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Exposure-response (E-R) modeling frequently 
relies on the use of exposure metrics that sum-
marize drug concentrations over time. We 
present simulations to demonstrate that cer-
tain commonly used exposure metrics, includ-
ing average concentration up to an event time, 
are likely to lead to causal confounding under 
the very conditions that motivate their use.

Exposure-response (E-R) analysis modeling strategies are 
varied and often specific to the type of data collected in 
a trial.1 One typical and important consideration is the 
choice of summary exposure metric. Although models 
for the dynamic effects of time-varying exposure gener-
ally permit a broader range of questions to be addressed, 
models using time-aggregated summaries of exposure are 
often preferred for their simplicity.

One common choice of time-aggregated exposure met-
ric is average exposure until the event, Cavg_TE. This met-
ric may be computed by taking the area under the curve 
(AUC) up to the time of event, AUC_TE, and dividing by 
the time of the event TE, resulting in CavgTE = AUC_TE / 
TE. This choice of exposure metric is generally motivated 
by a desire to leverage all relevant dosing and pharmacoki-
netic (PK) data until the event. In contexts involving dose 
adjustments and/or dose holidays, average concentration 
up to an event time (CavgTE) may seem intuitively prefer-
able to, for example, average concentration over the first 
dosing cycle (CavgC1), or average concentration at steady-
state (Cavg,ss), both of which are insensitive to the particu-
larities of individual dosing histories.

Exposure metrics that depended on event times or 
responder status have been used in recent analyses and 
regulatory submissions. For example, in an analysis of 
cabozantinib, dose modifications throughout the trial 
justified the use of CavgTE in a survival analysis to show 
E-R relationship for several safety end points as a function 
of cabozantinib exposure.2 In a slight variation, a regula-
tory submission for selinexor used the average dose to the 
event and estimated clearance to derive a “time-averaged” 
AUC.3 One of the exposure metrics considered in a reg-
ulatory filing of inotuzumab ozogamicin was CavgTE over 
the time interval of treatment, which partially depended 
on AEs.4

Unfortunately, the intuitive appeal of CavgTE is mislead-
ing. As we demonstrate in the following simulation, the 
very conditions that motivate the use of such a metric (i.e., 
dosing patterns leading to higher or lower average expo-
sures over time) are also conditions that will generate spu-
rious associations between exposure and response.

To illustrate this point, we simulated a time-to-event 
response with no causal dependence on exposure, con-
centration, or other covariates and then analyzed (as 
categorical and continuous time-to-event end points) 
the simulated data using CavgTE or average concentration 
in the first cycle (CavgC1) exposure metrics. The PK data 
were simulated from a two-compartment model using 
mrgsolve5 with interindividual variability on clearance 
and no covariate effects. The PK parameters were chosen 
such that accumulation was negligible. The dose level 
was the same for all dose events and all patients, with a 
3-week dosing cycle. Response data were simulated using 
a Weibull distribution for 75% of the patients, and the 
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remaining 25% of the patients were assigned to not have 
the event. After six cycles (147 days), all patients were ad-
ministratively censored. The simulations were analyzed 
graphically, with Kaplan–Meier curves, and with logistic 
regression, which is available on the linked GitHub repos-
itory (https://​github.​com/​metru​mrese​archg​roup/​confo​
unded​-​expos​ure-​metrics).

The distribution used to simulate the time-to-event 
response had no covariate effects nor random interindi-
vidual variability. The distribution had the highest hazard 
at the beginning of the trial, and then monotonically de-
creased (Figure 1b). Initially, high hazard rates unrelated 
to study drug exposure can and do occur for many AEs, for 
example, when studies are designed to enroll participants 
following acute events, when the standard of care treat-
ment in a trial of combination therapy entails short-term 

risks, or when unobserved characteristics of patients af-
fect the baseline hazard.

To illustrate how CavgTE changes as a function of time, 
the average concentration from time zero through time t 
(Cavg,t), or equivalently total area under the concentration 
curve divided by time (Cavg,t = AUC0-t/t), was derived for 
the typical patient at a grid of event times t (Figure 1a). For 
example, at t = 21 days, Cavg21 is CavgC1. Two distinct trends 
are notable. Within each dosing cycle Cavg,t is highest near 
the start of the cycle and decreases over time. Overall, the 
highest values of Cavg,t are observed in the beginning of 
the first cycle.

A scatterplot of CavgTE versus time to the event had 
a clear relationship between CavgTE and event time 
when exposures were high, or the event time was small 
(Figure  2a). Continuing the hypothetical analysis, 

F I G U R E  1   Simulation design. (a) Concentration-time curve for a typical patient, and the average concentration (Cavg,t = AUC0−t/t) from 
time zero, which is CavgTE if an event were to occur at a specific time, t. (b) Survival curve for simulating event times for all patients, which is 
independent of concentration and has no covariate effects.
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Kaplan–Meier plots stratified by CavgTE quartile show a 
clear separation across the exposure groups, especially 
for the highest quartile of exposure (Figure 2b). A logis-
tic regression using only CavgTE as a predictor, that is, no 
covariates, also showed a clear relationship with the pre-
dicted probability of an event, ranging from ~0.1 at the 
lower range of exposure to ~0.9 at the highest exposures 
(Figure 2c). All three analysis strategies led to the same 
conclusion, that higher CavgTE was associated with shorter 
time to the event and a higher event probability, and in 
1000 replications, the true (null) causal effect was never 
contained inside the 95% confidence interval. Because 
CavgTE was used as the exposure metric, this result would 
likely be interpreted as “higher exposures cause higher 

event rates,” with corresponding consequences for future 
planning and regulatory interactions. Such a conclusion 
is incorrect because, by design, the true causal relation-
ship was null (flat).

However, using CavgC1 led to an unbiased conclusion of 
the E-R relationship. The scatterplot between CavgC1 and 
event time correctly showed no association (Figure  2d). 
The Kaplan–Meier curves were essentially identical 
(Figure 2e), and the logistic regression had a negligible re-
lationship between CavgC1 and the probability of an event 
(Figure  2f). These analyses would correctly lead to the 
conclusion that there is no E-R relationship. We note that 
use of CavgC1 is consistent with the recommendations in 
Dai et al.6 and Ruiz-Garcia et al.1

F I G U R E  2   Simulation and analysis results by exposure metric used. (a–c) Analyses using average concentration to the event (CavgTE) 
as the exposure metric, which show an exposure-response (E-R) relationship resulting from using the outcome to derive exposure. (d–f) 
Analyses using cycle 1 average concentration (CavgC1) as the exposure metric, which correctly does not show an E-R relationship. In (d) and 
(f) the blue line is a logistic regression fit with a 95% confidence interval.
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The above-illustrated problem with CavgTE cannot be 
diagnosed using standard statistical model fit or model 
comparison criteria. For example, in the presence of two 
competing models (one using CavgTE and one using CavgC1), 
a natural approach would be to use both qualitative and 
quantitative model evaluation tools. For the two logistic 
regression models, the model using CavgTE had an Akaike 
information criterion (AIC) of 2046 and the model using 
CavgC1 had an AIC of 2774, indicating that using CavgTE 
leads to a better fit of the data despite leading to the wrong 
causal conclusion.

Moreover, it is not even logically possible to cor-
rectly create certain simulation-based diagnostics, such 
as Visual Predictive Checks when using CavgTE. The re-
quired simulation logic in this case would be circular: 
exposure depends on when the event happens, and the 
latter is unknown because it can only be simulated with 
knowledge of the exposure. The logical impossibility 
of constructing such a simulation is in itself an indi-
cation that the causal question has not been properly 
formulated.

To build an intuition of why CavgTE led to a biased con-
clusion, one may imagine two patients with identical lon-
gitudinal concentration data, but different event times. 
These patients will have different CavgTE because their 
event times are different. One would never use the out-
come as a covariate in an E-R model, yet indirectly this is 
the logic when using CavgTE. In other words, the outcome 
caused the exposure in the analysis instead of having the 
exposure cause the outcome, and the predicted probabil-
ity of an outcome will be different only because their ob-
served outcomes were different. This is a specific example 
of an explanatory variable that depends on the outcome, 
thereby introducing a spurious association between cause 
and effect.7

Furthermore, such confounding is not limited to av-
erage concentration metrics. The same principle of con-
ditioning on the outcome applies in other circumstances. 
For example, consider a drug that accumulates after each 
dose and maximum concentration (Cmax) is the exposure 
metric. Cmax will increase cycle by cycle because of the ac-
cumulation, so longer event times will be associated with 
higher exposures. Again, information about the event 
time was used to determine the time window for comput-
ing Cmax, and therefore bias is introduced (see the GitHub 
repository for a simulation example).

More broadly, it has been recognized that E-R model-
ing can be subject to bias due to causal confounding; for 
example, in the presence of unmeasured or unmodeled 
confounders6 and immortal time bias.8,9 The choice of 
exposure metric is another such way bias can be intro-
duced into the analysis, as demonstrated by the preceding 
simulation.

Although non-null causal relationships were not spe-
cifically considered here, the null scenario is sufficient 
to convincingly demonstrate that analyses based on 
CavgTE are problematic. As we have shown, a non-null 
association with CavgTE is not evidence of a non-null 
causal effect—a sufficiently damning analysis property 
in itself. Neither have we considered scenarios where 
multiple dose levels are available. Multiple randomized 
dose levels would be expected to mitigate causal bias in 
any exposure-response analysis; nonetheless it would be 
ill-advised to knowingly introduce analytic bias only to 
hope that experimental design will provide a cure for the 
self-inflicted wound.

CavgTE should be understood a priori as an exposure 
metric that will lead to biased analyses. Whereas there 
are conditions under which it will be unbiased, these 
are the very same conditions that would make CavgC1 or 
Cavg,ss an equally valid metric, that is, scenarios with no 
average temporal trends in exposure. Instead, as a gen-
eral approach, we suggest using exposure metrics that 
clearly do not depend on the outcome or intercurrent 
events, for example, CavgC1, thinking clearly about how 
specific drug development questions lead to appropri-
ate exposure metrics, or alternatively using models 
that avoid the use of summary measures of exposure 
altogether and instead model the dynamic effects of 
time-varying exposure, as described in Ruiz-Garcia 
et al.1,10 A simple rule of thumb is: “if you can't in prin-
ciple simulate responses using your exposure metric, 
choose a different exposure metric.”
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