
genotype discovery technologies and downstream data processing. 
Therefore, such experimental design entirely eliminates the potential 
artificial advantages of similarities in data processing between case 
and control cohorts.

We used 18 local subpopulations from 1000 Genomes as simulated 
case cohorts and performed case–control selection without genotype 
sharing using the Global Populations dataset as a control pool. All but 

five local populations were adequately matched to control sets (Sup-
plementary Fig. 6). We observed that, for the subpopulations for which 
our method was unable to return control sets, there were no samples 
of the corresponding ancestry in the pool of controls (Supplementary 
Fig. 7). Therefore, our method is robust with respect to the absence of 
joint calling and does not return control cohorts for samples of local 
subpopulations that do not have representation in the pool of controls 
(‘Fine-scale ancestry matching in independent datasets’ section in 
Supplementary Note).

Matching cases with internal structure of subpopulations. We used 
the same 1000 Genomes data to keep only individuals of European 
descent as a case cohort, consisting of a composition of fine-scale 
ancestries—Finnish (FIN), Utah residents with Northern and Western 
European ancestry (CEU), Iberian populations in Spain (IBS), Toscani in 
Italia (TSI) and British in England and Scotland (GBR)—which is differ-
ent from the fine-scale ancestry composition in the Global Populations 
dataset (‘Selecting controls for case cohorts with internal structure 
of subpopulations’ section in Supplementary Note and Supplemen-
tary Fig. 8a). First, we identified the clusters within the case cohort 
that corresponded to the southern Europe, western Europe and Finn-
ish populations (Supplementary Fig. 8b–e). The shareable data for a 
clustered case cohort were then used to select controls, resulting in 
control cohorts adequately selected for each cluster independently 
(Supplementary Fig. 8f–i; note, there are only 45 Finnish samples in 
the Global Population dataset, resulting in a small control cohort for 
the Finnish case cluster).

Conclusively, parameter sensitivity tests suggest that noise, arti-
facts generated by data processing pipelines, and limitations of the 
exome sequencing data commonly observed for joint case–control 
datasets are well tolerated by our algorithm.

Nordic Dataset of 22,940 exomes
Cross-validation in a random set of cases. The Global Populations 
dataset is relatively uniform in technical processing and does not reflect 
the full complexity of technical biases that may exist in sequencing 
data. Thus, we next considered a separate, nonoverlapping dataset 
of 22,940 exomes of individuals from northern Europe (Sweden and 
Finland), sequenced on multiple exome capture kits and coming from 
multiple sequencing centers (Fig. 3a and Supplementary Table 2). The 
dataset was subjected to quality filtering, and 11,286 common auto-
somal coding LD-pruned variants were selected for genotype matrix 
construction. Five-hundred Finnish samples were selected as a ‘case’ 
group, and the control selection procedure was performed without 
genotype sharing as described above (Fig. 3b–f). Figure 3g shows 
that our approach robustly selects controls of Finnish ancestry, even 
given the limited ability of exome variants to distinguish fine-scale 
European ancestries.

Investigation of effects of exome sequencing platforms. Selection 
of control samples independent of exome capture kits (Fig. 3h) sug-
gested that differences in sequencing platforms might not interfere 
with the control selection process. The genotype principal component 
analysis (PCA) space does not immediately reflect the presence of 
multiple sequencing platforms in the data (Supplementary Fig. 9). We 
further confirmed this by selecting a case cohort from Nordic Dataset 
consisting only of Finnish samples sequenced using Nextera capture 
and successfully selecting a set of controls from a control pool lacking 
Nextera samples. Importantly, our algorithm delivers a control dataset 
with both common and rare variants matched (Supplementary Fig. 10).

Furthermore, we eliminated the benefit of joint variant call-
ing present in the experiment above, and used 45 Finnish samples 
from the Global Populations dataset (Agilent exome capture) as a 
case cohort and a control pool from Nordic Dataset from which we 
eliminated the Agilent sequencing platform samples. The algorithm 
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Fig. 1 | Scheme of an association study without genotype sharing. 
Individual-level genotype data are subject to data sharing restrictions. SVD-based 
processing creates anonymous data describing variation in case genotypes 
without storing individual data that could be shared with no restrictions. Remote 
server with a pool of controls selects a set of control genotype variation matching 
cases, estimates allele frequency for sites to be used for association study and 
delivers results to the user.
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selected 1,708 Finnish samples from Nordic Dataset, indicating 
robustness to the study origin and independence of data process-
ing (Supplementary Fig. 11).

A possible reason for this platform insensitivity could be the 
way standard data quality check routines are designed. One of the 

conventional data curation steps is a variant call rate filter, which keeps 
only those variants that have nonmissing genotype in at least 90% of 
samples (Supplementary Fig. 4). Such a filter eliminates variants that 
have notable variation in call rates across different exome sequenc-
ing platforms. The absence of call rate variation could protect from 
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observing platform-biased allele frequencies and therefore would yield 
noninflated association statistics, enabling efficient control selection.

To better understand this source of variability, we investigated the 
call rate properties of exome sequencing platforms to find genomic 
regions that best describe their differences (Fig. 4a). We estimated 
mean call rate for every genomic interval within samples coming from 
the same platform and further computed variance of these values for 
every interval. In fact, regions with high call rate (>0.9) have low vari-
ance in call rates between platforms, explaining the lack of sensitivity 
to the platform during the control selection.

Hence, standard data quality check protocol with variant call 
rate filter (even within data coming from a single platform) should be 
sufficient to overcome possible concerns about sequencing platform 
bias in SVD-based control selection.

Matching samples based on sequencing platform
In certain contexts, however, it might be important to have a set of 
controls matched not only by ancestry but also by sequencing plat-
form. Matching of platforms can be performed on the basis of regions 
with high variance in call rate between platforms. We used 11,407 
high-variance (>0.175) genomic regions to construct a call rate matrix 
with rows representing genomic intervals and columns representing 
samples. Each entry in such a matrix is a mean call rate per sample per 
genomic interval. The PCA of this matrix efficiently separates the sam-
ples by sequencing platform18 (Fig. 4b), similar to the genotype-based 
PCA that separates the samples by ancestry. Thus, in the settings when 
individual-level genotype sharing is allowed, the genotype matrix of 
high variance genomic regions can be used to explicitly match samples 
between two cohorts to the same platform.

In situations where genotype sharing is not possible, one can 
utilize a simple SVD-based approach, similar to the algorithm com-
monly used in pattern recognition problems13. Specifically, such an 
algorithm would locally generate SVD of cases call rate matrix С = USV′, 
extract appropriate number of left singular vectors U1..K = {U(i)|∀i∈[1..K]} 
and transmit it to central repository where control candidates (vi) will 
be ranked by similarity of the call rate pattern evaluated by estimati 
on of residual vector norm r = ||(I − UT

1..K)vi||  (‘Selection of control 
samples from the specific sequencing platform’ section in Supplemen-
tary Note and Fig. 4c). Residual vector norms form Gaussian-like dis-
tributed clusters that correspond to individual platforms (Fig. 4d,e). 
We used the Mclust19 library to fit optimal Gaussian models to observed 
distribution of residual vector norms and identify homogeneous call 
rate clusters of prospective controls.

We evaluated this approach by running 100 random selections of 
‘case’ group from Agilent and Nextera platforms and selecting control 
candidates using call rate matrix SVD-based approach. Figure 4d,e 
illustrates that this approach leads to a robust selection of samples that 
match the ‘case’ group platform. Interestingly, in the case of Agilent 
capture ‘cases’, a subset of selected control samples originates from 
an unknown sequencing platform (Fig. 4d). Upon closer examination, 
samples from unknown capture are found within the Agilent cluster 
on call rate-based PCA, suggesting that for this set of samples Agilent 
capture was used, though labeled as ‘unknown’. We performed further 
statistical evaluation (sensitivity to number of transmitted vectors, 
case cohort siz and so on) of this algorithm, confirming robustness of 
such approach (Supplementary Fig. 12).

Therefore, one can select ancestry-matched control sets from 
fixed exome platforms without individual genotype sharing using 
call rate-based SVD matching followed by genotype-based control 
selection.

Case studies
Next, we explored whether SCoRe can accurately select controls 
for rare variant gene-based association studies. We analyzed exome 
sequencing data for a cohort of patients with early-onset breast cancer 

(dbGAP: phs000822.v1.p1, Supplementary Note): 244 nonrelated cases 
matching quality standards were used for analysis20. Genotype matrix 
and summary genotype counts of cases were constructed for 3,979 
LD-pruned DNA variants passing quality control, and shareable data 
were generated and uploaded to the SCoRe server (Fig. 5a). SCoRE 
yielded 4,096 controls matched to the case cohort with λ = 1.04. First, 
to confirm that selected controls are matched not only on variants that 
were used for shareable data generation, we used a list of common syn-
onymous variants (that were not used for matching) in the case cohort 
and a list of genes with at least one singleton variant in cases (at sites 
with frequency less than 1/10,000 in gnomAD) for ultrarare burden 
calibration. For each list we downloaded summary control data from 
SCoRe and locally performed association analyses (linear regression for 
common variants and gene burden Fisher test for rare variants; Fig. 5b). 
As a result, both common (λ = 0.965) and rare (λ = 0.987) background 
variations were well calibrated (Fig. 5c–e), providing confidence in the 
further association study.

We submitted a list of 8,268 genes with at least one singleton 
protein-truncating variant (PTV) carrier (at sites with frequency less 
than 1/10,000 in gnomAD) in cases (Fig. 5b) to SCoRe to obtain sum-
mary PTV counts by gene from the control cohort. Local association 
study with Fisher’s test (Bonferroni-corrected significance threshold 
0.05/8,268 = 6.05 × 10−6) was performed ‘re-discovering’ BRCA1 and 
BRCA2 as breast cancer susceptibility genes (Fig. 5f).

We performed the rare-variant association tests with different 
thresholds for the minor allele frequency to illustrate that selected 
controls are well matched to the case cohort in a wide range of minor 
allele frequencies (Supplementary Fig. 13).

Next, we performed a conventional case–control matching proce-
dure with shared genotypes and obtained 2,786 controls (Supplemen-
tary Fig. 14) and compared the statistical power of the association study 
using the SCoRe and conventional approach. We estimated statistical 
power using simulations for Fisher’s exact test (statmod R package)21 
with multiple odds ratios and allele frequencies for SCoRe test (Sup-
plementary Fig. 15), implying 244 case cohort and single-batch matched 
control cohort of 4,096 samples. We observed that using SCoRe for 
control selection virtually saturated statistical power, making the size 
of the case cohort the limiting factor, which is the optimal scenario 
for local, clinical-based case-focused cohorts. Moreover, in the case 
of treating the case cohort as a single cluster, the control set selected 
by SCoRe is larger than could be obtained in case of genotype sharing 
following the common matching techniques.

Furthermore, two additional case studies were performed 
using African-American-derived populations to illustrate the practi-
cal utility of our approach for the underrepresented populations, 
for which SCoRe could become a step in solving data access limita-
tions and inequalities. First, we performed pan-cancer analysis of the 
African-American subset of The Cancer Genome Atlas cohort (N = 471). 
After successfully matching 496 controls using the SCoRe server, we 
validated the matching using association testing for common and 
rare synonymous variants. Interestingly, both African-American and 
admixed African population clusters were successfully matched with 
a set of controls, indicating that our method is working for admixed 
populations. Analysis of rare PTV variants also appeared well cali-
brated, with PRIM2 being the top associated gene. Interestingly, PRIM2 
was previously found to have the highest mutation rate in prostate 
tumors in patients of African-American descent22 (Supplementary 
Figs. 16 and 17).

Finally, a panel sequencing of 2,482 genes in a cohort of 130 African 
Americans diagnosed with focal segmental glomerulosclerosis (FSGS) 
was analyzed using SCoRe. Despite only 724 LD-pruned variants avail-
able for analyzing the population structure in the sequencing panel, 
SCoRe returned 700 controls with λ = 1.00. Common variant analysis 
resulted in replication of the known, G1 variant association in APOL1 
(ref. 23) (Supplementary Fig. 18).
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Conclusively, SCoRe could be successfully used for case cohorts 
lacking control subjects to perform both common and rare-variant 
association studies, while returning meaningful and well-calibrated 
results. The SCoRe framework includes quality and data feature filters 
enabling its integration into local workflows for multiple types of data 
analysis, including meta-analysis and rare-variant association studies.

Discussion
Local cohorts assembled at hospitals as part of clinical screening 
procedures or genetic counseling often have very modestly sized (or 
none at all) matched control sets and often have sensibly stringent 
data-sharing regulation. Especially for rare Mendelian phenotypes, 
the assembly of a well-powered case–control cohort is impeded by low 
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appropriate platform. d,e, Workflow was tested for Agilent (d) and Nextera 
(e) platform ‘cases’. Left: residual norm distributions. Middle: call rate-based 
PCA separates sequencing platforms with every point representing a sample. 
Highlighted are control candidates selected as a result of workflow execution 
for Agilent and Nextera ‘case’ cohort, respectively. Right: results of control 
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platform (error bars represent standard error).
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disease prevalence. Despite the potential availability of control sets 
through public repositories, great effort should be put into process-
ing case and control datasets jointly before even preliminary results 
of an association study could emerge. Practically, this often becomes 
infeasible for small cohort studies limited by data access or compu-
tational power. Large case–control datasets such as those assembled 
by international consortia (for example, ExAC/gnomAD, Psychiatrics 
Genomics Consortium and IBD Genetics Consortium) often provide 
access to summary allele frequencies and dataset quality properties. 
However, such resources represent data freezes of summary allele 
counts, which cannot be used as a one-size-fits-all model for association 
studies. The inability to subset the data and prioritize specific samples 
within these control pools as a best fit for a given case cohort is a major 
obstacle in using these resources for case–control association studies.

We provide a pool of 39,472 exome sequences and a tool enabling 
rapid selection of matched control sets without genotype sharing that 
ultimately outputs allele frequency statistics required for performing 
association tests. Importantly, all the other preparatory steps are the 
same for shared genotypes and should be performed as usual. In such 

settings, minimal effort is required from the user side to obtain all the 
information needed for an association study, thereby facilitating future 
discovery of associated genes and DNA variants. One potential limita-
tion of our approach is the usage of prespecified set of variants of good 
quality (that is, low variance across platforms in call rate) for selecting 
the control set. Although this set of LD-pruned common variants (MAF 
>0.01) provides sufficient resolution for continental ancestry match-
ing, it may not be sufficient for optimal fine-scale ancestry matching. 
Therefore, additional checks are needed for certain types of analysis. 
For example, our case studies suggest that rare variant gene burden in 
synonymous variants is well matched as a result of using our platform; 
however, we recommend that this be routinely checked by the user 
on a case-by-case basis. With respect to the admixed populations, 
our method is agnostic of the case population and works better if the 
distribution of cases can be shaped into a Gaussian form in the PCA 
space. This is usually not true for admixed populations, but we provide 
an explicit solution for ‘normalizing’ the case cohort. Yet, improving 
the efficiency of our methodology for all possible analyses in complex 
admixed cohorts would require additional research.
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using SCoRe web service. a, Workflow scheme for association study without 
genotype sharing. b, Control sets selected using different user-defined matching 
quality thresholds (λ). c, QQ plots for linear regression association statistics 
for every selection threshold on DNA variants used for matching. d, QQ plot for 
linear regression association statistics using summary genotypes counts from 
optimal control dataset (λ < 1.05) on common synonymous DNA variant. e, QQ 
plot for Fisher’s exact test association statistics using summary gene burden 
statistics for synonymous singletons on DNA variants with allele frequency 

<1 × 10−3 or not present in gnomAD. The solid line represents the diagonal, 
and the dashed lines indicate the 95% confidence interval (two-sided Fisher’s 
exact test). Raw, unadjusted P values are reported. f, QQ plot for Fisher’s exact 
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ancestry; AF, allele frequency; SNP, single nucleotide polymorphism.
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Although ancestry-associated matching is important, it would still 
be impossible to perform an association study without controlling for 
data quality differences and potential technical artifacts. The SCoRe 
design is fully compatible with other approaches focused on elimi-
nating technical artifacts, such as platform-biased allele frequency 
estimates and coverage differences. Methods such as iECAT24 and 
ProxECAT25 provide a computational framework to control for techni-
cal differences in allele frequencies and could potentially complement 
SCoRe platform in cases when technical bias cannot be eliminated by 
selecting controls from appropriate sequencing platform or using 
common quality check standards.

Hundreds of thousands of samples have been subjected to exome 
or genome sequencing so far in the world. However, all these data 
exist in isolated pieces with highly regulated access, which limits the 
scope of population genetic studies. Here we provide a repository of 
the software codes for SCoRe implementation, so that it could readily 
be set up by large independent data holders—national biobank initia-
tives and international disease consortia to let the community benefit 
from large-scale genetic resources. This is also critically important 
for advancing genetic association studies in situations when explicit 
data sharing is not permitted or very challenging in international set-
tings, thus potentially providing insights into rare sample collections 
that were not available so far. Finally, the approach developed in this 
work charts a path to creating a unified central repository that would 
encompass all studies published in dbGAP and make it accessible to 
association studies run in any design and cohort without compromis-
ing individual data security.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41588-023-01637-y.
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Methods
There were no project-specific data generated, and therefore, no 
approval from the ethical committee was required. Public data uti-
lized in our study have obtained relevant approvals, as indicated in 
corresponding referenced publications.

Shareable data generation
We assume the situation when exome sequencing data for a cohort of 
cases are directly available for analysis, but lack the control subjects. We 
will describe the procedure of selecting the matched control subjects 
for a case cohort using a remote server storing sequencing data for a 
pool of controls without genotype sharing.

Both cohorts could be represented by their genotype matrices 
constructed using common (MAF >0.01) autosomal, LD-pruned var-
iants, that are routinely used for the PCA in the scenario of shared  
genotypes26,27. The rows of the genotype matrix represent variants 
(n), and the columns represent samples (m). Each genotype entry is 
encoded by the number of alternative alleles —0, 1 or 2 (‘Genotype 
matrix generation’ section in Supplementary Note).

We provide a simple method to create such a genotype matrix 
directly from the VCF file and perform the required genotype (DP 
and GQ), variant and sample quality filtration. Infrequent missing 
values in the genotype matrices are imputed at the time of construc-
tion with a random forest model trained on the genotypes of the 
neighboring variants (‘Genotype imputation’ section in Supplemen-
tary Note, and Supplementary Fig. 1). Imputation is needed solely 
for the following steps of linear algebra operations that require 
complete data. The imputed genotypes are not used for comput-
ing association test statistics. Therefore, we keep two matrices to 
store the imputed and nonimputed data. First is the numeric gen-
otype matrix with imputed values; second is the genotype matrix 
with missing values used for genotype counts calculation for  
association tests.

Let G be a genotype matrix of the control pool and μ be a vector of 
mean values of rows of G. Next, we will use the SVD for dimensionality 
reduction. Let In×m be a matrix of size n × m with ones on the main diago-
nal and zeros for off-diagonal elements. SVD can be applied to the 
centered matrix:G = G − μIn×m = USV′. Commonly, singular values,  
Sii, are put in descending order, so the first vectors-columns from  
U  represent the directions of the maximal variability. We assume that 
the control pool has a broader population structure than a cohort of 
cases, and, thus, it will be used as a base for the case–control matching 
process.

Similarly to the association tests that use first several principal 
components as covariates in the test model, we use the first ten vectors 
U10 = {U(i)|∀i∈[1..10]} from U  to represent a set of orthogonal directions 
of maximal variance in projected data and encodes a population struc-
ture of the pool of controls. The matrix U10 represents coordinates of 
the vectors forming the same orthonormal basis as occurring in PCA 
and does not have any individual level information. Therefore, it could 
be unrestrictedly shared. We will use this as a space to unite the case 
and control projections.

The control selection process is initiated by sharing the vectors μ 
and matrix U10 of control pool to a local machine that has the genotypes 
of a case cohort. It is critical that genotype matrices for case and control 
pool cohorts have the same variants; therefore, we provide a recom-
mended set of autosomal common LD-pruned variants that was used 
to build the basis in the pool of controls (‘Genotype matrix generation’ 
section in Supplementary Note).

Next, the genotype matrix of cases, H, is built using the same vari-
ants as in the pool of controls. We run the test to check if all variants 
from the control pool matrix are present in the case dataset. Otherwise, 
only the subset of variants from the control pool that are found in cases 
is used, which requires an additional step of inversion of the reduced 
U10  to combine case and control projections in the same basis  

(‘Harmonizing the genotype matrices of cases and control pool’ section 
in Supplementary Note).

The projections of the columns of H (representing case individu-
als) are then obtained as U10: P = UT

10(H − μ). This information is stored 
locally and is not shared.

Similarly to the server side, we apply the SVD on the client side. 
Let μP be row means of the matrix P. The centered matrix P  of projec-
tions is obtained and decomposed: P = P − μPIn×10 = UPSPVT

P . Here we 
drop the matrix VT

P  containing individual-level information about  
cases and will use the rest to generate the shareable information for 
the case cohort.

We use a Gaussian model to describe the population structure in 
the case cohort. The Gaussian model is parametrized using the maxi-
mum likelihood estimator—mean value μP and covariance matrix K , 
which are the same as sample mean and sample covariance. The μP 
could be directly computed from the summary genotype counts (unre-
strictedly shareable data) in the case genotype matrix. The covariance 
matrix could be obtained as K = UPSPSTPU

T
P . Therefore, to describe the 

population structure in a case cohort, it is sufficient to share the sum-
mary genotype counts and the matrix UPSP, representing the coordi-
nates of directions of the largest variance in case cohort projected to 
the basis of control pool. Both variables do not have any data that could 
be linked to a single individual. As a result, they can be unrestrictedly 
shared. We provide a convenient functionality to generate a single 
YAML file with a structured shareable data (‘Shareable data structure—
YAML file’ section in Supplementary Note28).

Control selection using a remote server
On a remote server, we set up the process of subsampling the control 
pool in such a way that the distribution parameters of the proposed 
set of controls fit the best to the proposed target distribution of the 
case samples.

The similarity between the proposed set of controls and a case 
cohort is measured with the BHEP statistic—a difference between 
characteristic functions of the target distribution and the sample 
distribution weighted on a Gaussian kernel14. Selection of an optimal 
subset of controls is formulated as an optimization problem aimed to 
minimize the BHEP statistic, which is solved with a simulated anneal-
ing approach15 (‘Subsampling control set using simulated annealing’ 
section in Supplementary Note).

The underlying distribution of BHEP statistic depends on the num-
ber of elements in a sample (the size of the proposed set of controls). 
Therefore, in general cases, a solution minimizing BHEP statistic could 
be obtained for each prespecified size of the control set, but subsam-
ples of different sizes could not be compared between themselves on 
the basis of the BHEP statistic.

To determine the optimal size of the matched control dataset, we 
perform the sampling for each possible number of samples. For each 
subset size, we then compute the fitness of the prospective control set 
through an association study, involving only variants from the case 
genotype matrix H. If genomic control (λ) of the resulting test statistic 
is within a predefined soft threshold (λ ≤ 1.05 by default), this subset 
becomes a candidate solution. Among all candidate solutions, the one 
with the largest number of controls is selected for the return to a user. 
If no candidate solutions were found within the soft threshold, then 
the subset with the smallest λ is chosen for return. We define a hard 
threshold (λ ≤ 1.3 by default) as a limit for genomic inflation after which 
the control selection process is considered unreliable. If among all 
sampled control subsets none satisfies the hard threshold criterion, 
then no controls will be returned to the user.

Additional important parts of the framework include steps that 
are similar to the analysis conducted on shared genotypes, such as 
detection of outliers in case cohort and detection of multiple ancestry 
clusters in the case cohort and subsequent control selection approach 
using the remote server (Supplementary Figs. 2 and 3, and ‘Outlier 
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detection and cohort PCA normalization; multiple ancestry clusters’ 
section in Supplementary Note).

SVDFunctions R package and SCoRe online platform
We implemented described algorithm in R package29 ‘SVDFunctions’30,31 
that provides all routines necessary for usage of our approach both 
as a user and for setting up an independent control pool repository.

We also provide access to SCoRe that enables association studies 
without genotype sharing (Fig. 1). Genotypes for the 39,744 potential 
control samples that are allowed for general research use are stored 
on the SCoRe server, accepting shareable SVD-processed data from 
local case clients and performing control cohort selection. Further, 
genotype frequencies for the variants of interest are computed in the 
selected control dataset and made available to a client to run a full-scale 
association test. Unlike individual-level data, such summary statistic 
sharing from most consented resources is routinely allowed17,18,32.

Pool of controls exome sequencing data
We assembled two large-scale exome datasets that were used to illus-
trate the performance of the method and are provided as a public pool 
of controls for the remote association studies through the control 
server (‘Exome dataset details’ section in Supplementary Note).

Global Populations dataset. Whole exome libraries were prepared 
using the Whole Exome Agilent 1.1 RefSeq plus 3 boosters capture kit 
and protocol, automated on the Agilent Bravo and Hamilton Starlet. 
Libraries were then prepared for sequencing using a modified version 
of the manufacturer’s suggested protocol, automated on the Agilent 
Bravo and Hamilton Starlet, followed by sequencing on the Illumina 
HiSeq 2000. We used an aggregated set of samples consented for joint 
variant calling resulting in 37,607 samples and then created a subset 
of 16,532 samples approved for sharing through the SCoRe platform 
(Supplementary Table 1).

Nordic Dataset. The dataset was assembled from samples coming 
from multiple studies (Supplementary Table 2). Agilent 1.1 RefSeq 
plus 3 boosters, Illumina Nextera and several unknown exome capture 
kits. Some samples, labeled as ‘external’, were sequenced at a differ-
ent sequencing facility; otherwise, all samples for both datasets were 
sequenced at the Broad Institute and aligned on the reference genome 
with BWA33 and the best-practices GATK/Picard Pipeline, followed by 
joint variant calling with all samples processed as a single batch using 
GATK v 3.1-144 Haplotype Caller34–36. The variant- and individual-based 
quality check protocol is available at ‘Exome sequencing data QC’ 
section in Supplementary Note. Variant effect predictor was used for 
variant annotation37. Missing genotypes for SVD were imputed using a 
custom random forest predictor (‘Shareable data generation’ section in 
Methods, and ‘Genotype imputation’ section in Supplementary Note).

Case studies. A dataset of the early onset breast cancer cohort20 
was used as an illustration of the method’s performance in the actual 
association study. It is available through dbGAP (phs000822.v1.p1, 
‘Case study. Breast cancer association study using the SCoRe platform’  
section Supplementary Note).

The utility of the method for the non-European case studies was 
illustrated using African-American pan-cancer cohort from The Cancer 
Genome Atlas38 (dbGAP: phs000178.v11.p8) and African-American 
subgroup of the FSGS cohort39 (‘Case study. African-American cohorts’ 
section in Supplementary Note).

SVDFunctions R package and SCoRe online platform. The SCoRe 
platform returns summary genotype counts for a selected set of 
well-matched controls, along with the QQ plot and the corresponding 
genomic inflation factor λ. SCoRe allows users to control the qual-
ity of control selection by setting a maximal λ threshold—a stricter 

threshold will result in a smaller but more accurately selected control 
dataset.

In addition to ancestry matching, successful association studies 
require that genotype filters are also matched in case and control 
cohorts with respect to the sequencing depth and genotype quali-
ties (DP and GQ fields in VCF format). Also, it is possible to indicate 
a variant call rate that should be used as a filter when calculating 
genomic inflation factor. We provide an option to specify individual 
genotype filters for data returned to a user from selected controls. 
This way only genotypes consistent with provided options will con-
tribute to outputs.

Finally, in case of rare variant gene-based association studies, 
another parameter needs to be matched between case and control 
cohorts: minor allele frequency filters enable restriction of gene  
statistics aggregation to rare variants based on frequencies of alleles 
in selected control cohort or in gnomAD data18. This ensures that allele 
frequency thresholds are the same in case and control cohorts and 
variants are aggregated into gene burden tests based on the same 
principles. Furthermore, calibration of rare variation is also critically 
important for gene-based tests. This is usually done by evaluating 
gene-based association statistics aggregated from rare synonymous 
variants and ensuring the absence of inflation. Therefore, we provide 
the ability to output statistics in accord with Variant Effect Predictor 
(VEP)37 variant annotations to restrict output to synonymous, mis-
sense or protein-truncating variants. Importantly, when using minor 
allele frequency thresholds for the control data output, it is vital to 
use compatible threshold values between case and control cohorts. 
For example, if a case cohort includes only 50 samples, the minimal 
achievable MAF is 0.01 and, therefore, the control cohort could not be 
subjected to a smaller threshold for MAF to avoid artificial bias crea-
tion (‘Control data access and control set genotype counts generation, 
SCoRe server design’ section in Supplementary Note).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used for creation of the control repository could be 
obtained from the dbGAP or from the dedicated repository. The com-
plete list of links is available in Supplementary Tables 1 and 2. The 
breast cancer cohort is available at dbGAP through phs000822.v1.p1. 
The TCGA cohort is available at dbGAP through phs000178.v11.p8. The 
SCoRe control repository could be accessed at http://dnascore.net.  
A tutorial and instructions on how to use the package and repository 
are provided at the ‘Tutorial’ tab of the SCoRe website.

Code availability
Source code for SVDFunctions30 is available at https://github.com/
alexloboda/SVDFunctions.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No specific software was used for data collection

Data analysis R-package SVDFunctions was developed to be used complementary to the control repository at www.dnascore.net.  
All code is freely available at https://github.com/alexloboda/SVDFunctions (doi: 10.5281/zenodo.6778054) and a tutorial is available at 
www.dnascore.net. 
GATK, BWA and Picard Tools were used for control datasets creation and preprocessing. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

No new data was generated in this work. All datasets used for creation of the control repository could be obtained from the dbGAP or from the dedicated 
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repository. Complete list of links is available in Supplementary Tables 1 and 2. SCoRe control repository could be accessed at http://dnascore.net . Tutorial and 
instructions on how to use the package and repository are provided at the “Tutorial” tab of the SCoRe web-site. The following public (available through dbGAP) 
datasets were used for creation of the control database: https://www.internationalgenome.org/data/, phs000814.v1.p1 
(dbGAP), http://evs.gs.washington.edu/EVS/, phs000806.v1.p1 
(dbGAP) 
, phs001552.v1.p1 (dbGAP), https://www.ncbi.nlm.nih.gov/pubmed/29165699 , https://thl.fi/en/web/thl-biobank/for-researchers/sample-collections  
, https://thl.fi/en/web/thl-biobank/for-researchers/sample-collections , https://thl.fi/en/web/thl-biobank/for-researchers/sample-collections , https://
www.ncbi.nlm.nih.gov/pubmed/29165699  
https://thl.fi/en/web/thl-biobank/for-researchers/sample-collections  
, http://www.type2diabetesgenetics.org/projects/t2dGenes 
http://www.type2diabetesgenetics.org/projects/t2dGenes 
http://www.type2diabetesgenetics.org/projects/t2dGenes 
http://www.type2diabetesgenetics.org/projects/t2dGenes 
https://www.uk10k.org/data_access.html  
Breast cancer cohort is available at dbGAP through phs000822.v1.p1. 
TCGA cohort is available at dbGAP through phs000178.v11.p8.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics We provide access to two large-scale sequencing datasets - Public exomes, which includes major continental populations and 
Nordic dataset, which includes Finnish and Swedish origin participants

Recruitment N/A

Ethics oversight Non-human subject research was determined for the project, as no identifiable data was used

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We assembled largest exome sequencing studies available through dbGAP into a single dataset and utilized the vast majority of all Finnish and 
Swedish exome sequencing data available to date.

Data exclusions Call rate filters were applied on individual and variant levels to exclude poor quality sequencing data

Replication The methodology for control selection without genotype sharing was applied in different independent settings: multiple continental 
populations, multiple local populations, different genotype discovery technologies (microarray, exome sequencing, panel sequencing) and 
different exome sequencing platforms (Agilent and Nextera). 

Randomization We used cross-validation (random sampling of the dataset) to simulate case cohorts from a given continental ancestry. At least 10 rounds of 
random sampling were conducted in every setting.

Blinding To test our control matching and selection algorithm no genotype or other individual-level data was used when interacting with control 
database to select controls. The SCoRe server was tested in a blinded way, without any assumptions provided to the control server.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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