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Profiling of RNA-binding protein binding 
sites by in situ reverse transcription-based 
sequencing
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RNA-binding proteins (RBPs) regulate diverse cellular processes by 
dynamically interacting with RNA targets. However, effective methods 
to capture both stable and transient interactions between RBPs and 
their RNA targets are still lacking, especially when the interaction is 
dynamic or samples are limited. Here we present an assay of reverse 
transcription-based RBP binding site sequencing (ARTR-seq), which relies 
on in situ reverse transcription of RBP-bound RNAs guided by antibodies 
to identify RBP binding sites. ARTR-seq avoids ultraviolet crosslinking and 
immunoprecipitation, allowing for efficient and specific identification of 
RBP binding sites from as few as 20 cells or a tissue section. Taking advantage 
of rapid formaldehyde fixation, ARTR-seq enables capturing the dynamic 
RNA binding by RBPs over a short period of time, as demonstrated by the 
profiling of dynamic RNA binding of G3BP1 during stress granule assembly 
on a timescale as short as 10 minutes.

RBPs dynamically interact with their RNA targets to regulate RNA fate in 
all aspects, including transcription, splicing, modification, localization, 
translation and degradation1. The dysfunction of RBPs or their binding 
to RNA substrates can lead to various defects or even diseases. Effec-
tive methods to capture RBP–RNA interactions, particularly dynamic 
or even transient interactions, are critical for a better understanding 
of RBP and its functional effect on target RNAs2.

The widely used approaches to identify RBP targets are based 
on immunoprecipitation (IP) of the specific RBP along with its bound 
RNAs, either through direct RNA IP (RIP) or crosslinking IP (CLIP) 
assisted by covalent capture3–15. Substrate RNAs bound by a specific 
RBP can be enriched through either RIP or CLIP using the antibody 
against the RBP, followed by high-throughput sequencing (seq) to 
profile RBP targets across the whole transcriptome. CLIP-seq captures 
RBP binding sites on substrate RNAs via covalent crosslinking. RNase 

treatment digests RBP-free regions of RNAs, increasing the resolution 
of binding site detection7–10,14,15. CLIP-seq variants such as PAR-CLIP or 
eCLIP improve the crosslinking efficiency, specificity or binding site 
resolution7,9. While effective and widely used, these methods also have 
limitations. They often require a large amount of starting materials due 
to the low IP efficiency; the ultraviolet (UV) crosslinking in CLIP-based 
methods is a low-efficiency chemical reaction. Recently reported 
tRIP-seq and LACE-seq can be applied in low-input samples but at the 
cost of reducing the library complexity12,13.

TRIBE and STAMP type approaches fuse RBPs with an RNA base 
editor to introduce mutations nearby RBP binding sites, bypassing 
IP to identify RBP binding sites16–21. These methods could be readily 
applied to study RBP binding in live cells and with limited materials 
down to single-cell level. Their deployments into research have offered 
new opportunities; however, these editing-based methods still have 
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profile (Fig. 1a(iv)). Note that after in situ RT, immunofluorescence 
imaging could be performed to reveal RBP subcellular localization 
without disturbing the subsequent library construction if the second-
ary antibody and pAG-RTase are fluorophore-modified.

Validation of ARTR-seq using PTBP1
To evaluate ARTR-seq, we applied ARTR-seq to PTBP1, a well-studied 
splicing factor with a variety of published CLIP-seq datasets for com-
parison. To verify the production of biotinylated cDNAs from in situ 
RT, we monitored the biotin group in the cDNA products by dot plot, 
confirming the incorporation of biotin and requirements of pAG-RTase 
and primary antibody for successful cDNA synthesis (Fig. 1c). With 
immunofluorescence staining, we further validated the colocalization 
of pAG-RTase, the secondary antibody and newly synthesized cDNA, 
and their signals largely disappeared on exclusion of the primary anti-
body, supporting the localized RT reaction performed by pAG-RTase 
tethered to the targeted RBP (Fig. 1d and Extended Data Fig. 1f). Note 
that the use of the secondary antibody increased the biotinylated cDNA 
yield (Fig. 1d and Extended Data Fig. 1f,g). Altogether, ARTR-seq specifi-
cally and effectively reverse transcribes RNAs near the targeted protein 
into biotinylated cDNA products.

We next tested ARTR-seq on PTBP1 using 40,000 HepG2 or HeLa 
cells, and compared the results with the published data from several 
known methods, namely CLIP, iCLIP, irCLIP, eCLIP, sCLIP, tRIP, LACE-seq 
and RT&Tag9–13,22,26,27. We observed that ARTR-seq displayed a compara-
ble or higher percentage of usable reads compared to published meth-
ods, indicating a high complexity of the ARTR-seq libraries (Extended 
Data Fig. 2a,b). Then, we calculated the correlation between biological 
replicates (R = 0.98 for both HepG2 and HeLa samples), and confirmed 
good reproducibility of ARTR-seq (Fig. 2a).

Further, we introduced input samples prepared by ARTR-seq with 
the omission of the primary antibody as controls to help filter out 
potential background signals from the nonspecific binding of the 
secondary antibody and RTase (Extended Data Fig. 2c). For PTBP1, 
we found that over 70% of usable reads and over 80% of ARTR-seq 
peaks were annotated to introns, with most exon peaks located within 
the 3′ untranslated region (3′ UTR), consistent with results reported 
by other methods10,12,13,26–29 (Fig. 2b and Extended Data Fig. 2d,e). 
The consensus motif of PTBP1 ARTR-seq peaks was identified as the 
canonical CU-enriched sequence, as known previously30 (Fig. 2b). At 
the whole-transcriptome scale, ARTR-seq reads for PTBP1 piled up at 
the eCLIP peaks, while the input sample did not show such accumula-
tion31 (Extended Data Fig. 3a,b). Additionally, we observed that more 
than 50% of genes identified by ARTR-seq were also detected by other 
methods (52% for eCLIP, 51% for LACE-seq and 82% for iCLIP). At the 
peak level, ARTR-seq successfully identified 41% of eCLIP-targeted 
peaks (Extended Data Fig. 3c). Examination of individual PTBP1 binding 
sites revealed similar read distribution and density between ARTR-seq 
and eCLIP or iCLIP results (Fig. 2c and Extended Data Fig. 3d). To further 
validate PTBP1 bindings captured by ARTR-seq, we knocked down 
PTBP1 in HepG2 cells using two distinct small-interfering RNAs (siRNAs) 
and performed ARTR-seq (Extended Data Fig. 3e). The reads located 
around the ARTR-seq peaks reduced accordingly on PTBP1 knockdown, 
indicating the high specificity of ARTR-seq (Fig. 2d).

Direct versus indirect binding sites detected by ARTR-seq
ARTR-seq identifies RBP binding by in situ RT, enabling the capture of 
RNAs directly bound by the RBP (direct targets) or potentially those 
spatially close to the RBP (indirect targets) (Extended Data Fig. 4a). 
To evaluate direct versus indirect targets, we used the splicing factor 
RBFOX2 as an example; RBFOX2 possesses a well-defined canonical 
binding motif ‘UGCAUG’9,31. Peaks near the UGCAUG motifs likely rep-
resent direct targets, while those farther away may indicate indirect 
targets. We found more than 70% of ARTR-seq peaks were within 500 nts 
from UGCAUG. This percentage is slightly higher than that of eCLIP9. 

limitations. They require genome manipulation by inserting base edit-
ing proteins in germlines or cell lines, hindering their application in 
primary cells and tissues. Inducing editing protein expression typically 
takes roughly 24 hours or longer, which cannot be applied to monitor 
dynamic RNA binding by RBPs. These base editors have their own 
sequence preferences, potentially changing the native binding profile 
of the target RBP. While we were working on our method, RT&Tag, a 
method derived from the CUT&Tag strategy, was published22,23. This 
method profiles RBP–RNA interaction by oligo(dT) primer-initiated 
reverse transcription (RT) and Tn5 tagmentation of the resulting 
full-length RNA–complementary DNA (cDNA) heteroduplex in isolated 
nuclei. RT&Tag can identify RBP binding in polyadenylated RNAs but is 
ineffective in nonpolyadenylated RNAs and cytoplasmic RBP binding. 
Due to the low efficiency of the Tn5 enzyme on heteroduplex, it requires 
25,000–100,000 nuclei to obtain sufficient transcriptome-wide bind-
ing signals.

To overcome the limitations of existing methods, we introduce 
an assay of RT-based RBP binding site sequencing (ARTR-seq) to cap-
ture RBP–RNA interactions through in situ RT. We demonstrate that 
ARTR-seq sensitively profiles RBP targets with good sequencing quality, 
using as few as 20 cells or a single tissue section. Additionally, an imag-
ing step can be readily built into the ARTR-seq procedure, providing 
direct spatial information of RBPs. With ARTR-seq, we show distinct 
binding patterns of splicing factors and the YTH family reader proteins 
of RNA N6-methyladenosine (m6A) modification. ARTR-seq unbiasedly 
detects RNA binding by RBPs in both cytoplasm and nucleus and meas-
ures RBP binding strength on RNA substrates. Furthermore, ARTR-seq 
could monitor dynamic RNA binding by G3BP1 during stress granule 
(SG) assembly on a small timescale of 10 minutes.

Results
Strategy and development of ARTR-seq
In ARTR-seq, we started with rapid formaldehyde fixation to preserve 
the cellular structure, followed by permeabilization of cell membranes 
(Fig. 1a(i)). We then targeted the reverse transcriptase (RTase) to the RBP 
of interest using corresponding antibodies (Fig. 1a(ii)). This involved 
delivering the primary antibody for RBP recognition (Fig. 1a(ii)1), fol-
lowed by a secondary antibody to enhance the local antibody concen-
tration, capitalizing on the potential for multiple secondary antibodies 
to bind a single primary antibody (Fig. 1a(ii)2). Subsequently, a fusion 
protein of protein A/G and RTase (pAG-RTase) was delivered to bind 
both primary and secondary antibodies, enabling site-specific attach-
ment of RTase to the target RBP (Fig. 1a(ii)3). Each step was followed by 
thorough washing to remove any unbound antibodies or pAG-RTase.

After localizing RTase to the RBP, we initiated in situ RT at RBP 
binding sites by adding necessary RT components (Fig. 1a(iii)). To 
achieve efficient RT, we screened three commonly used RTases, includ-
ing engineered Moloney murine leukemia virus (MMLV) RTase24,25, 
human immunodeficiency virus RTase and a truncated version of 
engineered MMLV RTase (25–497) in the pAG-RTase fusion constructs 
with a 30-amino-acid linker (Extended Data Fig. 1a,b). By employing RT 
with quantitative polymerase chain reaction (RT–qPCR), we confirmed 
pAG-MMLV RTase (25–497) as the most active and selected it for sub-
sequent studies (Fig. 1b and Extended Data Fig. 1c).

To identify all RBP binding sites without sequence bias, we applied 
random RT primers with an adapter tag for library construction, and 
extended the primer length from commonly used 6 nucleotides (nts) 
to 10 nts to enhance RT efficiency (Extended Data Fig. 1d). For effective 
cDNA enrichment, biotinylated dNTPs were introduced into cDNA prod-
ucts. After screening, we found that biotin-16-dUTP and biotin-16-dCTP 
exhibited the least hindrance on RT efficiency (Extended Data Fig. 1e). 
These were included in a 1:1 ratio with regular dTTP and dCTP, respec-
tively, in the current ARTR-seq protocol. Following cDNA enrichment 
with streptavidin beads, we performed adapter ligation, library ampli-
fication and high-throughput sequencing to acquire the RBP binding 
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Fig. 1 | ARTR-seq strategy and validation. a, Scheme of ARTR-seq. b, RT–qPCR 
analysis showing the RT activity of tested purified pAG-RTase fusion proteins. 
Two commercial RTases, SuperScript II and SuperScript III, were loaded as 
positive controls. n = 3 biological replicates. c, Biotin dot blot assay showing 
biotinylated cDNA products produced from ARTR-seq. Methylene blue staining 

was the loading control. d, Immunofluorescence imaging of the secondary 
antibody (secondary Ab; yellow), pAG-RTase (red), biotinylated cDNA (green) 
and nucleus (blue) for PTBP1 ARTR-seq. The line graph analysis shows relative 
fluorescence intensity along the line. Scale bar, 10 μm.
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The two methods were comparable when the distance from peaks to 
UGCAUG was within 200 nts (Extended Data Fig. 4b). It is worth not-
ing that RBFOX2 may have other noncanonical binding sites beyond 
the UGCAUG motif, as suggested by the similar percentage of distant 
RBFOX2 eCLIP peaks from this motif. Stringent cutoffs of signal values 
and q values for peaks increased confidence in identifying the direct tar-
gets, albeit at the expense of target numbers (Extended Data Fig. 4c,d). 
Furthermore, we also examined YTHDF2, an m6A binding protein32. 
Approximately 80% of YTHDF2 ARTR-seq peaks were within 300 nts 
from m6A sites identified by m6A-SAC-seq33, comparable to that from 
the PAR-CLIP method32 (Extended Data Fig. 4e). These results indicate 
that the indirect interactions captured in ARTR-seq are likely limited. 
The percentage of direct targets identified by ARTR-seq is comparable 
to those observed in CLIP-based methods.

To further interrogate potential indirect targets identified in 
ARTR-seq, we limited the movement range of RTase by shortening the 
linker in pAG-RTase or omitting the secondary antibody (Extended 
Data Fig. 5a–c). We found shorter linkers reduced RT activity of 
pAT-RTase, indicating that shorter linkers might lead to a slowdown 
in the RTase kinetics (Extended Data Fig. 5d). In RBFOX2 ARTR-seq, the 
use of shorter linkers or omitting the secondary antibody resulted in 
decreased biotinylated cDNA yields but slightly increased read accu-
mulation at RBFOX2 ARTR-seq peaks, indicating reduced RT efficiency 
but concentrated signals (Extended Data Fig. 5e–g). Moreover, we 
observed a little higher percentage (1.9–3.4%) of peaks within 500 nts 
of UGCAUG with a shorter linker or omitting the secondary antibody 
(Extended Data Fig. 5h). These findings indicate that restricting the 
RTase movement range tested here moderately reduced potential 
indirect RNAs captured by ARTR-seq. Optimal RT efficiency is another 
factor that needs to be considered when designing linkers.

Resolution of ARTR-seq
To assess the resolution of ARTR-seq, we examined the distribution 
of RBFOX2 peak centers around UGCAUG sites, and observed a clear 
enrichment with most peaks positioned within 200 nts flanking the 
UGCAUG motif (Extended Data Fig. 6a). Furthermore, we conducted 
a parallel analysis on YTHDF2. Compared to RBFOX2, we observed a 
similar but more enriched distribution for YTHDF2 around the cor-
responding m6A sites, further supporting the capability of ARTR-seq 
in capturing RBP binding sites (Extended Data Fig. 6b).

In an attempt to improve the resolution of binding site identifi-
cation by ARTR-seq, we evaluated the impact of RNase treatment on 
RBFOX2 ARTR-seq. As expected, the stronger RNase treatment reduced 
the library fragment lengths (Extended Data Fig. 6c). We observed that 
the stronger RNase treatment led to a sharper enrichment of RBFOX2 
ARTR-seq peaks around UGCAUG sites, indicating an improved reso-
lution upon RNase treatment (Extended Data Fig. 6d). Through quan-
tification of biotinylated cDNA, we found that samples with stronger 
RNase treatment exhibited lower RT efficiency (Extended Data Fig. 6e). 
Moreover, stronger RNase treatment markedly reduced the propor-
tion of peaks located within 500 nts of the canonical UGCAUG motif. 

This suggests that the application of RNase may reduce reads from 
direct targets, thereby potentially elevating the ratio of nonspecific or 
indirect binding signals (Extended Data Fig. 6f). Overall, our studies 
revealed that RNase treatment could improve ARTR-seq resolution. 
The strength of RNase treatment in ARTR-seq needs to be optimized 
to achieve the desired balance between resolution and sensitivity, 
especially for samples with limited starting materials.

ARTR-seq detects PTBP1 binding sites with as few as 20 cells
The in situ RT-based ARTR-seq bypasses the IP step to minimize sample 
loss, potentially making it feasible for low cell number samples. To 
test this, we generated libraries for PTBP1 using different numbers 
of HepG2 cells and compared the results with published data from 
LACE-seq and RT&Tag of low cell number samples13,22. The correlations 
remained strong for ARTR-seq libraries prepared from as few as 20 cells 
(Extended Data Fig. 7a). Additionally, ARTR-seq libraries exhibited a 
much higher percentage of usable reads compared to other methods 
when using comparable numbers of cells (Fig. 2e and Extended Data 
Fig. 7b,c). Furthermore, PTBP1 ARTR-seq presented a consistently high 
percentage of intronic reads, suggesting its effectiveness in capturing 
informative reads even with the limited starting materials (Extended 
Data Fig. 7d). We further subsampled libraries to an equal sequencing 
depth and examined their reads distribution at peaks identified in the 
corresponding bulk samples. Compared to LACE-seq, ARTR-seq exhib-
ited a clearer accumulation at the peak center with a higher proportion 
of effective reads (Fig. 2f and Extended Data Fig. 7e). Visible ARTR-seq 
signal remained stable for libraries with different numbers of cells as 
exemplified in the Integrative Genomics Viewer (IGV) plot (Fig. 2g).

Because PTBP1 binds to a canonical CU-enriched sequence, we 
compared the CT percentages in usable reads of PTBP1 libraries con-
structed by different methods. We found that all the ARTR-seq libraries 
showed comparable or higher CT percentages compared to that of 
other methods10,13,26–28 (Fig. 2h). We further assessed the read distri-
bution around CU-enriched regions and observed the stable read 
accumulation in ARTR-seq libraries of all cell numbers, peaking at the 
region center (Fig. 2i). Taken together, ARTR-seq can effectively and 
specifically capture the RBP binding sites, even with limited starting 
materials.

Application of ARTR-seq in mouse embryo sections
RBPs can have strong tissue-specific expression, or are only expressed 
in certain tissues rather than cultured cells. Identifying RBP binding 
sites in tissues remains technically challenging34. IP-based methods 
require dissociating tissues into single cells for UV crosslinking, limiting 
their application to whole tissues, particularly embedded frozen tis-
sues or formalin-fixed tissues. Editing-based methods require genetic 
modification and cannot be applied to patient tissues.

ARTR-seq offers an opportunity for identifying RBP binding sites 
in tissues. We studied RBFOX2 with a section of OCT-embedded E11 
mouse embryo to validate the feasibility of ARTR-seq in tissue sam-
ples (Fig. 3a). We first confirmed the nuclear localization of RBFOX2 

Fig. 2 | ARTR-seq captures binding sites of RBPs using as few as 20 cells.  
a, ARTR-seq replicate correlations for usable reads per gene normalized to coverage 
(reads per million reads mapped, RPM) for PTBP1 in HepG2 (top) and HeLa (bottom) 
cells, respectively. Usable reads were the remaining genomic uniquely mapped 
reads after deduplication. The color scale shows the point density. The coefficient  
R and P values were given by the two-tailed Pearson’s correlation. b, Peaks 
distribution in 3′ UTR, CDS, 5′ UTR, noncoding exon, intergenic region and intron, 
and the corresponding motifs of PTBP1 binding peaks identified by ARTR-seq in the 
HepG2 (top) and HeLa (bottom) cells, respectively. P values were calculated by the 
two-tailed binomial test in the HOMER suite52. c, Snapshots from the IGV showing 
the signal overlaps between ARTR-seq and eCLIP28 (top) or iCLIP27 (bottom). The 
ARTR-seq input was pooled by three biological replicates. d, ARTR-seq read density 
at PTBP1 binding peaks of control (siCtrl) and PTBP1 knockdown (siPTBP1) HepG2 

cells revealed by ATAR-seq. e, Percentages of usable reads in subsampled uniquely 
mapped reads from PTBP1 ARTR-seq with different numbers of cells. The plot 
shows replicate 1 for simplicity. f, Signal profiles and heatmaps of read density 
in ARTR-seq libraries constructed from 20 to 40,000 HepG2 cells at ARTR-seq-
identified PTBP1 peaks. g, A snapshot from IGV showing the stable ARTR-seq signal 
in sequencing libraries constructed from different numbers of HepG2 cells. h, A box 
plot comparing the CT percentages of usable reads from libraries constructed by 
using ARTR-seq, CLIP26, iCLIP27, eCLIP28, irCLIP10 and LACE-seq13, respectively. The 
green dashed line represents the median percentage in the ARTR-seq input library. 
The sample sizes are summarized in Supplementary Table 3. i, Signal profiles of 
ARTR-seq read density at CU-enriched regions. CU-enriched regions are defined as 
80 nt-wide regions with a percentage of CT content greater than 70% located in the 
protein-coding genes.
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with the ARTR-seq built-in imaging (Fig. 3b). The ARTR-seq reads for 
mouse embryo tissue showed a high percentage of usable reads and 
good reproducibility between biological replicates (Supplementary 
Fig. 1a,b). Compared to the input, a higher percentage of usable reads 
from RBFOX2 ARTR-seq were mapped to introns, consistent with the 

known binding preference of RBFOX2 (ref. 31) (Supplementary Fig. 1c). 
RBFOX2 binding peaks were mostly located in introns and contained 
the canonical UGCAUG motif9 (Fig. 3c). Additionally, we observed that 
mouse tissue samples displayed a similar percentage of usable reads 
containing UGCAUG motifs to that of HepG2 cell samples, indicating 
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comparable signal detection efficiency of ARTR-seq for tissues and 
cultured cells (Fig. 3d). Examination of individual binding sites further 
supported the recognition of UGCAUG by RBFOX2 (Fig. 3e). Overall, 
ARTR-seq can identify RBP binding sites in embedded tissue samples 
with high specificity.

ARTR-seq profiles regulatory features of splicing factors
PTBP1 and RBFOX2 are well-known splicing factors, with PTBP1 belong-
ing to the heterogeneous ribonucleoprotein (hnRNP) family35. To show 
broader applicability of ARTR-seq, we also studied HNRNPC, another 
splicing factor belonging to the hnRNP family (Extended Data Fig. 8a). 
Consistent with the binding preference of the splicing factors, both 
reads (over 70%) and peaks (over 80%) from the ARTR-seq libraries of 
all three splicing factors (PTBP1, HNRNPC and RBFOX2) were mainly 
located in introns in HepG2 cells (Fig. 4a,b and Extended Data Fig. 8b). 
The RNA-binding motifs of RBFOX2 and HNRNPC were the canonical 
UGCAUG and U-rich sequences, respectively, consistent with the previ-
ous report31 (Fig. 4a,b).

To explore the association between splicing factor binding and 
splicing regulation, we identified the alternative splicing events by 
comparing the ENCODE (Encyclopedia of DNA Elements) RNA sequenc-
ing (RNA-seq) data from RBP-knockdown (KD) cells with those from 
control cells36. We found most alternative splicing events were cat-
egorized as exon skipping (Fig. 4c). We then generated ‘splicing maps’ 
for exon skipping events37 (Fig. 4d). The corresponding ARTR-seq 
peaks were predominantly enriched at upstream proximal introns of 
the included exons upon RBP-KD, at downstream proximal introns 
of the excluded exons upon RBFOX2-KD and at both upstream and 
downstream proximal introns of the included exons upon HNRNPC-KD,  

but not around native cassette exons and constitutive exons. We quan-
tified relative RBP binding strength by ARTR-seq enrichment at the 
gene level, and observed that genes with higher ARTR-seq enrichment 
tend to present a higher splicing difference upon RBP-KD (Fig. 4e and 
Extended Data Fig. 8c). In addition to exon skipping, the number of 
included retained introns upon PTBP1-KD (491 events) outnumbered 
other splicing modes. With further inspection, we found that higher 
enrichment corresponded to higher splicing inclusion differences 
of retained introns, similar to the trend observed for exon skipping 
instances (Extended Data Fig. 8d). Altogether, ARTR-seq robustly 
captures distinctive binding patterns for different splicing factors, 
and the ARTR-seq enrichment could indicate differences in splicing.

ARTR-seq identifies binding features of m6A reader proteins
In addition to sequence recognition, RBPs can also target RNAs in a 
chemical modification-dependent manner. m6A modification is the 
most prevalent chemical modification in mammalian messenger RNA 
(mRNA), and m6A reader proteins can preferentially bind m6A-modified 
RNAs to regulate its processing and metabolism in both the nucleus and 
cytoplasm32,38–41. We performed ARTR-seq for two cytosolic m6A read-
ers YTHDF1 and YTHDF2, and a nuclear reader YTHDC1 in HeLa cells.

We first verified the subcellular localization of the three readers 
with ARTR-seq built-in imaging (Extended Data Fig. 9a). Sequencing 
data from ARTR-seq remained highly reproducible between replicates 
(Extended Data Fig. 9b). Over 80% of the peaks of the two cytoplasmic 
m6A readers (YTHDF1 and YTHDF2) were located in exons, whereas 
roughly 81% of the peaks of nuclear reader YTHDC1 were located 
in introns or intergenic regions, consistent with their distinct sub-
cellular localization (Fig. 5a and Extended Data Fig. 9a,c). The high 
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unique peak ratios observed for the three reader proteins (84.2% for 
YTHDC1, 34.3% for YTHDF1 and 47.5% for YTHDF2) are attributed to 
their unique subcellular localization; YTHDF1 and YTHDF2 display 
different sequences of the N-terminal low-complexity domains, which 

most likely affect their binding to different partner proteins and 
therefore different RNA targets42 (Extended Data Fig. 9d). We further 
investigated the much more abundant non-exonic peaks of YTHDC1, 
and found more than half of them located in repeat elements, with 
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long interspersed nuclear elements (roughly 45%) being the most 
prevalent, consistent with a previous report41 (Fig. 5b). Analysis of 
exonic peak distribution along mRNA showed enrichment around 
stop codons for all these m6A readers, resembling the meta profile 
of m6A modifications, especially for YTHDF1 and YTHDF2 (ref. 33)  
(Fig. 5c and Extended Data Fig. 9e).

Further, we calculated the percentage of exonic peaks overlap-
ping with m6A sites in polyadenylated RNAs identified by m6A-SAC-seq 
(ref. 33). The ARTR-seq peaks for all three readers showed higher per-
centages than random peaks, comparable to the YTHDF2 peaks from 
PAR-CLIP32, supporting the m6A-dependent binding features of these 
three readers (Fig. 5d). We then analyzed the association between the 
m6A fraction and RBP binding strength, and observed that the group 
with higher m6A fractions showed higher RBP enrichment signals for 
YTHDF1 and YTHDF2, further suggesting ARTR-seq can measure the 
relative binding strength of RBPs (Fig. 5e). However, the association for 
YTHDC1 was weaker, potentially due to the limited number of exonic 
YTHDC1 peaks (Extended Data Fig. 9f). Overall, ARTR-seq captures dif-
ferent features of three m6A binding proteins in cytoplasm and nucleus.

Dynamic RNA binding of G3BP1 during SG assembly
SGs are membraneless organelles composed of proteins and RNAs 
and formed in response to stress. The RBP G3BP1 is the central node 
in the network of protein–RNA interaction during SG assembly43,44. 
Under sodium arsenite (NaAsO2) treatment, SGs could be observed after 
13 min with a progressive increase in size over time, with most of the 
SG assembly completed by 40 min, providing a rapid stress response45. 
However, whether RNA targets of G3BP1 vary during SG assembly has 
yet to be investigated.

Taking advantage of the potential high temporal resolution 
offered by fast formaldehyde fixation and low material requirements 
of ARTR-seq, we performed ARTR-seq for G3BP1 in HeLa cells with 
0.5 mM NaAsO2 treatment and monitored the SG assembly process 
at time intervals of 0, 10, 20 and 60 min poststress. We first visualized 
G3BP1 localization using immunofluorescence imaging, and con-
firmed the gradual condensation of G3BP1 into granules over time 
(Fig. 6a). The colocalization of G3BP1 and biotinylated cDNA prod-
ucts was further verified (Fig. 6b). Subsequently, the verified sam-
ples were used for ARTR-seq library construction and sequencing. We 
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determined G3BP1 binding strength by calculating the ARTR-seq log2 
fold change (log2FC) between G3BP1 and input samples at the gene 
level. Roughly 78% of G3BP1–RNA targets (log2FC ≥ 1, P < 0.05) were 
no longer enriched at 60 min (T60) post-NaAsO2 treatment (Fig. 6c). 

SG enrichment of RNA was previously assessed by sequencing RNAs 
isolated from NaAsO2-induced SGs to quantify their relative localiza-
tion within SGs46. Through integrative analysis, we observed that G3BP1 
targets at T60 showed notably higher SG enrichment compared to 
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the starting point without stress (Fig. 6d). These results support the 
accuracy of ARTR-seq and revealed distinct RNA binding of G3BP1 in the 
presence and absence of stress. The functions of stress-induced G3BP1 
targets (T60_only) were enriched to Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways of protein processing in the endoplas-
mic reticulum and human papillomavirus infection, consistent with  
previous observations47,48 (Fig. 6e).

To further explore the dynamic RNA targeting of G3BP1 over 
time, we calculated pairwise correlations of the G3BP1 binding 
strength among time points. The generally low correlation coeffi-
cients (R = 0.38–0.57) suggested distinct G3BP1 bindings at different 
time intervals (Extended Data Fig. 10a). RNAs were previously classi-
fied into SG-enriched RNAs and SG-depleted RNAs according to their 
SG enrichment46. We found that during SG assembly, G3BP1 binding 
strength from ARTR-seq gradually increased for SG-enriched RNAs 
and decreased for SG-depleted RNAs, suggesting a shift of G3BP1 
targets toward SG-enriched RNAs (Fig. 6f,g). Some RNAs displayed 
stable G3BP1 binding, while others showed dynamic G3BP1 binding 
across time intervals (Fig. 6h and Extended Data Fig. 10b,c). We then 
grouped these RNAs based on G3BP1 binding strength using the 
fuzzy c-means clustering algorithm. We found that G3BP1 binding 
strength for these RNAs displayed not only unidirectional trajecto-
ries of increasing or decreasing, but also transient changes during 
60 minutes of NaAsO2 treatment, suggesting rapid and dynamic 
cellular responses to stress (Fig. 6h,i and Extended Data Fig. 10d). 
Taken together, ARTR-seq unveiled the highly dynamic nature of 
G3BP1–RNA interactions during SG assembly, demonstrating its 
capability in tracking temporal changes of protein–RNA interactions 
with limited starting materials.

Discussion
In this work, we present ARTR-seq, a method that captures RBP binding 
sites using in situ RT by antibody-located RTase. ARTR-seq demon-
strated high sensitivity and specificity, even when using as few as 20 
cells or limited tissues. The procedure is compatible with immunofluo-
rescence imaging, providing direct spatial information of the targeted 
proteins without affecting downstream sequencing. With ARTR-seq, 
we observed the unique binding characteristics of PTBP1, RBFOX2 
and HNRNPC related to their splicing regulatory roles. ARTR-seq also 
detected the preferences of m6A reader proteins, YTHDF1, YTHDF2 
and YTHDC1. Furthermore, we showed dynamic RNA binding of G3BP1 
during SG assembly.

One advantage of ARTR-seq is the use of in situ RT to bypass the 
antibody-based IP step, thereby reducing material loss. ARTR-seq is 
also highly versatile and applicable for cell lines, tissues, and even 
clinical formaldehyde-fixed samples. Both inspired by CUT&Tag49, 
ARTR-seq displays distinct advantages compared to the recently 
reported RT&Tag22. First, ARTR-seq uses random primers to unbias-
edly capture local signals, while RT&Tag uses oligo(dT) primer for RT, 

potentially losing signals from nonpolyadenylated RNAs. Additionally, 
RT&Tag may experience reduced local resolution due to uniform RT 
initiation from the poly-A tail and long matured mRNA length (roughly 
2,065 bp)50, leading to coverage bias toward the RNA 3′ end. Second, 
Tn5 tagmentation on the RNA–cDNA heteroduplex is less efficient, 
hindering its applications when using limited starting materials. Third, 
ARTR-seq can be applied in various cellular compartments, whereas 
RT&Tag is limited to the isolated nucleus.

Investigations of dynamic RBP binding have been hindered by low 
UV-crosslinking efficiency, long incubation time and high material 
demands using the existing methods. Benefiting from highly efficient 
formaldehyde crosslinking and low starting material requirements, 
ARTR-seq excels at capturing transient RBP binding across various 
time intervals. In this work, we have demonstrated its application in 
capturing dynamic RNA binding of G3BP1 during SG assembly on a 
timescale of 10 minutes. We envision that the high temporal resolution 
of ARTR-seq will enable the investigation of dynamic or even transient 
RBP–RNA interaction in many other events.

Limitations
The good quality of the primary antibody is a prerequisite for ARTR-seq. 
For those RBPs without good quality antibodies, ARTR-seq may not 
accurately capture RBP–RNA interactions. However, the availability of 
a suitable antibody is a common challenge faced by all antibody-based 
methods. To overcome this limitation, strategies such as knocking in 
a tag protein in frame with the targeted RBP or expressing the tagged 
RBP could be used.

Formaldehyde fixation preserves biological samples at a high tem-
poral resolution, but limitations exist, such as perturbing biomolecular 
condensates due to the faster protein–protein interaction dynamic 
than the fixation rate51. Strategies to increase the fixation rate, such as 
increasing the formaldehyde concentration or moderately raising the 
fixation temperature, can mitigate such artifacts. Like most other meth-
ods, ARTR-seq may face challenges when applied to low-abundance 
RBPs. Approaches such as increasing starting materials or RBP overex-
pression could be used. Additionally, unlike the editing-based methods, 
which are compatible with long-read sequencing, ARTR-seq typically 
shows short fragment lengths (averaging around 60 bp), hindering the 
identification of isoform-specific binding patterns (Extended Data Fig. 
6c). Last, the linker length needs to be optimized when detecting direct 
versus indirect targets using ARTR-seq, and RNase treatment could be 
considered to obtain higher resolution binding sites.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-02146-w.

Fig. 6 | Dynamic RNA binding of G3BP1 during the assembly of SGs.  
a, Immunofluorescence imaging showing the localization of G3BP1 in HeLa  
cells without treatment (T0) and with 0.5 mM NaAsO2 treatment for 10 min  
(T10), 20 min (T20) and 60 min (T60), respectively. Scale bars, 5 μm.  
b, Immunofluorescence imaging (top) showing that G3BP1 (yellow) was colocalized 
with biotinylated cDNA (green) generated from ARTR-seq. The line graph analysis 
(bottom) shows the relative fluorescence intensity along the line. Scale bar, 
5 μm. c, A Venn diagram showing the overlap between the G3BP1–RNA targets 
at T0 and T60. d, A box plot exhibiting SG enrichment of RNA targets from three 
groups defined in c, including T0 only (T0_only, n = 965) fraction, T0 and T60 
overlapped (OL, n = 274) fraction and T60 only (T60_only, n = 482) fraction. SG 
enrichment values were reported in SG RNA-seq46. P values were determined by 
the two-tailed Wilcoxon test. e, KEGG enrichment analysis showing RNA targets 
from three groups are enriched in distinct pathways. P values were calculated by 

the clusterProfiler package53 using the one-tailed hypergeometric test.  
f,g, Boxplots of G3BP1 binding strength for SG-enriched RNAs (n = 1,512, f) and 
SG-depleted RNAs (n = 1,671, g). G3BP1 binding strength was defined as ARTR-seq 
reads log2FC(G3BP1/input). SG-enriched RNAs and SG-depleted RNAs were 
obtained from a previous SG RNA-seq report46. h, A heatmap (left) depicting 
changing patterns of G3BP1 binding strength for RNA clusters across time. 
RNAs were ranked from large to small according to the s.d. of G3BP1 binding 
intensity over different time intervals, and the top 50% of RNAs were selected and 
clustered by fuzzy c-means. Line plots (right) exhibit the corresponding change 
of G3BP1 binding strength in each cluster. Each line represents one gene, with 
the black line being the centroid of the cluster. i, IGV snapshots showing two 
G3BP1–RNA targets with decreased (left) and increased (right) binding strength, 
and each panel was normalized by counts per million. Heatmaps (bottom) show 
G3BP1 binding strength with the size of circles representing its absolute value.
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Methods
Cell culture and stress treatment
HeLa cells (American Type Culture Collection (ATCC) catalog no. CCL-2)  
and HepG2 cells (ATCC, catalog no. HB-8065) were purchased from 
ATCC and cultured in DMEM medium (Gibco) supplemented with 10% 
fetal bovine serum (Gibco) and penicillin-streptomycin (Gibco). K562 
cells (ATCC, catalog no. CCL-243) were obtained from ATCC and cul-
tured in RPMI 1640 Medium (Gibco) supplemented with 10% (v/v) fetal 
bovine serum. Penicillin-streptomycin (Gibco) and 2 mM l-glutamine 
(Gibco). Cells were grown at 37 °C with 5% CO2. For NaAsO2 treatment, 
HeLa cells were grown to 90% confluence and replaced in the pre-
warmed DMEM medium containing 0.5 mM NaAsO2, which was further 
maintained at 37 °C with 5% CO2 for indicated times.

Expression and purification of recombinant protein 
A/G-RTase
The recombinant plasmids were constructed by assembly of pet28A 
vector, protein A/G (pAG), linkers of different lengths and RTase or the 
modified RTase with NEBuilder HiFi DNA Assembly Master Mix (NEB) 
or USER enzyme (NEB) following the manufacturer’s protocols. The 
Protein A/G DNA segment was amplified from the pAG/MNase plas-
mid (Addgene, catalog no. 123461). The engineered MMLV RTase was 
modified from the pCMV-PE2 plasmid (Addgene, catalog no. 132775). 
The recombinant proteins were expressed in BL21(DE3) Competent 
Escherichia coli (NEB) with isopropyl-β-d-thiogalactoside induction 
at 16 °C for 18 h. Cells were collected by centrifuge at 5,500g for 10 min 
and lysed in the buffer of 50 mM Tris-HCl pH 7.5, 300 mM NaCl and 
1 mM PMSF with sonication at 10 s on and 10 s off setting for 10 min at 
4 °C. The recombinant proteins were purified from the supernatant 
using HisTrap HP column (GE Healthcare), followed by an ion exchange 
chromatography column (GE Healthcare) on an AKTA Purifier 10 system 
(GE Healthcare) according to the manufacturer’s protocol, and then 
concentrated to about 20 mg ml−1. The purified enzyme was supple-
mented with 40% glycerol and stored at −80 °C for future use.

RT–qPCR
RNA was reverse transcribed with the purified pAG-RTases or commer-
cial RTases in reaction buffer (50 mM Tris-HCl, 150 mM NaCl, pH 7.5) at 
37 °C for 15 min, and denatured at 85 °C for 5 min. qPCR was performed 
with FastStart Essential DNA Green Master (Roche) on LightCycler 96 
System (Roche). The efficiency of RT was quantified using the delta 
quantitation cycle method.

Protein detection by Coomassie brilliant blue stain and 
western blot
The mammalian cell samples were lysed with cold RIPA buffer (Thermo 
Fisher Scientific) containing 1× protease inhibitor cocktail (Roche). The 
cell lysate was cleared with centrifugation at 15,000g for 10 min at 4 °C. 
The supernatant or purified protein was then mixed with LDS loading 
buffer (Bio-Rad) and boiled at 95 °C for 10 min. Denatured protein 
was loaded into 4–12% NuPAGE Bis-Tris gel (Thermo Fisher Scientific). 
For Coomassie brilliant blue stain, the gel was stained with Imperial 
Protein Stain (Thermo Fisher Scientific) and imaged by FluroChem 
R (Proteinsimple). For the western blot, the protein was transferred 
to the polyvinyl difluoride membrane from the gel. The membranes 
were blocked in 3% BSA (diluted in PBST (PBS with 0.1% Tween-20)) 
for 1 h at room temperature, incubated in a 1:1,000 diluted primary 
antibody solution at 4 °C overnight, washed four times with PBST (PBS 
with 0.1% Tween-20), and incubated in a 1:5,000 dilution of horserad-
ish peroxidase (HRP)-conjugated secondary antibody for 1 h at room 
temperature if the primary antibody was not conjugated with HRP. 
The membranes were supplied with SuperSignal West Dura Extended 
Duration Substrate kit (Thermo Fisher Scientific) and imaged on the 
FluroChem R machine (Proteinsimple). Quantification was performed 
using ImageJ software (v.2.3.0).

Transfection
PTBP1 siRNA was purchased from Horizon Discovery/Dharmacon. 
Cells were seeded in 30% confluency. After incubation for 12 h, siRNA 
was transfected with RNAimax (Thermo Fisher Scientific) following 
the manufacturer’s manual. The fresh medium was changed at 6 h 
posttransfection. Cells were cultured for another 48 h, and the protein 
knockdown efficiency was quantified by western blot.

ARTR-seq
Cells were fixed to an imaging-compatible chamber with 1.5% para-
formaldehyde (PFA) at room temperature for 10 min. To mitigate cell 
loss, 1.5% PFA crosslinking was applied instead of the commonly used 
1% PFA crosslinking. The samples were then quenched with 125 mM 
glycine at room temperature for 5 min, washed twice with Dulbecco’s 
PBS (DPBS) and permeabilized with 0.5% Triton X-100 in DPBS on 
ice for 10 min. Each DPBS washing step involved 3 min of incubation 
at room temperature. Next, samples were washed twice with DPBS, 
blocked with the blocking buffer (1 mg ml−1 UltraPure BSA, 0.2 U μl−1 
RNaseOUT in DPBS) at room temperature for 30 min and stained with 
the diluted primary antibody at room temperature for 1 h. The primary 
antibody was diluted with blocking buffer according to the manufac-
turer’s instructions for immunofluorescence or at a 1:200 dilution if 
no specific guidance was provided. For input samples, the primary 
antibody diluent was replaced by the blocking buffer. Subsequently, 
samples were stained with fluorophore-labeled secondary antibody 
(1:500 diluted in the blocking buffer) at room temperature for 30 min, 
followed by incubation with pAG-RTase (10 nM in the blocking buffer) 
for an additional 30 min. Cells were washed three times with DPBS after 
each staining step by shaking at room temperature for 3 min.

An RT reaction mixture was prepared by mixing 2 μM adapter-RT 
primer (5′-AGACGTGTGCTCTTCCGATCTNNNNNNNNNN-3′), 0.05 mM 
biotin-16-dUTP ( Jena Bioscience), 0.05 mM biotin-16-dCTP ( Jena Bio-
science), 0.05 mM dTTP (Thermo Fisher Scientific), 0.05 mM dCTP 
(Thermo Fisher Scientific), 0.1 mM dATP (Thermo Fisher Scientific), 
0.1 mM dGTP (Thermo Fisher Scientific), 1 U μl−1 RNaseOUT (Thermo 
Fisher Scientific) in 50 μl buffer of DPBS supplemented with 3 mM 
MgCl2. In situ RT was performed by immersing cells with the RT reaction 
mixture and incubating at 37 °C for 30 min, then stopped by adding 
20 mM EDTA and 10 mM EGTA and incubating at room temperature 
for 3 min.

Next, cells were stained with 1:200 diluted biotin monoclonal 
antibody (BK-1/39), alexa fluor 488 (Thermo Fisher Scientific) in DPBS 
by incubation at room temperature for 1 h, followed by staining with 
1 μg ml−1 Hoechst 33342 dye (Thermo Fisher Scientific) at room tem-
perature for 15 min. The samples were then imaged by Leica SP8 laser 
confocal microscope. The fluorescence intensity distribution on a line 
was quantified by ImageJ software.

After imaging, cells were digested with 1 mg ml−1 proteinase K 
(Thermo Fisher Scientific) at 37 °C for 2 h. The nucleic acids were recov-
ered by phenol-chloroform extraction (pH 8.0) and concentrated by 
ethanol precipitation. RNA was digested with 0.2 U μl RNase H (NEB) 
and 1:20 diluted RNase A/T1 (Thermo Fisher Scientific) in 50 μl of the 
RNase reaction buffer (50 mM Tris-HCl pH 7.5, 75 mM KCl, 10 mM MgCl2, 
10 mM DTT) at 37 °C for 1 h, followed by biotinylated cDNA enrichment 
using 10 μl preblocked Dynabeads MyOne Streptavidin C1 (Thermo 
Fisher Scientific) at room temperature for 20 min. The beads were 
preblocked with 1 μg μl−1 UltraPure BSA (Thermo Fisher Scientific), 
1 μg μl−1 UltraPure Salmon Sperm DNA Solution (Thermo Fisher Scien-
tific) and 1 μg μl−1 Yeast transfer RNA (tRNA) (Thermo Fisher Scientific) 
with incubation at room temperature for 30 min before performing 
biotinylated cDNA enrichment.

Subsequently, the cDNA adapter ligation mixture was prepared 
by combining 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 25% PEG 8000, 
1 mM ATP, 1 U μl−1 T4 RNA ligase 1 (NEB), and 5 μM of 3′ cDNA adapter 
(5′Phos-NNNNNNNNAGATCGGAAGAGCGTCGTGT-3′SpC3). The 3′ cDNA 
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adapter ligation was performed by suspending the beads in the cDNA 
adapter ligation mixture and incubating at 25 °C for 16 h. The biotinylated 
cDNA was recovered using an elution buffer composed of 95% (v/v) for-
mamide and 10 mM EDTA (pH 8.0) by boiling at 95 °C for 10 min, followed 
by ethanol precipitation. The cDNA was then dissolved in 10 μl of water.

For library amplification, 40 μl of mixture was prepared by mix-
ing 1× NEBNext Ultra II Q5 Master Mix (NEB), 10 μl of cDNA solution 
and 0.5 μM Illumina sequencing primers, such as NEBNext Multiplex 
Oligos for Illumina (NEB catalog no. E7335S). The library PCR amplifi-
cation followed this program: 98 °C for 30 s (98 °C for 10 s, 60 °C for 
30 s, 65 °C for 45 s) for 13 cycles and 65 °C for 5 min; hold at 4 °C. The 
final libraries were purified using 6% Novex TBE Gel (Thermo Fisher 
Scientific) with size selection between 180 and 400 bp. Next-generation 
sequencing was carried out either at the University of Chicago Single 
Cell Immunophenotyping Core on an Illumina NextSeq 550 machine 
or Illumina NextSeq 2000 machine, or at the University of Chicago 
Genomics Facility on an Illumina NovaSeq 6000 platform.

RNase treatment in ARTR-seq
RNase treatment was incorporated into the ARTR-seq procedure with 
the following modifications: After permeabilization, Cells were incu-
bated with 1 U μl−1 RNase I (Thermo Fisher Scientific) at 37 °C for 5 min, 
followed by two washes with DPBS. For samples with strong RNase 
treatment, an additional RNase I treatment was conducted as previ-
ously described before initiating RT.

Dot blot
After the proteinase K digestion step in ARTR-seq, the total nucleic 
acids were recovered with Oligo Clean & Concentrator Kits (Zymo) to 
get rid of free biotinylated dNTP. The concentration of nucleic acids 
was measured by Nanodrop 8000 Spectrophotometer and adjusted 
to 50 ng µl−1. Next, 1 µl of nucleic acids were loaded onto the Amersham 
Hybond- N+ membrane (GE Healthcare). Membranes were air-dried 
and crosslinked by UV strata linker 2400 at 150 mJ cm−2 twice. The 
membranes were then blocked in 5% fatty-acid-free BSA in PBST at 
room temperature for 1 h, followed by incubation in streptavidin-HRP 
(Thermo Fisher Scientific) in PBST supplemented with 5% fatty-acid free 
BSA at room temperature for another 1 h. The membrane was washed 
with PBST four times before being supplied with SuperSignal West 
Dura Extended Duration Substrate kit (Thermo Fisher Scientific) and 
imaged by the FluroChem R machine (Proteinsimple).

ARTR-seq in the mouse embryo
C57 mouse embryo (E11) frozen tissue sections were purchased from 
Zyagen. The slide with frozen tissue sections was brought to room 
temperature for 10 min of incubation. The PAP pen was used to draw a 
circle around the mouse tissue on the slide, providing a thin film-like 
hydrophobic barrier for reagent incubation. Then the tissue was sub-
jected to typical ARTR-seq procedures with the following change. The 
2 μM adapter-barcoded RT primer (5′-AGACGTGTGCTCTTCCGATCT- 
(8 nt-barcode)-NNNNNNNNNN-3′) was applied for in situ RT.

ARTR-seq with low input
ARTR-seq was applied to 20 to 5,000 HepG2 cells with the following 
changes. 4% PFA was used to minimize cell loss for low-input samples. 
The 2 μM adapter-barcoded RT primer (5′-AGACGTGTGCTCTTCCGATCT
-(8 nt-barcode)-NNNNNNNNNN-3′) was applied for in situ RT. After 
digestion of proteinase K, two biological replicates were pooled 
together for biotinylated cDNA enrichment, adapter ligation, library 
amplification and library sequencing. Sequence data were isolated 
based on the 8 nt barcode in adapter-barcoded RT primers.

Genome reference
Genome and the corresponding reference of Homo sapiens (GRCh38.
p13, GENCODE Release 39), Mus musculus (GRCm39, GENCODE Release 

M29) and Drosophila melanogaster (BDGP6.32, Ensembl Release 107) 
were used for mapping the sequencing reads in this study. Riboso-
mal RNA (rRNA) reference sequences were downloaded from the 
National Center for Biotechnology Information (NCBI) for H. sapiens 
(NR_003285.3, NR_003286.4, NR_003287.4, NR_023363.1), M. musculus 
(NR_003278.3, NR_003279.1, NR_003280.2, NR_046156.1) and from 
FlyBase for D. melanogaster (5SrRNA-CR33353, 18SrRNA-CR45841, 
5.8SrRNA-CR45842 and 28SrRNA-CR4584)

ARTR-seq primary data processing
Reads from the small cell number libraries containing cell barcodes were 
first demultiplexed with an in-house script using read 2. The adapter 
sequences were trimmed with Cutadapt54 (v.4.2) using the parameter 
cutadapt–nextseq-trim=20 -a AGATCGGAAGAGCACACGTCTGAACTC-
CAG; the 8 nt unique molecular identifier sequences were moved and 
add to the read name for the further deduplication. An extra 4 nts at 
the reads’ 3′ end were removed from the adapter-free sequence to 
minimize mapping mismatch caused by the imperfect paired sequence 
in the random primer.

The reads were first mapped to the corresponding rRNA 
sequences using Bowtie2 (ref. 55) (v.2.4.4) with parameters: –seed-
len=15, and the mapped reads were discarded to avoid rRNA con-
tamination. The remaining unmapped reads were mapped to the 
corresponding genome using STAR56 (v.2.7.9a) with parameters: –
readFilesCommand zcat–alignEndsType EndToEnd–genomeLoad 
NoSharedMemory–quantMode TranscriptomeSAM–alignMates-
GapMax 15000–outFilterMultimapNmax 1–outFilterMultimap-
ScoreRange 1–outSAMprimaryFlag AllBestScore–outSAMattributes 
All–outSAMtype BAM SortedByCoordinate–outFilterType BySJout–
outReadsUnmapped Fastx–outFilterScoreMin 10–outFilterMatchN-
min 24. Uniquely mapped reads were deduplicated to get the usable 
reads using UMI-tools57 (v.1.1.2) with the parameter, –method unique. 
The usable reads were assigned to genomic regions with RNASeQC58 
(v.2.4.2) using default parameters. Deduplicated reads were assigned 
to genes with featureCounts59 (v.2.0.3) for the calculation of Pearson’s 
correlation coefficient between biological replicates. For visualiza-
tion in IGV60 (v.2.13.1), .bam files of the usable reads were converted 
to bigWig with bamCoverage in the deepTools suite61 (v.3.5.1) with 
normalization by its respective sequencing depth using the param-
eters –normalizeUsing BPM–binSize 1. All the sample tracks were set 
to the same scale for display, except for the additional instruction 
noted in the legend.

Peaking calling
For peak calling, we first split the usable reads in one library into 
two .bam files containing reads aligned to the positive and negative 
strands, respectively. We used macs3 (ref. 62) to identify peaks with 
default parameters, except for adding ‘–keep-dup all–nomodel –ext-
size 30’. macs3 gives the fold enrichment (signal value) and P value 
based on Poisson distribution, and corrects the P values for multiple 
comparison using the Benjamini–Hochberg correction. The peaks 
located in two strands were called separately using the corresponding 
strand read in the input libraries as background. The two peak files for 
one library were later combined. To generate the consensus motif for 
peaks, we first extended 20 nts to both upstream and downstream, 
and the overrepresented sequences were generated using findMo-
tifsGenome.pl in the HOMER suite52 (v.4.11) with parameters: -rna -S 
10 -len 5,6,7,8,9. Specifically, for motif generation for peaks in mouse 
tissue, the peak genomic coordinates were converted from mm39 to 
mm10 using liftOver from the UCSC Genome Browser63. Peaks were 
assigned to specific genomic regions with in-house scripts, and the 
peaks overlapping two genomic regions were assigned to the region of 
longer overlapping base pairs. The peaks from the reader YTHDC1 were 
further assigned to repeats and other regions with annotatePeaks.pl 
in the HOMER suite.
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Subsampling
To calculate the percentage of usable reads at different sequencing 
depths, we subsample the uniquely mapped reads with the samtools 
view in the Samtools suite64 (v.1.16.1). For the comparison between 
small cell number input libraries for different methods, the sizes of 
all libraries were reduced to that of the smallest library. Specifically, 
instead of directly subsampling the fastq files, we subsampled the 
uniquely mapped reads to calculate the usable read percentage of 
each library.

Alternative splicing identification
The differential alternative splicing events of each gene were identified 
using rMATS (v.4.1.2). The RBP-knockdown RNA-seq libraries bam files 
and the corresponding control libraries’ .bam files with the annotation 
of ENCODE4 v.1.2.1 GRCh38 V29 were downloaded from the ENCODE 
and were analyzed by rMATS for the identification of five alternative 
splicing modes, including skipped exon, mutually exclusive exons, 
alternative 3′ splice site, alternative 5′ splice site and retained introns. 
Events of FDR ≥ 0.05 were discarded for the subsequent analysis.

ARTR-seq enrichment level at the gene level
To calculate the ARTR-seq enrichment at the gene level, we divided 
the reads in one library into two groups by whether they were in one 
specific gene, and had a pair of in–out read numbers for each of the 
IP and Input libraries. For each gene, we generated two-by-two tables 
for all the combinations of in–out read numbers between IP and Input 
libraries. The ARTR-seq enrichment for a gene is defined as the common 
odds ratio of the tables with significance determined by the Cochran–
Mantel–Haenszel chi-squared test.

Data visualization and statistical analysis
Read heatmaps and profiles were generated with plotHeatmap and 
plotProfile in the deepTools suite61 (v.3.5.1), using genomic coordinates 
unless otherwise indicated. The splicing maps of splicing factors are 
generated by RBP-Maps37 with default parameters in the ‘Plotting 
peaks’ mode (–peak), and the hg19 coordinates of native cassette exons 
and constitutive exons were downloaded from the software GitHub 
deposit. The peak genomic coordinates of the peaks for the splicing 
factors were first converted from GRCh38 to hg19 using liftOver from 
the UCSC Genome Browser63. The random regions are random exonic 
regions with the same length as pooled ARTR-seq peaks from the three 
m6A reader proteins, generated by bedtools shuffle in the BEDTools 
suite65 (v.2.30.0).

The meta distributions of binding peaks were generated by the 
R package Guitar66 (v.2.16.0). All statistical analyses were performed 
with R67, and all the plots were generated by the R package ggplot2 
(ref. 68) (v.3.4.1).

Quantification of ARTR-seq signal at the gene level
To analyze G3BP1 binding strength at the gene level, ARTR-seq reads 
were counted for genes in both G3BP1 and paired input samples, and 
FCs and significance between G3BP1 and input were determined by 
DESeq2 (ref. 69). Only genes with the read sum equal to or greater than 
ten for G3BP1 and input samples were considered. RNA targets of G3BP1 
were defined as those with a FC ≥ 2 and P < 0.05. Both FC and P value 
were calculated by DESeq2 with the default setting.

Clustering analysis of G3BP1 ARTR-seq signal
To track the changing pattern of G3BP1 binding single during the SG 
assembly, we used log2FC (G3BP1/input) of genes to represent the 
G3BP1 binding signal, and performed fuzzy c-means clustering analysis 
on log2FC by the Mfuzz package70 (v.2.54.0). Only genes with the top 
50% of the greatest standard deviation (s.d.) of log2FC were considered, 
and the log2FC values were scaled by z score before clustering. The 
cluster number was determined by the ‘Dmin’ function in the Mfuzz 

package. Clustering was calculated by the ‘mfuzz’ function in the Mfuzz 
package with 10,000 iterations with Euclidean distance as the cluster-
ing method. The membership values indicate the degree of association 
of genes with their respective clusters.

Functional enrichment analysis
KEGG enrichment analysis was carried out to compare G3BP1–RNA 
targets at different time points using the ‘compareCluster’ function in 
the clusterProfiler package53 (v.4.4.4). The KEGG terms with adjusted 
P values less than 0.05 were visualized.

Statistics and reproducibility
Unless otherwise stated, a two-tailed Student’s t-test or Wilcoxon 
test were performed to assess the statistical significance between 
groups. The resulting P values are indicated in the figure or legends. 
For boxplots, the box represents the 25th to 75th percentiles with a 
line at the median, whiskers to 1.5 times the interquartile range, a dot 
at the mean (if applicable) and outliers omitted. Immunofluorescence 
imaging experiments were repeated in at least two biological samples 
with consistent results.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the sequencing data generated in this study have been deposited 
in the NCBI’s Gene Expression Omnibus (GEO) under the accession 
number GSE226161. Previously published data are available under 
accession numbers GSE42701 (CLIP-seq26), ENCSR384KAN and ENC-
SR981WKN (eCLIP28), E-MTAB-3108 (iCLIP27), GSE78832 (irCLIP10), 
GSE137925 (LACE-seq13), GSE92995 (sCLIP11), DRA005743 (tRIP-seq12) 
and GSE195654 (RT&Tag22). The data were downloaded and processed 
as described in the articles. The processed .bam files of RNA-seq data for 
knockdown HNRNPC, PTBP1 and RBFOX2, along with their correspond-
ing control data, were downloaded from ENCODE portal28 under the 
accession numbers of ENCSR052IYH, ENCSR305XWT, ENCSR767LLP, 
ENCSR104ABF, ENCSR064DXG and ENCSR603TCV. The published 
PAR-CLIP data and the corresponding peaks for YTHDF2 are available 
under the GEO accession number GSE49339. The m6A modification 
sites identified by m6A-SAC-seq are available under the GEO accession 
number GSE198246. Source data are provided with this paper.

Code availability
Codes for processing ARTR-seq data are available in the following 
GitHub repository: https://github.com/mingming-cgz/ARTR-seq.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | ARTR-seq setup and condition optimization.  
a, Functional domains of the engineered MMLV RTase (H8Y, D200N, T306K, 
W313F, T330P, D524G, L603W)24,25. The MMLV RTase (full length) is composed 
of three domains: polymerase (red), connection (purple) and RNase H (yellow). 
The RNase H domain and the first 24 N-terminal residues were omitted in MMLV 
RTase (25-497) to improve its RT activity71. b, Coomassie bright blue staining 
of three purified pAG-RTase fusion constructs with a link length of 30 amino 
acids. c, qRT-PCR analysis for ACTB, METTL14 and RBM15 showing the relative 
RT activity of three tested purified pAG-RTase fusion proteins. Two commercial 
RTases SuperScript II and SuperScript III were loaded as positive controls. n = 3 
biological replicates. d, qRT-PCR showing the relative RT efficiency using the 

indicated random primers. pAG-MMLV RTase fusion protein (25-497) was used 
in this analysis. n = 2 biological replicates. e, qRT-PCR showing the effects of 
different biotinylated dNTPs on the relative RT efficiency using pAG-MMLV RTase 
(25-497). Biotin-16-dUTP and biotin-16-dCTP exhibited the least hindrance to 
RT efficiency. Both were used in the ARTR-seq procedure by mixing with regular 
dTTP and dCTP at a 1:1 ratio. n = 1 biological replicate. f, Immunofluorescence 
(IF) imaging of the secondary antibody (2nd Ab, yellow), pAG-RTase (red), newly 
synthesized cDNA (green), and nucleus (blue) for RBFOX2 ARTR-seq. Scale bars, 
10 μm. g, qPCR analysis to measure relative cDNA yields of ARTR-seq samples. 
n = 2 biological replicates.
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Extended Data Fig. 2 | Reads comparison between ARTR-seq and other 
methods. a, Bar plots showing numbers (left) and percentages (right) of 
the usable reads and reads filtered after each processing step for libraries 
constructed by using ARTR-seq, CLIP, eCLIP, iCLIP, irCLIP, LACE-seq, sCLIP,  
tRIP-seq, and RT&Tag, respectively. The usable reads are defined as reads 
uniquely mapped to the genome and remained after PCR deduplication.  
b, Percentages of usable reads in subsampled uniquely mapped reads from PTBP1 
libraries constructed by ARTR-seq, CLIP, eCLIP, iCLIP, irCLIP, LACE-seq, sCLIP, 
and tRIP-seq, respectively. c, Snapshots from Integrative Genomics Viewer (IGV) 
showing the read coverage of ARTR-seq libraries. The read coverage of each 
library was normalized by its respective sequencing depth. All tracks were set to 

the same scale. Regions with higher read coverage in PTBP1 ARTR-seq libraries 
compared to the input libraries represent true positive RBP binding signals 
(enriched, orange); regions with lower or comparable read coverage indicate 
background noise signals (not enriched, blue). Input libraries were applied 
to help filter out not-enriched regions. d, A bar plot showing the usable reads 
distribution in the intronic (purple), intergenic (grey) and exonic (green) regions 
for libraries constructed by using ARTR-seq, CLIP, eCLIP, iCLIP, irCLIP, LACE-seq, 
sCLIP, and tRIP-seq, respectively. About 30% of usable reads for the ARTR-seq 
input samples were located in introns. e, Meta distributions of PTBP1 ARTR-seq 
peaks along mRNA transcripts and flanking 1 kb regions.
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Extended Data Fig. 3 | Comparison between ARTR-seq and other methods. 
a. The signal profiles and heatmaps of read density from ARTR-seq library 
reads at the eCLIP-identified PTBP1 peaks in HepG2 cells28. b, Signal profiles 
and heatmaps of read density from ARTR-seq and LACE-seq library at the 
eCLIP-identified PTBP1 peaks in K562 cells13,28. c, Heatmaps exhibiting the 
transcriptome-wide pairwise overlap of PTBP1-targeted genes (top) or peaks 
(bottom) among libraries from ARTR-seq, eCLIP28, and LACE-seq13 and iCLIP27 
using the same cell line. Notably, the iCLIP data from the HeLa S3 cell line was 
compared with ARTR-seq using the HeLa cell line and LACE-seq using the HeLa 
cell line. The overlap proportion was determined as the number of detected 
genes (or peaks) overlapped between sample A and sample B divided by the total 

number of detected genes (or peaks) in sample A. The maximum gap between 
overlapping peaks was set at 200 nt. The overlap proportion of genes (or peaks) 
and the cell line of sample A were labeled in the corresponding position. d, IGV 
snapshots showing the read coverage of ARTR-seq libraries corresponding to  
Fig. 2c. The read coverage of each library was normalized by its respective 
sequencing depth. According to the ARTR-seq library types (input and 
PTBP1), the tracks were adjusted to distinct scales. e, Western blot (left) and 
quantification (right) displaying PTBP1 protein levels in control (siCtrl) and 
PTBP1 knockdown (siPTBP1) HepG2 cells. GAPDH was used as an internal control 
for normalization.
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Extended Data Fig. 4 | The direct versus indirect binding in ARTR-seq.  
a, A schematic diagram illustrating the simplified direct and indirect targets 
of the RNA binding protein (RBP). The symbol “X” represents the interacting 
protein or complex of the RBP. b, Cumulative curves displaying the proportion of 
RBFOX2 peaks with peak centers located within a certain absolute distance on the 
genome from the nearest RBFOX2 canonical motif ‘UGCAUG’ for both ARTR-seq 
and eCLIP28 (ENCODE: ENCFF871NYM). c, Boxplots showing ARTR-seq peaks 
exhibiting reduced signal values (top) and q-values (bottom) as the absolute 

distance to the nearest ‘UGCAUG’ site increases. From left to right, n = 2164, 1263, 
489, 677 and 869. d, A bar plot illustrating the impact of signal value cutoffs and 
q-value cutoffs on the proportion of RBFOX2 peaks within an absolute distance 
of 500 nts from the closest RBFOX2 canonical motif ‘UGCAUG’. The number of 
remaining peaks was labeled at the top of the bar after applying the cutoffs.  
e, Cumulative curves exhibiting the proportion of YTHDF2 peaks with peak 
centers located within a certain absolute distance on the transcriptome from the 
nearest m6A sites identified by m6A-SAC-seq33 for both ARTR-seq and PAR-CLIP32.
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Extended Data Fig. 5 | Optimizations for reducing potential indirect binding 
in ARTR-seq. a, A schematic diagram demonstrating the binding of protein A/G-
reverse transcriptase (pAG-RTase), secondary antibody (2nd Ab), and the primary 
antibody (1st Ab). b, A schematic diagram showing the constructs of pAG-RTases 
with different amino acid (aa) linker lengths: 3 aa for pRT3, 13 aa for pRT13, and 30 
aa for pRT30. c, Coomassie bright blue staining of the purified pRT3, pRT13 and 
pRT30. d, qRT-PCR analysis for GAPDH, ACTB, METTL14 and RBM15 showing the 
in-vitro RT efficiency of pAG-RTases with different linker lengths. n = 2 biological 

replicates. e, qPCR analysis to quantify relative cDNA yields of RBFOX2 ARTR-seq 
samples. n = 2 biological replicates. f, Signal profiles of ARTR-seq read density 
at RBFOX2 ARTR-seq peaks and flanking 0.3 kb. g, A snapshot from IGV showing 
signals of ARTR-seq libraries. h, Cumulative curves displaying the proportion of 
the top 3000 RBFOX2 peaks (with the highest signal values) with peak centers 
located within a certain absolute distance from the nearest ‘UGCAUG’ for ARTR-
seq libraries constructed under different conditions.
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Extended Data Fig. 6 | The resolution of ARTR-seq. a, Density plots showing 
the distribution of peak centers within a 400-nt window in genome flanking the 
RBFOX2 canonical binding motif ‘UGCAUG’ for RBFOX2 and PTBP1 (negative 
control) ARTR-seq libraries. b, Density plots showing the distribution of peak 
centers within a 400-nt window in transcriptome flanking m6A sites in HeLa cells 
identified by m6A-SAC-seq33 for the YTHDF2 ARTR-seq libraries. The distributions 
in a,b are split into three groups based on the peak signal values. c, Density plots 
exhibiting the distribution of fragment length for ARTR-seq libraries with or 
without RNase treatment. d, Density plots showing the distribution of RBFOX2 

peak centers within a 400-nt window flanking the RBFOX2 canonical binding 
motif ‘UGCAUG’ for ARTR-seq libraries without RNase treatment, with weak 
RNase I treatment and with strong RNase I treatment. The distribution is split into 
three groups based on the peak signal values. e, qPCR analysis to quantify the 
relative cDNA yields of ARTR-seq. n = 2 biological replicates. f, Cumulative curves 
displaying the proportion of the top 3000 RBFOX2 peaks (with the highest signal 
values) with peak centers located within a certain absolute distance from the 
nearest ‘UGCAUG’ for ARTR-seq libraries constructed with or without RNase 
treatment.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Application of ARTR-seq using low input samples. 
a, ARTR-seq replicate correlations for usable reads per gene normalized to 
coverage (RPM) for PTBP1 with different numbers of HepG2 cells. The color 
scale shows the point density. The coefficient R and P-values were given by 
the two-tailed Pearson’s correlation. b, Bar plots showing numbers (left) and 
percentages (right) of the usable reads and reads filtered after each processing 
step for libraries constructed from different cell numbers by ARTR-seq, LACE-
seq13, and RT&Tag22. The libraries generated by the same method are linked 
with the line and indicated in the same color. c, Percentages of usable reads in 

subsampled uniquely mapped reads from PTBP1 libraries constructed from 
different numbers of cells by ARTR-seq, LACE-seq13, and RT&Tag22, respectively. 
Different methods are indicated by colors. d, A bar plot showing the usable reads 
distribution in the intronic (purple), intergenic (grey) and exonic (green) regions 
of libraries constructed from different numbers of cells by ARTR-seq and LACE-
seq, respectively13. The libraries generated by the same method are linked with 
the line and indicated with the same color. e, The signal profile and heatmap of 
read density in LACE-seq with different numbers of cells at LACE-seq-identified 
PTBP1 peaks13.
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Extended Data Fig. 8 | ARTR-seq-detected binding signals of splicing factors. 
a, Bar plots showing numbers (left) and percentages (right) of the usable reads 
and reads filtered in each processing step for ARTR-seq libraries of PTBP1, 
RBFOX2 and HNRNPC. b, A bar plot showing the usable reads distribution in the 
intronic (purple), intergenic (grey) and exonic (green) regions for ARTR-seq 
libraries of PTBP1, RBFOX2 and HNRNPC. c, Cumulative curves and boxplots 
(inside) showing the absolute value of splicing difference upon RBFOX2 (left) or 
HNRNPC (right) knockdown. d, Cumulative curves and boxplots (inside) showing 

the absolute value of splicing differences of included RI upon PTBP1 knockdown. 
In c,d, RBP-regulated genes were divided into three groups according to their 
enrichment in ARTR-seq, including no enrichment (No, 0 ≤ enrichment ≤ 
1), low enrichment (Low, 1 < enrichment ≤ 2) and high enrichment (High, 2 < 
enrichment). The sample size in c,d was indicated below the respective box. 
P-values in c,d were determined using the two-tailed Student’s t-test of indicated 
group versus ‘no enrichment’ group.
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Extended Data Fig. 9 | Binding features of m6A reader proteins detected 
by ARTR-seq. a, IF imaging showing the subcellular localization of YTHDF1, 
YTHDF2, and YTHDC1 in HeLa cells. Scale bars, 5 μm. b, ARTR-seq replicate 
correlations for usable reads per gene normalized to coverage (RPM) for YTHDF1, 
YTHDF2, and YTHDC1. The color scale shows the point density. The coefficient 
R and P-values were given by the two-tailed Pearson’s correlation. c, Distribution 
of usable reads in the intronic (purple), intergenic (grey) and exonic (green) 
regions for ARTR-seq libraries of the individual m6A binding proteins. d, Venn 
plot illustrating overlap of peaks identified by ARTR-seq for YTHDF1, YTHDF2 
and YTHDC1. e, Aggregation profiles showing the meta distributions of binding 
peaks along mRNA transcript detected in two biological ARTR-seq replicates 

for YTHDF1 (green), YTHDF2 (purple), and YTHDC1 (orange). f, Cumulative 
curves and boxplots (inside) showing the log2 peak enrichment of ARTR-seq 
targets for YTHDC1. YTHDC1 peaks were divided into four groups according to 
the modification fraction of the containing m6A (sum value) quantified by m6A-
SAC-seq33. The peaks without m6A were categorized in one group (No), and other 
peaks were divided into three groups with an equal number of peaks, including 
low m6A fraction (Low), medium m6A fraction (Medium) and high m6A fraction 
(High). The sample size was indicated below the respective box. P-values were 
determined by the two-tailed Student’s t-test of indicated group versus ‘no m6A’ 
group.
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Extended Data Fig. 10 | G3BP1 binding at different time intervals during SG 
assembly captured by ARTR-seq. a, The Pearson correlation heatmap among 
time intervals of ARTR-seq results based on G3BP1 binding strength. G3BP1 
binding strength is defined as ARTR-seq read log2FC(G3BP1/input). Pairwise 
correlation coefficients were indicated as circle size and noted in each circle. b, A 
heatmap exhibiting stable G3BP1 binding strength of selected RNAs at different 
time intervals, organized by hierarchical clustering. RNAs were ranked from 
small to large according to the standard deviation (SD) of G3BP1 binding intensity 

over different time intervals, and the top 5% of RNAs were selected for clustering 
(n = 677). The dendrogram was constructed using complete linkage based on 
Euclidean distance. c, IGV snapshots (top) of two RNAs with stable G3BP1 binding 
strength in ARTR-seq, with each panel normalized by CPM. d, IGV snapshots 
showing RNAs with gradually decreased (left) and increased (right) G3BP1 
binding strength. Each panel was normalized by CPM. Heatmaps (bottom) in c,d 
show G3BP1 binding strength in ARTR-seq with the size of the circle representing 
its absolute value.
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